1
|
McCollum S, Kalivas A, Kirkham M, Kunz K, Okojie J, Pavek A, Barrott J. Oncostatin M Receptor as a Therapeutic Target for Radioimmune Therapy in Synovial Sarcoma. Pharmaceuticals (Basel) 2022; 15:ph15060650. [PMID: 35745569 PMCID: PMC9228444 DOI: 10.3390/ph15060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Synovial sarcoma (SS) is a pediatric muscle cancer that primarily affects adolescents and young adults and has few treatment options. Complicating the treatment of synovial sarcoma is the low mutational burden of SS. Inflammatory pathways have been identified as being upregulated in some SS, leading to the discovery of upregulated oncostatin M receptor (OSMR). It was found that OSMR is upregulated in SS by RNAseq analysis and quantitative PCR, highlighting its potential in the treatment of SS. Also, OSMR is upregulated in mouse models for synovial sarcoma as demonstrated by western blot and immunohistochemistry, and the protein is present in both primary and metastatic sites of disease. Using a radioimmune therapy drug model, targeted therapy was synthesized for use in OSMR expressing SS and it was demonstrated that this drug is stable, while capable of efficient OSMR binding and isotope capture. Finally, this antibody conjugate exhibited ideal pharmacokinetics and targeted sites of disease in our mouse model and was taken up in both primary and metastatic diseased tissue. This suggests OSMR as an ideal target for therapy and this radioimmune therapy provides a novel treatment option for a disease with few therapy choices.
Collapse
|
2
|
Staudt J, Happel C, Kranert WT, Bockisch B, Grünwald F. [Comparison of 186Re to 662 keV photon radiation concerning biological radiation effect on the human B-cell line BV-173]. NUKLEARMEDIZIN. NUCLEAR MEDICINE 2021; 60:438-444. [PMID: 34416784 DOI: 10.1055/a-1560-2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZIEL: Ziel der Untersuchung ist es, die Strahlenwirkung des β--Emitters 186Re und von 662keV-Photonenstrahlung zu ermitteln, um die biologische Wirkung von Strahlung niedriger Dosisleistung (186Re) mit der hoher Dosisleistung zu vergleichen. MATERIAL UND METHODEN Zellen der humanen Leukämie-Zelllinie BV-173 wurden mit 662keV-Photonenstrahlung respektive 186Re bestrahlt. In einem Inkubationszeitraum von 7 Tagen wurden Zahl und Vitalität der Zellen täglich bestimmt und als Dosiseffektkurven basierend auf der Vitalität dargestellt. Hierfür wurde der Zeitpunkt mit minimalem Überleben verwendet (72h 186Re und 24h Photonenstrahlung). ERGEBNISSE Beide Strahlenarten zeigen am Auswertezeitpunkt (72h nach Versuchsbeginn für 186Re und 24h nach Versuchsbeginn für Photonenstrahlung) eine Überlebenskurve mit biexponentiellem Verlauf. Für Photonenstrahlung ist dies erklärbar durch eine Hypersensitivität im niedrigen Dosisbereich bis 1Gy, für die sich eine D0 von 3,3Gy ergibt, für Dosen über 1,0Gy liegt die D0 bei 10Gy. Für die 186Re-Inkubation ergibt sich eine D0 von 11,1Gy bei niedrigen Dosen verursacht durch die Reparatur subletaler Schäden, durch welche die biologische Wirkung abgeschwächt wird. Ab einer akkumulierten Dosis von etwa 1,6Gy zeichnet sich für 186Re ein wesentlich steilerer Kurvenverlauf mit einer D0 von 4,0Gy ab, der eine in diesem Bereich 2,5-fach stärkere biologische Wirkung als akute Photonenstrahlung wiedergibt (D0 4Gy für 186Re bzw. 10Gy für Photonen). SCHLUSSFOLGERUNG Strahlung niedriger Dosisleistung zeigt eine geringere biologische Wirkung als eine akute Bestrahlung. Es existiert aber ein Grenzwert der akkumulierten Dosis, ab dem die biologische Wirkung von β-Strahlung die der Photonenstrahlung sogar übertrifft.
Collapse
Affiliation(s)
- Jennifer Staudt
- Universitätsklinikum Frankfurt, Klinik für Nuklearmedizin, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
| | - Christian Happel
- Universitätsklinikum Frankfurt, Klinik für Nuklearmedizin, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
| | - Wolfgang Tilman Kranert
- Universitätsklinikum Frankfurt, Klinik für Nuklearmedizin, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
| | - Benjamin Bockisch
- Universitätsklinikum Frankfurt, Klinik für Nuklearmedizin, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
| | - Frank Grünwald
- Universitätsklinikum Frankfurt, Klinik für Nuklearmedizin, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Concilio SC, Suksanpaisan L, Pham L, Peng KW, Russell SJ. Improved Noninvasive In Vivo Tracking of AAV-9 Gene Therapy Using the Perchlorate-Resistant Sodium Iodide Symporter from Minke Whale. Mol Ther 2020; 29:236-243. [PMID: 33038323 PMCID: PMC7791078 DOI: 10.1016/j.ymthe.2020.09.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023] Open
Abstract
The sodium iodide symporter (NIS) is widely used as a reporter gene to noninvasively monitor the biodistribution and durability of vector-mediated gene expression via gamma scintigraphy, single-photon emission computed tomography (SPECT), and positron-emission tomography (PET). However, the approach is limited by background signal due to radiotracer uptake by endogenous NIS-expressing tissues. In this study, using the SPECT tracer pertechnetate (99mTcO4) and the PET tracer tetrafluoroborate (B18F4), in combination with the NIS inhibitor perchlorate, we compared the transport properties of human NIS and minke whale (Balaenoptera acutorostrata scammoni) NIS in vitro and in vivo. Based on its relative resistance to perchlorate, the NIS protein from minke whale appeared to be the superior candidate reporter gene. SPECT and PET imaging studies in nude mice challenged with NIS-encoding adeno-associated virus (AAV)-9 vectors confirmed that minke whale NIS, in contrast to human and endogenous mouse NIS, continues to function as a reliable reporter even when background radiotracer uptake by endogenous NIS is blocked by perchlorate.
Collapse
Affiliation(s)
- Susanna C Concilio
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Linh Pham
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Imanis Life Sciences, LLC, Rochester, MN 55901, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Imanis Life Sciences, LLC, Rochester, MN 55901, USA.
| |
Collapse
|
4
|
The five “W”s and “How” of Targeted Alpha Therapy: Why? Who? What? Where? When? and How? RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00900-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Radioimmunotherapy in Combination with Reduced-Intensity Conditioning for Allogeneic Hematopoietic Cell Transplantation in Patients with Advanced Multiple Myeloma. Biol Blood Marrow Transplant 2019; 26:691-697. [PMID: 31730919 DOI: 10.1016/j.bbmt.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022]
Abstract
Radioimmunotherapy (RIT) has the potential to reduce the incidence of relapse after allogeneic hematopoietic cell transplantation (allo-HCT) in patients with advanced-stage multiple myeloma (MM). In this study, we evaluated the efficacy of RIT in combination with chemotherapy-based reduced-intensity conditioning (RIC). RIT was based on the coupling of an anti-CD66 antibody to the beta emitter 188-rhenium (188-re) for targeted bone marrow irradiation. Between 2012 and 2018, 30 patients with MM, most of them heavily pretreated with various therapies including proteasome inhibitors, immunomodulatory drugs, anti-CD38 antibodies, and autologous hematopoietic cell transplantation (auto-HCT), were treated with a RIT-RIC combination before allo-HCT. In addition to a fludarabine plus melphalan- or treosulfan-based RIC, a median dose of 18.1 Gy (interquartile range [IQR], 14.6 to 24.1 Gy) was applied to the bone marrow. After a median duration of follow-up for surviving patients of 2.1 years (IQR, 1.3 to 3.0 years), the 2-year progression-free survival and overall survival rates were 43% (95% confidence interval [CI], 26% to 73%) and 55% (95% CI, 38% to 79%), respectively. The 2-year nonrelapse mortality and cumulative incidence of progression were 17% (95% CI, 3% to 30%) and 46% (95% CI, 25% to 67%), respectively. Renal toxicity and mucositis were the most frequent extramedullary side effects. In conclusion, the addition of RIT to RIC was safe and feasible and resulted in promising outcomes compared with those previously reported for RIC-based allo-HCT without the addition of RIT in patients with relapsed/refractory MM. Nevertheless, despite the addition of RIT, relapse after allo-HCT remained a major determinant of therapeutic failure. Therefore, the development of novel RIT strategies (eg, dual targeting strategies or combinations with adapter chimeric antigen receptor T cell-based therapies) is needed.
Collapse
|
6
|
Langford J, Chowdhury F, Orchard K. Development of an ELISA for the Pharmacokinetic Evaluation of a Murine Anti CD66 Monoclonal Antibody in Human Serum. J Immunoassay Immunochem 2015; 36:579-96. [PMID: 25715051 DOI: 10.1080/15321819.2015.1017107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An enzyme-linked immunosorbent assay (ELISA) was needed to assist in the pharmacokinetic evaluation of the murine antibody conjugate CHX A" DTPA Besilesomab in serum samples in a clinical trial . A search failed to locate a validated assay that quantified murine antibodies in human serum so the purpose of this article was to develop a robust assay, validated against current guidelines. A detailed method for an ELISA to measure a murine antibody in human serum is described. The assay was validated as fit for purpose against the target values of coefficient of variation < 20% and accuracy ± 20%.
Collapse
Affiliation(s)
- J Langford
- a Cancer Sciences Unit, Faculty of Medicine , Southampton University , United Kingdom
| | | | | |
Collapse
|
7
|
Gouard S, Pallardy A, Gaschet J, Faivre-Chauvet A, Bruchertseifer F, Morgenstern A, Maurel C, Matous E, Kraeber-Bodéré F, Davodeau F, Chérel M. Comparative analysis of multiple myeloma treatment by CD138 antigen targeting with bismuth-213 and Melphalan chemotherapy. Nucl Med Biol 2014; 41 Suppl:e30-5. [DOI: 10.1016/j.nucmedbio.2014.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 11/25/2022]
|
8
|
Jackson MR, Falzone N, Vallis KA. Advances in anticancer radiopharmaceuticals. Clin Oncol (R Coll Radiol) 2013; 25:604-9. [PMID: 23870756 DOI: 10.1016/j.clon.2013.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/16/2013] [Accepted: 06/12/2013] [Indexed: 12/19/2022]
Abstract
This review highlights recent progress in the development of anticancer radiopharmaceuticals. Molecularly targeted radiotherapy refers to the selective delivery of radionuclides that emit charged particles, such as α particles, β or Auger electrons, to cancer cells via a targeting vector. The discovery of new molecular targets through systems biology and other approaches has widened the scope for radiopharmaceutical development. Innovations in antibody engineering and humanisation, recombinant DNA technology, conjugation chemistry and, increasingly, nanotechnology have provided new approaches to the delivery of radionuclides to cancer cells. The increased availability of radioisotopes that have not traditionally been considered for therapy, such as α particle emitters, has also broadened the indications for targeted radiotherapy.
Collapse
Affiliation(s)
- M R Jackson
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
9
|
Paun O, Lazarus HM. Novel transplant strategies in adults with acute leukemia. Hematol Oncol Clin North Am 2011; 25:1319-39, ix. [PMID: 22093589 DOI: 10.1016/j.hoc.2011.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autologous and allogeneic hematopoietic cell transplantation (HCT) is regularly used as a curative treatment option for patients with various disorders, including acute leukemia in adults. The past decade has witnessed dramatic improvements in the reduction of treatment-related mortality (TRM), in part attributable to improved supportive care but also due to better graft selection and donor-to-recipient matching regimens, and the emergence of reduced-intensity conditioning in place of myeloablative conditioning. Despite these advances, HCT remains plagued by the risk of relapse or failure due to graft-versus-host disease, infectious complications, and TRM. This article reviews new approaches that may improve overall patient outcome.
Collapse
Affiliation(s)
- Oana Paun
- Department of Medicine, University Hospitals Case Medical Center, Case Comprehensive Cancer Center, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
10
|
Grez M, Reichenbach J, Schwäble J, Seger R, Dinauer MC, Thrasher AJ. Gene therapy of chronic granulomatous disease: the engraftment dilemma. Mol Ther 2011; 19:28-35. [PMID: 21045810 PMCID: PMC3017455 DOI: 10.1038/mt.2010.232] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/28/2010] [Indexed: 12/13/2022] Open
Abstract
The potential of gene therapy as a curative treatment for monogenetic disorders has been clearly demonstrated in a series of recent Phase I/II clinical trials. Among primary immunodeficiencies, gene transfer into hematopoietic stem (HSC)/progenitor cells has resulted in the long-term correction of immune and metabolic defects in treated patients. In most cases, successes were augmented by a recognized biological selection for successfully treated cells in vivo, perhaps even to some extent at the HSC level. In contrast, similar achievements have not turned into reality for immunodeficiencies in which gene-transduced cells lack selective advantages in vivo. This is the case for chronic granulomatous disease (CGD), a primary immunodeficiency, characterized by deficient antimicrobial activity in phagocytic cells. Several attempts to correct CGD by gene transfer in combination with bone marrow conditioning have resulted in low-level long-term engraftment and transient clinical benefits despite high levels of gene marking and high numbers of reinfused cells. This review summarizes the data from clinical trials for CGD and provides some insights into treatment options that may lead to a successful application of gene therapy for CGD.
Collapse
Affiliation(s)
- Manuel Grez
- Institute for Biomedical Research, Georg-Speyer-Haus, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Kletting P, Kiryakos H, Reske SN, Glatting G. Analysing saturable antibody binding based on serum data and pharmacokinetic modelling. Phys Med Biol 2010; 56:73-86. [DOI: 10.1088/0031-9155/56/1/005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Fang F, Wang X, Hu J, Zhang L, Lu Y, Fan Q, Ji Y. The Polymorphism Disparity of Cytomegalovirus UL97 Gene in Pediatric Patients, Renal-Transplanted, and Hematopoietic Stem Cell Transplanted Recipients. Lab Med 2010. [DOI: 10.1309/lmcpvcaiaskr0mij] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Abstract
Advances in the field of stem cell biology have provided renewed hopes that stem cells can be used to treat a wide range of genetic diseases and traumatic injuries. However, advances in the field of cancer cell biology have led to formulation of the cancer stem cell hypothesis, which posits that cancers arise from mutant stem cells. Further, this hypothesis proposes that these stem cells account for cancer recurrence, metastasis, and resistance to conventional treatments. Thus, although normal stem cells represent potential effective solutions to numerous clinical problems, when mutated, they may also represent the cause of many human malignancies.
Collapse
|