1
|
Studentsov EP, Golovina AA, Krasikova RN, Orlovskaja VV, Vaulina DD, Krutikov VI, Ramsh SM. 2-Arylbenzothiazoles: Advances in Anti-Cancer and Diagnostic
Pharmaceuticals Discovery. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Huang YY, Chiu MJ, Yen RF, Tsai CL, Hsieh HY, Chiu CH, Wu CH, Hsin LW, Tzen KY, Cheng CY, Ma KH, Shiue CY. An one-pot two-step automated synthesis of [18F]T807 injection, its biodistribution in mice and monkeys, and a preliminary study in humans. PLoS One 2019; 14:e0217384. [PMID: 31260447 PMCID: PMC6602418 DOI: 10.1371/journal.pone.0217384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/11/2019] [Indexed: 12/22/2022] Open
Abstract
[18F]T807 is a potent tau protein imaging agent. In order to fulfill the demand from preclinical and clinical studies, we developed an automated one-pot two-step synthesis of this potent tau imaging agent and studied its stability, and dosimetry in mice and monkeys. We also conducted a preliminary study of this imaging agent in humans. Using this one-pot two-step method, the radiochemical yield (RCY) of [18F]T807 was 20.5 ± 6.1% (n = 15) at the end of bombardment (EOB) in a synthesis time of 70±5 min. The chemical and radiochemical purities were >90% and the specific activities were 151 ± 52 GBq/μmol. The quality of [18F]T807 synthesized by this method met the U.S. Pharmacopoeia (USP) criteria. The stability test showed that the [18F]T807 injection was stable at room temperature for up to 4 h after the end of synthesis (EOS). The estimated effective dose of the [18F]T807 injection extrapolated from monkeys was 19 μSv/MBq (n = 2), while the estimated effective doses of the [18F]T807 injection extrapolated from fasted and non-fasted mice were 123 ± 27 (n = 3) and 94 ± 19 (n = 4) μSv/MBq, respectively. This one-pot two-step automated method produced the [18F]T807 injection with high reproducibility and high quality. PET imaging and radiation dosimetry evaluation in mice and Formosan rock monkeys suggested that the [18F]T807 injection synthesized by this method is suitable for use in human PET imaging studies. Thus, this method could fulfill the demand for the [18F]T807 injection in both preclinical and clinical studies of tauopathies, especially for nearby study sites without cyclotrons.
Collapse
Affiliation(s)
- Ya-Yao Huang
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Jang Chiu
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Zhongzheng Dist., Taipei, Taiwan
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Engineering and Bio-informatics, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Ling Tsai
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Yu Hsieh
- School of Pharmacy, College of Medicine, National Taiwan University, Zhongzheng Dist., Taipei, Taiwan
| | - Ching-Hung Chiu
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Han Wu
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Ling-Wei Hsin
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Zhongzheng Dist., Taipei, Taiwan
| | - Kai-Yuan Tzen
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yi Cheng
- PET Center, Department of Nuclear Medicine, Tri-Service General Hospital, Neihu, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chyng-Yann Shiue
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- PET Center, Department of Nuclear Medicine, Tri-Service General Hospital, Neihu, Taipei, Taiwan
| |
Collapse
|
3
|
Cao J, Tang Y, Li Y, Gao K, Shi X, Li Z. Behavioral Changes and Hippocampus Glucose Metabolism in APP/PS1 Transgenic Mice via Electro-acupuncture at Governor Vessel Acupoints. Front Aging Neurosci 2017; 9:5. [PMID: 28174534 PMCID: PMC5259686 DOI: 10.3389/fnagi.2017.00005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
Objective: Investigating the effects of electro-acupuncture (EA) treatment on mice with Alzheimer’s disease (AD), using Morris water maze (MWM) for spatial learning and memory behavior tests combined with micro-positron emission tomography (micro-PET) imaging for glucose metabolism in hippocampus. Methods: Thirty seven-month-old APP/PS1 mice were randomly divided into AD Model group (AD group), medicine group (M group) and EA group, C57BL/6 mice were used for Normal control group (N group), n = 10 in each group. Mice in M group received donepezil intervention by gavage with dose at 0.92 mg/kg. EA was applied at Baihui (GV20) and Yintang (GV29) acupoints for 20 min then pricked at Shuigou (GV26) acupoint, while mice in N, M and AD groups were received restriction for 20 min, with all treatment administrated once a day for 15 consecutive days. After the treatment, MWM was performed to observe behavioral changes in mice, then hippocampus glucose metabolism level was tested by micro-PET imaging. Results: Compared with that of AD group, the escape latency of M and EA groups declined significantly (P < 0.01), while the proportion of the platform quadrant swimming distance in total swimming distance showed an obvious increase (P < 0.01), and EA group occupied a higher percentage than that in M group. The micro-PET imaging showed that mice in AD group performed a lower glucose metabolic rate in hippocampus compared with N group (P < 0.01). Both M and EA groups presented a significant higher injected dose compared with AD group (P < 0.01), and the uptake rate of EA group was higher than M group. Conclusion: Both donepezil and EA have therapeutic effects on AD mice. To a certain extent, EA shows a better efficacy in treatment of AD by improving the spatial learning and memory ability, while also enhancing glucose metabolism in hippocampus.
Collapse
Affiliation(s)
- Jin Cao
- School of Acupuncture Moxibustion and Tuina, Beijing University of Chinese Medicine Beijing, China
| | - Yinshan Tang
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou, China
| | - Yujie Li
- School of Acupuncture Moxibustion and Tuina, Beijing University of Chinese Medicine Beijing, China
| | - Kai Gao
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences Beijing, China
| | - Xudong Shi
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences Beijing, China
| | - Zhigang Li
- School of Acupuncture Moxibustion and Tuina, Beijing University of Chinese Medicine Beijing, China
| |
Collapse
|
4
|
Li Z, Zhang X, Zhang X, Cui M, Lu J, Pan X, Zhang X. 18F-Labeled Benzyldiamine Derivatives as Novel Flexible Probes for Positron Emission Tomography of Cerebral β-Amyloid Plaques. J Med Chem 2016; 59:10577-10585. [PMID: 27933958 DOI: 10.1021/acs.jmedchem.6b01063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early noninvasive visualization of cerebral β-amyloid (Aβ) plaques with positron emission tomography (PET) is the most feasible way to diagnose Alzheimer's disease (AD). In this study, a series of flexible benzyldiamine derivatives (BDA) were proposed for binding to aggregated β-amyloid 1-42 (Aβ1-42) with high adaptability, high binding affinity (6.8 ± 0.6 nM), and rapid body excretion. The methylthio (12) and ethoxyl (10) derivatives were further labeled with 18F directly on their benzene ring and examined as PET probes for Aβ plaque imaging. [18F]12 displayed 4.87 ± 0.52% ID/g initial uptake and prompt washout from normal brain in biodistribution studies. MicroPET-CT imaging indicated sufficient retention of [18F]12 but lower white matter uptake in the brain of an AD transgenic mouse model compared with that of commercial [18F]AV-45. Our experimental results provide new insights for developing targeting ligands possessing a flexible framework for use as efficient Aβ probes for PET imaging of AD brain.
Collapse
Affiliation(s)
- Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| | - Xuran Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China.,Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Xiaoyang Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Jie Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital , Fuzhou 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University , Fuzhou 350001, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| |
Collapse
|
5
|
Liu H, Jin H, Li J, Zhang X, Kaneshige K, Parsons SM, Perlmutter JS, Tu Z. In vitro and ex vivo characterization of (-)-TZ659 as a ligand for imaging the vesicular acetylcholine transporter. Eur J Pharmacol 2015; 752:18-25. [PMID: 25678250 PMCID: PMC4369186 DOI: 10.1016/j.ejphar.2015.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 12/30/2022]
Abstract
The loss of cholinergic neurons and synapses relates to the severity of dementia in several neurodegenerative pathologies; and the vesicular acetylcholine transporter (VAChT) provides a reliable biomarker of cholinergic function. We recently characterized and (11)C-labeled a new VAChT inhibitor, (-)-TZ659. Here we report the in vitro and ex vivo characterization of (-)-TZ659. A stably transfected PC12(A123.7) cell line which expresses human VAChT (hVAChT) was used for the in vitro binding characterization of (-)-[(3)H]TZ659. A saturated binding curve was obtained with Kd=1.97±0.30nM and Bmax=3240±145.9fmol/mg protein. In comparison, a PC12(A123.7) cell line that expresses mutant hVAChT showed decreased binding affinity (Kd=15.94±0.28nM). Competitive binding assays using a panel of other CNS ligands showed no inhibition of (-)-[(3)H]TZ659 binding. On the other hand, binding inhibitions were observed only using VAChT inhibitors (Ki=0.20-31.35nM). An in vitro assay using rat brain homogenates showed that (-)-[(3)H]TZ659 had higher binding in striatum than in cerebellum, with a target: non-target ratio>3.46. Even higher ex vivo striatum-to-cerebellum ratios (9.56±1.11) were observed using filtered homogenates of brain tissue after rats were injected intravenously with (-)-[(11)C]TZ659. Ex vivo autoradiography of (-)-[(11)C]TZ659 confirmed high striatal uptake, with a consistently high striatum-to-cerebellum ratio (2.99±0.44). In conclusion, (-)-TZ659 demonstrated high potency and good specificity for VAChT in vitro and in vivo. These data suggest that (-)-[(11)C]TZ659 may be a promising PET tracer to image VAChT in the brain.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongjun Jin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Junfeng Li
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiang Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kota Kaneshige
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Stanley M Parsons
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Fedorova OS, Orlovskaya VV, Maleev VI, Belokon’ YN, Savel’eva TF, Chang CV, Chen CL, Liu RS, Krasikova RN. An approach to the asymmetric synthesis of 18F-labeled analog of l-threo-3,4-dihydroxyphenylserine (6-l-threo-[18F]FDOPS) — a new radiotracer for visualization of norepinephrine transporters by positron emission tomography. Russ Chem Bull 2015. [DOI: 10.1007/s11172-014-0567-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Concise and high-yield synthesis of T808 and T808P for radiosynthesis of [18F]-T808, a PET tau tracer for Alzheimer’s disease. Bioorg Med Chem Lett 2014; 24:254-7. [DOI: 10.1016/j.bmcl.2013.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 11/20/2022]
|
8
|
Prospective interest of molecular neuroimaging in Alzheimer's disease. Rev Neurol (Paris) 2013; 169:9-13. [DOI: 10.1016/j.neurol.2012.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 11/23/2022]
|
9
|
The first synthesis of [11C]J147, a new potential PET agent for imaging of Alzheimer’s disease. Bioorg Med Chem Lett 2013; 23:524-7. [DOI: 10.1016/j.bmcl.2012.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 10/27/2012] [Accepted: 11/07/2012] [Indexed: 11/23/2022]
|
10
|
Benadiba M, Luurtsema G, Wichert-Ana L, Buchpigel CA, Filho GB. New Molecular Targets for PET and SPECT Imaging in Neurodegenerative Diseases. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34 Suppl 2:S125-36. [DOI: 10.1016/j.rbp.2012.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/29/2012] [Indexed: 01/23/2023]
|
11
|
Sagnou M, Tzanopoulou S, Raptopoulou CP, Psycharis V, Braband H, Alberto R, Pirmettis IC, Papadopoulos M, Pelecanou M. A Phenylbenzothiazole Conjugate with the Tricarbonyl fac-[M(I)(CO)3]+ (M = Re, 99Tc, 99mTc) Core for Imaging of β-Amyloid Plaques. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Cole PE, Schwarz AJ, Schmidt ME. Applications of Imaging Biomarkers in the Early Clinical Development of Central Nervous System Therapeutic Agents. Clin Pharmacol Ther 2012; 91:315-20. [DOI: 10.1038/clpt.2011.286] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Vasdev N, Cao P, van Oosten EM, Wilson AA, Houle S, Hao G, Sun X, Slavine N, Alhasan M, Antich PP, Bonte FJ, Kulkarni P. Synthesis and PET imaging studies of [18F]2-fluoroquinolin-8-ol ([18F]CABS13) in transgenic mouse models of Alzheimer's disease. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20075a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Brain imaging in the study of Alzheimer's disease. Neuroimage 2011; 61:505-16. [PMID: 22173295 DOI: 10.1016/j.neuroimage.2011.11.075] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/17/2011] [Accepted: 11/25/2011] [Indexed: 12/14/2022] Open
Abstract
Over the last 20 years, there has been extraordinary progress in brain imaging research and its application to the study of Alzheimer's disease (AD). Brain imaging researchers have contributed to the scientific understanding, early detection and tracking of AD. They have set the stage for imaging techniques to play growing roles in the clinical setting, the evaluation of disease-modifying treatments, and the identification of demonstrably effective prevention therapies. They have developed ground-breaking methods, including positron emission tomography (PET) ligands to measure fibrillar amyloid-β (Aβ) deposition, new magnetic resonance imaging (MRI) pulse sequences, and powerful image analysis techniques, to help in these endeavors. Additional work is needed to develop even more powerful imaging methods, to further clarify the relationship and time course of Aβ and other disease processes in the predisposition to AD, to establish the role of brain imaging methods in the clinical setting, and to provide the scientific means and regulatory approval pathway needed to evaluate the range of promising disease-modifying and prevention therapies as quickly as possible. Twenty years from now, AD may not yet be a distant memory, but the best is yet to come.
Collapse
|
15
|
Jahan M, Nag S, Krasikova R, Weber U, Muhs A, Pfeifer A, Spenger C, Willbold D, Gulyás B, Halldin C. Fluorine-18 labeling of three novel D-peptides by conjugation with N-succinimidyl-4-[18F]fluorobenzoate and preliminary examination by postmortem whole-hemisphere human brain autoradiography. Nucl Med Biol 2011; 39:315-23. [PMID: 22136889 DOI: 10.1016/j.nucmedbio.2011.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/28/2011] [Accepted: 09/22/2011] [Indexed: 10/15/2022]
Abstract
INTRODUCTION β-Amyloid (Aβ) plaques and neurofibrillary tangles are the main characteristics of Alzheimer's disease (AD). Positron emission tomography (PET), a high-resolution, sensitive, and noninvasive imaging technique, has been widely utilized in visualizing the localization of plaques and tangles and thereby distinguishing between AD and healthy controls. A small 12-mer D-enantiomeric peptide (amino acid sequence=QSHYRHISPAQV), denoted as D1, has high binding affinity to Aβ in vitro in the sub-micromolar range, and consequently, its radiolabeled analogues have a potential as radioligands for visualizing amyloid plaques in vivo by PET. AIM The aims of the present work were to develop three different potent D1 derivative peptides labeled with fluorine-18 and to examine them in the AD and control postmortem human brain by autoradiography (ARG). METHODS Three different D1 derivative peptides were radiolabeled with fluorine-18 ([(18)F]ACI-87, [(18)F]ACI-88, [(18)F]ACI-89) using the prosthetic group N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB) and purified by high performance liquid chromatography (HPLC). Preliminary ARG measurements were performed in AD and control brains. RESULTS The three fluorine-18-labeled d-peptides were obtained in a total synthesis time of 140 min with radiochemical purity higher than 98%. The specific radioactivities of the three different D1 derivative peptides were between 9 and 113 GBq/μmol. ARG demonstrated a higher radioligand uptake in the cortical gray matter and the hippocampus in the AD brain as compared to age-matched control brain. CONCLUSIONS Fluorine-18 labeling of the three novel D1 derivative peptides using [(18)F]SFB was successfully accomplished. Higher contrast between AD and control brain slices demonstrates their potential applicability for further use in vivo by PET.
Collapse
Affiliation(s)
- Mahabuba Jahan
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska University Hospital, S-17176 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hostetler ED, Sanabria-Bohórquez S, Fan H, Zeng Z, Gammage L, Miller P, O'Malley S, Connolly B, Mulhearn J, Harrison ST, Wolkenberg SE, Barrow JC, Williams DL, Hargreaves RJ, Sur C, Cook JJ. [18F]Fluoroazabenzoxazoles as potential amyloid plaque PET tracers: synthesis and in vivo evaluation in rhesus monkey. Nucl Med Biol 2011; 38:1193-203. [DOI: 10.1016/j.nucmedbio.2011.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/22/2011] [Accepted: 04/13/2011] [Indexed: 12/28/2022]
|
17
|
Vallabhajosula S. Positron emission tomography radiopharmaceuticals for imaging brain Beta-amyloid. Semin Nucl Med 2011; 41:283-99. [PMID: 21624562 DOI: 10.1053/j.semnuclmed.2011.02.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is defined histologically by the presence of extracellular β-amyloid (Aβ) plaques and intraneuronal neurofibrillary tangles in the cerebral cortex. The diagnosis of dementia, along with the prediction of who will develop dementia, has been assisted by magnetic resonance imaging and positron emission tomography (PET) by using [(18)F]fluorodeoxyglucose (FDG). These techniques, however, are not specific for AD. Based on the chemistry of histologic staining dyes, several Aβ-specific positron-emitting radiotracers have been developed to image neuropathology of AD. Among these, [(11)C]PiB is the most studied Aβ-binding PET radiopharmaceutical in the world. The histologic and biochemical specificity of PiB binding across different regions of the AD brain was demonstrated by showing a direct correlation between Aβ-containing amyloid plaques and in vivo [(11)C]PiB retention measured by PET imaging. Because (11)C is not ideal for commercialization, several (18)F-labeled tracers have been developed. At this time, [(18)F]3'-F-PiB (Flutemetamol), (18)F-AV-45 (Florbetapir), and (18)F-AV-1 (Florbetaben) are undergoing extensive phase II and III clinical trials. This article provides a brief review of the amyloid biology and chemistry of Aβ-specific (11)C and (18)F-PET radiopharmaceuticals. Clinical trials have clearly documented that PET radiopharmaceuticals capable of assessing Aβ content in vivo in the brains of AD subjects and subjects with mild cognitive impairment will be important as diagnostic agents to detect in vivo amyloid brain pathology. In addition, PET amyloid imaging will also help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of antiamyloid therapeutics currently under development in clinical trials.
Collapse
Affiliation(s)
- Shankar Vallabhajosula
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Weill Cornell Medical College of Cornell University and New York Presbyterian Hospital, NY, USA.
| |
Collapse
|
18
|
Vallabhajosula S, Solnes L, Vallabhajosula B. A Broad Overview of Positron Emission Tomography Radiopharmaceuticals and Clinical Applications: What Is New? Semin Nucl Med 2011; 41:246-64. [PMID: 21624560 DOI: 10.1053/j.semnuclmed.2011.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Localisation of pre- and postsynaptic cholinergic markers in the human brain. Behav Brain Res 2010; 221:341-55. [PMID: 20170687 DOI: 10.1016/j.bbr.2010.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The cholinergic neurotransmission in the central nervous system plays an important role in modulating cognitive processes such as learning, memory, arousal and sleep as well as in modulating locomotor activity. Dysfunction of the central cholinergic system is involved in numerous neuropsychiatric diseases. This review will provide a synopsis on the regional localisation of cholinergic and cholinoceptive structures within the adult human brain. On the cholinergic site data based on the distribution of choline acetyltransferase-immunoreactive structures are in the focus, complemented by data from acetylcholinesterase and vesicular acetylcholine transporter studies. On the cholinoceptive site, the distribution and localisation of receptors that transduce the acetylcholine message, i.e. the muscarinic and the nicotinic acetylcholine receptors is summarized. In addition to these data obtained on post mortem brain an overview of markers which allow for the in vivo monitoring of the cholinergic system in the brain is given. The detailed knowledge on the distribution and localisation of cholinergic markers in human brain will provide further information on the cholinergic circuits of neurotransmission - a prerequisite for the interpretation of in vivo imaging data and the development of selective diagnostic and therapeutic compounds.
Collapse
|