1
|
Garrou F, Sacchetti GM, Leva L, Andreatta P, Brambilla M, Morbelli S, Carriero A. Transarterial radioembolization in neuroendocrine liver metastases 25 years later: A systematic review. Crit Rev Oncol Hematol 2025; 210:104697. [PMID: 40096872 DOI: 10.1016/j.critrevonc.2025.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Transarterial Radioembolization (TARE) currently lacks a defined role in treating neuroendocrine liver metastases (NELM). This systematic review aims to clarify TARE's role based on its prognostic impact. A search identified 138 studies onPubMed/MEDLINE over the past 25 years, focusing on TARE for NELM patients. Of these, 46 studies met eligibility criteria, and 11 were selected for their similar settings, populations, and outcomes. These were grouped into three clusters based on survival outcomes: overall survival (OS), hepatic progression-free survival (HPFS), and imaging response (IR) per RECIST 1.1 criteria. Statistical analyses showed a median OS of 33 months for 809 patients, a median HPFS of 24 months for 414 patients, and an IR of 28.6 % complete or partial response, 57.8 % stable disease, and 13.6 % disease progression in 581 patients. This evidence supports TARE as a viable treatment option, but further studies are needed to optimize its use and dosimetric procedures.
Collapse
Affiliation(s)
- Federico Garrou
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Turin, Italy; Nuclear Medicine Unit, AOU Maggiore della Carità, Novara, Italy.
| | | | - Lucia Leva
- Nuclear Medicine Unit, AOU Maggiore della Carità, Novara, Italy
| | - Paolo Andreatta
- Medical Physics Department, AOU Maggiore della Carità, Novara, Italy
| | - Marco Brambilla
- Medical Physics Department, AOU Maggiore della Carità, Novara, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Turin, Italy; Nuclear Medicine Unit, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Alessandro Carriero
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
2
|
di Gaeta E, Olivieri M, Savi A, Magnani P, Canevari C, Gusmini S, Palumbo D, Guazzarotti G, Augello L, Calabrese F, Steidler S, Cipriani F, Rimini M, Casadei-Gardini A, Aldrighetti L, Chiti A, De Cobelli F. Radioembolization for Hepatocellular Carcinoma: a Comparison on Dual-phase Cone-beam CT, Contrast-enhanced CT (CECT) and 99mTc-macroaggregated albumin-SPECT/CT in predicting final distribution volumes and dosimetry of the post-embolization 90Y PET/CT. LA RADIOLOGIA MEDICA 2025; 130:474-485. [PMID: 39707126 PMCID: PMC12008061 DOI: 10.1007/s11547-024-01946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE Personalized treatment schemes are being systematically applied to ensure best treatment outcome in oncologic patients. This is true also for personalized dosimetry in transarterial radioembolization (TARE) in hepatocellular carcinoma (HCC) patients. Precise and detailed volumetric and functional data derived from radiological and nuclear imaging methods are essential for personalized dosimetry. We sought to evaluate accuracy of dual-phase cone-beam CT (CBCT) in comparison to pre-treatment contrast-enhanced CT (CECT), and 99mTc-macroaggregated albumin-SPECT/CT ([99mTc]MAA SPECT/CT) to predict and assess the efficacy of TARE based on post-treatment 90Y PET/CT. MATERIAL AND METHODS Thirty consecutive patients with HCC treated with TARE were included. Intraprocedural dual-phase CBCT acquisition protocol was developed to distinguish tumor volume in the early arterial phase and perfused volume of non-affected liver in the late arterial phase. Volumetric data obtained from pre-treatment CECT, dual-phase CBCT and [99mTc]MAA SPECT/CT were compared to post-treatment 90Y PET/CT considered the standard reference. Treatment simulations for final calculated dose from the different imaging derived volumes were then compared to post-treatment 90Y PET/CT. RESULTS CBCT resulted as the most accurate method in predicting tumor- (R2 0.88) and perfused volumes (R2 0.82). Dosimetry prediction planning performed on derived volumes from the different methods did not show significant difference (p < 0.05), yet highest concordance with 90Y PET/CT data was observed with dual-phase CBCT. CONCLUSION Our study shows that dual-phase CBCT acquisition is a novel alternative method for correctly and safely administering more accurate and defined doses during TARE. CLINICALTRIALS gov ID: NCT03981497.
Collapse
Affiliation(s)
- Ettore di Gaeta
- Department of Radiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michela Olivieri
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Annarita Savi
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Magnani
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Carla Canevari
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Simone Gusmini
- Department of Radiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Diego Palumbo
- Department of Radiology, IRCCS Ospedale San Raffaele, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Luigi Augello
- Department of Radiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | - Federica Cipriani
- Department of Hepatobiliary Surgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Margherita Rimini
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Department of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Casadei-Gardini
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Department of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Aldrighetti
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Department of Hepatobiliary Surgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Arturo Chiti
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, IRCCS Ospedale San Raffaele, Milan, Italy.
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
3
|
Calatayud-Jordán J, Carrasco-Vela N, Chimeno-Hernández J, Carles-Fariña M, Olivas-Arroyo C, Bello-Arqués P, Pérez-Enguix D, Martí-Bonmatí L, Torres-Espallardo I. Y-90 PET/MR imaging optimization with a Bayesian penalized likelihood reconstruction algorithm. Phys Eng Sci Med 2024; 47:1397-1413. [PMID: 38884672 DOI: 10.1007/s13246-024-01452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Positron Emission Tomography (PET) imaging after90 Y liver radioembolization is used for both lesion identification and dosimetry. Bayesian penalized likelihood (BPL) reconstruction algorithms are an alternative to ordered subset expectation maximization (OSEM) with improved image quality and lesion detectability. The investigation of optimal parameters for90 Y image reconstruction of Q.Clear, a commercial BPL algorithm developed by General Electric (GE), in PET/MR is a field of interest and the subject of this study. The NEMA phantom was filled at an 8:1 sphere-to-background ratio. Acquisitions were performed on a PET/MR scanner for clinically relevant activities between 0.7 and 3.3 MBq/ml. Reconstructions with Q.Clear were performed varying the β penalty parameter between 20 and 6000, the acquisition time between 5 and 20 min and pixel size between 1.56 and 4.69 mm. OSEM reconstructions of 28 subsets with 2 and 4 iterations with and without Time-of-Flight (TOF) were compared to Q.Clear with β = 4000. Recovery coefficients (RC), their coefficient of variation (COV), background variability (BV), contrast-to-noise ratio (CNR) and residual activity in the cold insert were evaluated. Increasing β parameter lowered RC, COV and BV, while CNR was maximized at β = 4000; further increase resulted in oversmoothing. For quantification purposes, β = 1000-2000 could be more appropriate. Longer acquisition times resulted in larger CNR due to reduced image noise. Q.Clear reconstructions led to higher CNR than OSEM. A β of 4000 was obtained for optimal image quality, although lower values could be considered for quantification purposes. An optimal acquisition time of 15 min was proposed considering its clinical use.
Collapse
Affiliation(s)
- José Calatayud-Jordán
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Carrasco-Vela
- Radiophysics and Radiological Protection Service, Clinical University Hospital of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - José Chimeno-Hernández
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Montserrat Carles-Fariña
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Consuelo Olivas-Arroyo
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Pilar Bello-Arqués
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Daniel Pérez-Enguix
- Department of Radiology, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Department of Radiology, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Irene Torres-Espallardo
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| |
Collapse
|
4
|
Mansur A, Habibollahi P, Fang A, Mahvash A, Etezadi V, Liddell RP, Camacho JC, Cohen EI, Kokabi N, Arepally A, Georgiades C, Nezami N. New frontiers in radioembolization. Ther Adv Med Oncol 2024; 16:17588359241280692. [PMID: 39371617 PMCID: PMC11456171 DOI: 10.1177/17588359241280692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
Radioembolization is a locoregional transarterial therapy that combines radionuclide and micron-sized beads to deliver radiation internally to the target tumors based on the arterial blood flow. While initially developed as a palliative treatment option, radioembolization is now used for curative intent treatment, neoadjuvant therapy, and method to downstage or bridge for liver transplant. Radioembolization has become increasingly utilized and is an important therapeutic option for the management of hepatocellular carcinoma and liver metastasis. This article provides an overview of the techniques, challenges, and novel developments in radioembolization, including new dosimetry techniques, radionuclides, and new target tumors.
Collapse
Affiliation(s)
| | - Peiman Habibollahi
- Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam Fang
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Armeen Mahvash
- Division of Diagnostic Imaging, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vahid Etezadi
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert P. Liddell
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C. Camacho
- Department of Clinical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
- Vascular and Interventional Radiology, Radiology Associates of Florida, Sarasota, FL, USA
| | - Emil I. Cohen
- Division of Vascular and Interventional Radiology, Department of Radiology, Georgetown University School of Medicine, Washington, DC, USA
| | - Nima Kokabi
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aravind Arepally
- Radiology Associates of Atlanta, Atlanta, GA, USA
- ABK Biomedical Inc., Atlanta, GA, USA
| | - Christos Georgiades
- Division of Vascular and Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nariman Nezami
- Division of Vascular and Interventional Radiology, Department of Radiology, Georgetown University School of Medicine, 3800 Reservoir Road, NW, CCC Bldg., Room CG225, Washington, DC 20007, USA
| |
Collapse
|
5
|
Kim TP, Gandhi RT, Tolakanahalli R, Herrera R, Chuong MD, Gutierrez AN, Alvarez D. Establishing Updated Safety Standards for Independent 99mTc-MAA SPECT/CT Treatment Planning in Radioembolization. Int J Radiat Oncol Biol Phys 2024; 119:1285-1296. [PMID: 38925768 DOI: 10.1016/j.ijrobp.2023.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/08/2023] [Accepted: 12/30/2023] [Indexed: 06/28/2024]
Abstract
PURPOSE Significant improvements within radioembolization imaging and dosimetry permit the development of an accurate and personalized pretreatment plan using technetium 99m-labeled macroaggregated albumin (99mTc-MAA) and single-photon emission computed tomography (SPECT) combined with anatomical CT (SPECT/CT). Despite these potential advantages, the clinical transition to pretreatment protocols with SPECT/CT is hindered by their unknown safety constraints. This study aimed to address this issue by establishing novel dose limits for 99mTc-MAA SPECT/CT to enable quantitative pretreatment planning. METHODS AND MATERIALS Stratification criteria to determine images most viable for dosimetry analysis were created from a cohort of 85 patients. SPECT/CT, cone beam CT, and activity calculations derived from the local deposition method were used to create an accurate pretreatment protocol. Planar and SPECT/CT images were compared using linear regression and modified Bland-Altman analyses to convert accepted planar dose limits to SPECT/CT. To validate these new dose limits, activity calculations based on SPECT/CT were compared with those calculated with the body surface area and planar methods for three treatment plans. RESULTS A total of 38 of 85 patients were deemed viable for dosimetry analysis. SPECT yielded greater lung shunt fractions (LSFs) than planar imaging when LSFs were <4.89%, whereas SPECT yielded lower LSFs than planar imaging when LSFs were >4.89%. Planar to SPECT/CT dose conversions were 0.76×, 0.70×, and 0.55× for the whole liver, normal liver, and lungs, respectively. Patients with SPECT LSFs ≤4.89% were safely treated with the direct application of planar lung dose limits. Activity calculations with the newly established SPECT/CT dose limits were greater than those of the body surface area method by a median range of 33.1% to 61.9% and were lower than planar-based activity calculations by a median range of 12.5% to 13.7% for the whole liver and by 29.4% to 32.2% for the normal liver. CONCLUSIONS This study demonstrated a safe method for translating dose limits from 99mTc-MAA planar imaging to SPECT/CT. A robust pretreatment protocol was further developed guided by the current knowledge in the field. Established SPECT/CT dose limits safely treated 97.5% of patients and permitted the application of independent pretreatment planning with 99mTc-MAA SPECT/CT.
Collapse
Affiliation(s)
| | - Ripal T Gandhi
- Radiation Oncology Department, Miami Cancer Institute, Miami, Florida; Interventional Radiology Department, Miami Cardiac and Vascular Institute, Miami, Florida
| | | | - Robert Herrera
- Radiation Oncology Department, Miami Cancer Institute, Miami, Florida
| | - Michael D Chuong
- Radiation Oncology Department, Miami Cancer Institute, Miami, Florida
| | | | - Diane Alvarez
- Radiation Oncology Department, Miami Cancer Institute, Miami, Florida
| |
Collapse
|
6
|
Coskun N, Kartal MO, Kartal AS, Cayhan V, Ozdemir M, Canyigit M, Ozdemir E. Use of dose-volume histograms for metabolic response prediction in hepatocellular carcinoma patients undergoing transarterial radioembolization with Y-90 resin microspheres. Ann Nucl Med 2024; 38:525-533. [PMID: 38647875 DOI: 10.1007/s12149-024-01926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Voxel-based dosimetry offers improved outcomes in the treatment of hepatocellular carcinoma (HCC) with transarterial radioembolization (TARE) using glass microspheres. However, the adaptation of voxel-based dosimetry to resin-based microspheres has been poorly studied, and the prognostic relevance of heterogeneous dose distribution remains unclear. This study aims to explore the use of dose-volume histograms for resin microspheres and to determine thresholds for objective metabolic response in HCC patients treated with resin-based TARE. METHODS We retrospectively reviewed HCC patients who underwent TARE with Y-90-loaded resin microspheres in our institution between January 2021 and December 2022. Voxel-based dosimetry was performed on post-treatment Y-90 PET/CT images to extract parameters including mean dose absorbed by the tumor (mTD), the percentage of the targeted tumor volume (pTV), and the minimum doses absorbed by consecutive percentages within the tumor volume (D10, D25, D50, D75, D90). Assessment of metabolic response was done according to PERCIST criteria with F-18 FDG PET/CT imaging at 8-12 weeks after the treatment. RESULTS This study included 35 lesions targeted with 22 TARE sessions in 19 patients (15 males, 4 females, mean age 60 ± 13 years). Objective metabolic response was achieved in 43% of the lesions (n = 15). Responsive lesions had significantly higher mTD, pTV, and D25-D90 values (all p < 0.05). Optimal cut-off values for mTD, pTV, and D50 were 94.6 Gy (sensitivity 73%, specificity 70%, AUC 0.72), 94% (sensitivity 73%, specificity 55%, AUC 0.64), and 91 Gy (sensitivity 80%, specificity 80%, AUC 0.80), respectively. CONCLUSION Parameters derived from dose-volume histograms could offer valuable insights for predicting objective metabolic response in HCC patients treated with resin-based TARE. If verified with larger prospective cohorts, these parameters could enhance the precision of dose distribution and potentially optimize treatment outcomes.
Collapse
Affiliation(s)
- Nazim Coskun
- Department of Nuclear Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey.
- Department of Nuclear Medicine, Ankara Bilkent City Hospital, Cankaya, Ankara, Turkey.
| | - Mehmet Oguz Kartal
- Department of Nuclear Medicine, Ankara Bilkent City Hospital, Cankaya, Ankara, Turkey
| | - Aysenur Sinem Kartal
- Department of Nuclear Medicine, Ankara Bilkent City Hospital, Cankaya, Ankara, Turkey
| | - Velihan Cayhan
- Department of Interventional Radiology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Mustafa Ozdemir
- Department of Interventional Radiology, Ankara Bilkent City Hospital, Ankara, Turkey
- Department of Interventional Radiology, University of Health Sciences, Ankara, Turkey
| | - Murat Canyigit
- Department of Interventional Radiology, Ankara Bilkent City Hospital, Ankara, Turkey
- Department of Interventional Radiology, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Elif Ozdemir
- Department of Nuclear Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
- Department of Nuclear Medicine, Ankara Bilkent City Hospital, Cankaya, Ankara, Turkey
| |
Collapse
|
7
|
Paladini A, Spinetta M, Matheoud R, D’Alessio A, Sassone M, Di Fiore R, Coda C, Carriero S, Biondetti P, Laganà D, Minici R, Semeraro V, Sacchetti GM, Carrafiello G, Guzzardi G. Role of Flex-Dose Delivery Program in Patients Affected by HCC: Advantages in Management of Tare in Our Experience. J Clin Med 2024; 13:2188. [PMID: 38673461 PMCID: PMC11051074 DOI: 10.3390/jcm13082188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Introduced in the latest BCLC 2022, endovascular trans-arterial radioembolization (TARE) has an important role in the treatment of unresectable hepatocellular carcinoma (HCC) as a "bridge" or "downstaging" of disease. The evolution of TARE technology allows a more flexible and personalized target treatment, based on the anatomy and vascular characteristics of each HCC. The flex-dose delivery program is part of this perspective, which allows us to adjust the dose and its radio-embolizing power in relation to the size and type of cancer and to split the therapeutic dose of Y90 in different injections (split-bolus). Methods: From January 2020 to January 2022, we enrolled 19 patients affected by unresectable HCC and candidates for TARE treatment. Thirteen patients completed the treatment following the flex-dose delivery program. Response to treatment was assessed using the mRECIST criteria with CT performed 6 and 9 months after treatment. Two patients did not complete the radiological follow-up and were not included in this retrospective study. The final cohort of this study counts eleven patients. Results: According to mRECIST criteria, six months of follow-up were reported: five cases of complete response (CR, 45.4% of cases), four cases of partial response (PR, 36.4%), and two cases of progression disease (PD, 18.2%). Nine months follow-up reported five cases of complete response (CR, 45.4%), two cases of partial response (PR, 18.2%), and four cases of progression disease (PD, 36.4%). No intra and post-operative complications were described. The average absorbed doses to the hepatic lesion and to the healthy liver tissue were 319 Gy (range 133-447 Gy) and 9.5 Gy (range 2-19 Gy), respectively. Conclusions: The flex-dose delivery program represents a therapeutic protocol capable of "saving" portions of healthy liver parenchyma by designing a "custom-made" treatment for the patient.
Collapse
Affiliation(s)
- Andrea Paladini
- Department of Interventional Radiology, Santissima Annunziata Hospital, 74121 Taranto, Italy
| | - Marco Spinetta
- Radiology Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (M.S.); (M.S.); (R.D.F.); (C.C.)
| | - Roberta Matheoud
- Medical Physics Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (R.M.)
| | - Andrea D’Alessio
- Medical Physics Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (R.M.)
| | - Miriana Sassone
- Radiology Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (M.S.); (M.S.); (R.D.F.); (C.C.)
| | - Riccardo Di Fiore
- Radiology Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (M.S.); (M.S.); (R.D.F.); (C.C.)
| | - Carolina Coda
- Radiology Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (M.S.); (M.S.); (R.D.F.); (C.C.)
| | - Serena Carriero
- UOC Radiology, Fondazione IRCCS Cà Granda, Maggiore Hospital, 20122 Milan, Italy; (S.C.)
| | - Pierpaolo Biondetti
- UOC Radiology, Fondazione IRCCS Cà Granda, Maggiore Hospital, 20122 Milan, Italy; (S.C.)
| | - Domenico Laganà
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (D.L.); (R.M.)
| | - Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (D.L.); (R.M.)
| | - Vittorio Semeraro
- SSD Interventional Radiology, S.S. Annunziata Hospital, 74121 Taranto, Italy;
| | - Gian Mauro Sacchetti
- Nuclear Medicine Department, University Hospital Maggiore della Carità, 28100 Novara, Italy;
| | - Gianpaolo Carrafiello
- Operative Unit of Radiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Giuseppe Guzzardi
- Unit of Interventional Radiology, Department of Radiology, Ospedale Maggiore della Carità, Corso Giuseppe Mazzini 18, 28100 Novara, Italy;
| |
Collapse
|
8
|
Jiang Z, Yang F, Wang W. Applications of Yttrium-90 ( 90Y) in Hepatocellular Carcinoma. Onco Targets Ther 2024; 17:149-157. [PMID: 38414759 PMCID: PMC10898254 DOI: 10.2147/ott.s445898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, affecting millions of people worldwide. Due to the lack of systemic radiation therapy in hepatocellular carcinoma, researchers have been investigating the use of yttrium-90 (90Y) radioembolization for local-regional tumor control since the 1960s. With the development of glass and resin 90Y microspheres and the durable local control, good long-term efficacy, and equivalent tumor responsiveness and tolerability of 90Y-selective internal irradiation compared with alternative therapies such as transarterial chemoembolization (TACE) and sorafenib, 90Y radioembolization has gradually been applied in the treatment of hepatocellular carcinoma of all stages. In this article, we summarize the latest progress of 90Y in the treatment of hepatocellular carcinoma in terms of its principle, advantages, indications, contraindications, efficacy and adverse effects.
Collapse
Affiliation(s)
- ZhongHao Jiang
- Inner Mongolia Medical University, Department of Hepatobiliary Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - Fan Yang
- Inner Mongolia Medical University, Department of Hepatobiliary Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| | - WanXiang Wang
- Inner Mongolia Medical University, Department of Hepatobiliary Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, 010050, People’s Republic of China
| |
Collapse
|
9
|
Mercolli L, Zeimpekis K, Prenosil GA, Sari H, Rathke HG, Rominger A, Shi K. Phantom study for 90Y liver radioembolization dosimetry with a long axial field-of-view PET/CT. Phys Med 2024; 118:103296. [PMID: 38281409 DOI: 10.1016/j.ejmp.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/20/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024] Open
Abstract
PURPOSE The physical properties of yttrium-90 (90Y) allow for imaging with positron emission tomography/computed tomography (PET/CT). The increased sensitivity of long axial field-of-view (LAFOV) PET/CT scanners possibly allows to overcome the small branching ratio for positron production from 90Y decays and to improve for the post-treatment dosimetry of 90Y of selective internal radiation therapy. METHODS For the challenging case of an image quality body phantom, we compare a full Monte Carlo (MC) dose calculation with the results from the two commercial software packages Simplicit90Y and Hermes. The voxel dosimetry module of Hermes relies on the 90Y images taken with a LAFOV PET/CT, while the MC and Simplicit90Y dose calculations are image independent. RESULTS The resulting doses from the MC calculation and Simplicit90Y agree well within the error margins. The image-based dose calculation with Hermes, however, consistently underestimates the dose. This is due to the mismatch of the activity distribution in the PET images and the size of the volume of interest. We found that only for the smallest phantom sphere there is a statistically significant dependence of the Hermes dose on the image reconstruction parameters and scan time. CONCLUSION Our study shows that Simplicit90Y's local deposition model can provide a reliable dose estimate. On the other hand, the image based dose calculation suffers from the suboptimal reconstruction of the 90Y distribution in small structures.
Collapse
Affiliation(s)
- Lorenzo Mercolli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland.
| | - Konstantinos Zeimpekis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland
| | - George A Prenosil
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland
| | - Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Hendrik G Rathke
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland
| | - Kunagyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland
| |
Collapse
|
10
|
Lee JH, Lee CH, Kim M, Song YS, Yoon CJ, Lee WW. CT texture features and lung shunt fraction measured using 99mTc-macroaggregated albumin SPECT/CT before trans-arterial radioembolization for hepatocellular carcinoma patients. Sci Rep 2023; 13:22288. [PMID: 38097801 PMCID: PMC10721865 DOI: 10.1038/s41598-023-49787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
The aim of this study is to determine whether contrast-enhanced computed tomography (CECT)-based texture parameters can predict high (> 30 Gy) expected lung dose (ELD) calculated using 99mTc macroaggregated albumin single-photon emission computed tomography/computed tomography (SPECT/CT) for pre-trans-arterial radioembolization (TARE) dosimetry. 35 patients were analyzed, with a treatable planned dose of ≥ 200 Gy for unresectable hepatocellular carcinoma (HCC). Lung shunt fraction (LSF) was obtained from planar and SPECT/CT scans. Texture features of the tumor lesion on CECT before TARE were analyzed. Univariate and multivariate linear regression analyses were performed to determine potential ELD > 30 Gy predictors. Among the 35 patients, nine (25.7%) had ELD > 30 Gy, and had a higher LSF than the ELD ≤ 30 Gy group using the planar (20.7 ± 8.0% vs. 6.3 ± 3.3%; P < 0.001) and SPECT/CT (12.4 ± 5.1% vs. 3.5 ± 2.0%; P < 0.001) scans. The tumor integral total (HU × L) value was a predictor for high LSF using SPECT/CT, with an area under the curve, sensitivity, and specificity of 0.983 (95% confidence interval: 0.869-1.000, P < 0.001), 100%, and 88.5%, respectively. The tumor integral total value is an imaging marker for predicting ELD > 30 Gy. Applying CECT texture analysis may assist in reducing time and cost in patient selection and modifying TARE treatment plans.
Collapse
Affiliation(s)
- Jae Hwan Lee
- Department of Radiology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Jongno-gu, Seoul, Republic of Korea
| | - Chong-Ho Lee
- Department of Radiology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Minuk Kim
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea.
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Chang Jin Yoon
- Department of Radiology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Jongno-gu, Seoul, Republic of Korea
| | - Won Woo Lee
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Jongno-gu, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Health Science and Technology, The Graduate School of Convergence Science and Technology, Seoul National University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Anbari Y, Veerman FE, Keane G, Braat AJ, Smits ML, Bruijnen RC, Tan W, Li Y, Duan F, Lam MG. Current status of yttrium-90 microspheres radioembolization in primary and metastatic liver cancer. J Interv Med 2023; 6:153-159. [PMID: 38312126 PMCID: PMC10831371 DOI: 10.1016/j.jimed.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 02/06/2024] Open
Abstract
Liver malignancy, including primary liver cancer and metastatic liver cancer, has become one of the most common causes of cancer-related death worldwide due to the high malignant degree and limited systematic treatment strategy. Radioembolization with yttrium-90 (90Y)-loaded microspheres is a relatively novel technology that has made significant progress in the local treatment of liver malignancy. The different steps in the extensive work-up of radioembolization for patients with an indication for treatment with 90Y microspheres, from patient selection to follow up, both technically and clinically, are discussed in this paper. It describes the application and development of 90Y microspheres in the treatment of liver cancer.
Collapse
Affiliation(s)
- Yasaman Anbari
- University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Grace Keane
- University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | - Wenle Tan
- Interventional Radiology Department, Chinese PLA General Hospital, Beijing, China
| | - Ye Li
- Interventional Radiology Department, Chinese PLA General Hospital, Beijing, China
| | - Feng Duan
- Interventional Radiology Department, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
12
|
Carrión L, Clemente-Sánchez A, Márquez-Pérez L, Orcajo-Rincón J, Rotger A, Ramón-Botella E, González-Leyte M, Echenagusía-Boyra M, Luis Colón A, Reguera-Berenguer L, Bañares R, Rincón D, Matilla-Peña A. Portal hypertension increases the risk of hepatic decompensation after 90Yttrium radioembolization in patients with hepatocellular carcinoma: a cohort study. Therap Adv Gastroenterol 2023; 16:17562848231206995. [PMID: 37920686 PMCID: PMC10619355 DOI: 10.1177/17562848231206995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Background Transarterial radioembolization (TARE) is increasingly used in patients with hepatocellular carcinoma (HCC). This treatment can induce or impair portal hypertension, leading to hepatic decompensation. TARE also promotes changes in liver and spleen volumes that may modify therapeutic decisions and outcomes after therapy. Objectives We aimed to investigate the impact of TARE on the incidence of decompensation events and its predictive factors. Design In all, 63 consecutive patients treated with TARE between February 2012 and December 2018 were retrospectively included. Methods We assessed clinical (including Barcelona Clinic Liver Cancer stage, portal hypertension assessment, and liver decompensation), laboratory parameters, and liver and spleen volumes before and 6 and 12 weeks after treatment. A multivariate analysis was performed. Results In total, 18 out of 63 (28.6%) patients had liver decompensation (ascites, variceal bleeding, jaundice, or encephalopathy) within the first 3 months after therapy, not associated with tumor progression. Clinically significant portal hypertension (CSPH) and bilobar treatment independently predicted the development of liver decompensation after TARE. A significant volume increase in the non-treated hemi-liver was observed only in patients with unilobar treatment (median volume increase of 20.2% in patients with right lobe TARE; p = 0.007), especially in those without CSPH. Spleen volume also increased after TARE (median volume increase of 16.1%; p = 0.0001) and was associated with worsening liver function scores and decreased platelet count. Conclusion Bilobar TARE and CSPH may be associated with an increased risk of liver decompensation in patients with intermediate or advanced HCC. A careful assessment considering these variables before therapy may optimize candidate selection and improve treatment planning.
Collapse
Affiliation(s)
- Laura Carrión
- Department of Gastroenterology and Hepatology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ana Clemente-Sánchez
- Department of Gastroenterology and Hepatology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Márquez-Pérez
- Department of Gastroenterology and Hepatology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Javier Orcajo-Rincón
- Department of Nuclear Medicine, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Amanda Rotger
- Department of Nuclear Medicine, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Enrique Ramón-Botella
- Department of Diagnostic Radiology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Manuel González-Leyte
- Department of Interventional Radiology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Miguel Echenagusía-Boyra
- Department of Interventional Radiology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Arturo Luis Colón
- Department of Hepatobiliary and Pancreatic Surgery, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Laura Reguera-Berenguer
- Department of Nuclear Medicine, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Rafael Bañares
- Department of Gastroenterology and Hepatology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Diego Rincón
- Department of Gastroenterology and Hepatology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, Madrid, SpainCalle del Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Ana Matilla-Peña
- Department of Gastroenterology and Hepatology, Hospital General Universitario Gregorio Marañon, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Nyakale NE, Aldous C, Gutta AA, Khuzwayo X, Harry L, Sathekge MM. Emerging theragnostic radionuclide applications for hepatocellular carcinoma. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1210982. [PMID: 39355044 PMCID: PMC11440867 DOI: 10.3389/fnume.2023.1210982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major global health problem. Theragnostic is a term that refers to the integration of diagnostic and therapeutic modalities into a single system for personalized medicine. Theragnostic care in HCC involves the use of imaging techniques to diagnose the cancer and assess its characteristics, such as size, location, and extent of spread. Theragnostics involves the use of molecular and genetic tests to identify specific biomarkers that can help guide treatment decisions and, post-treatment, assess the dosimetry and localization of the treatment, thus guiding future treatment. This can be done through either positron emission tomography (PET) scanning or single photon emission tomography (SPECT) using radiolabeled tracers that target specific molecules expressed by HCC cells or radioembolization. This technique can help identify the location and extent of the cancer, as well as provide information on the tumor's metabolic activity and blood supply. In summary, theragnostics is an emerging field that holds promise for improving the diagnosis and treatment of HCC. By combining diagnostic and therapeutic modalities into a single system, theragnostics can help guide personalized treatment decisions and improve patient outcomes.
Collapse
Affiliation(s)
- N E Nyakale
- Department of Nuclear Medicine, Sefako Makgatho Health Sciences University, Dr George Mukhari Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Kwa-Zulu Natal, Durban, South Africa
| | - C Aldous
- School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - A A Gutta
- Department of Nuclear Medicine, Sefako Makgatho Health Sciences University, Dr George Mukhari Academic Hospital, Pretoria, South Africa
| | - X Khuzwayo
- Department of Nuclear Medicine, Sefako Makgatho Health Sciences University, Dr George Mukhari Academic Hospital, Pretoria, South Africa
| | - L Harry
- Department of Nuclear Medicine, University of Kwa-Zulu Natal, Durban, South Africa
| | - M M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
14
|
Doppler M, Reincke M, Bettinger D, Vogt K, Weiss J, Schultheiss M, Uller W, Verloh N, Goetz C. Predictive Value of [ 99mTc]-MAA-Based Dosimetry in Hepatocellular Carcinoma Patients Treated with [ 90Y]-TARE: A Single-Center Experience. Diagnostics (Basel) 2023; 13:2432. [PMID: 37510175 PMCID: PMC10378141 DOI: 10.3390/diagnostics13142432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Transarterial radioembolization is a well-established method for the treatment of hepatocellular carcinoma. The tolerability and incidence of hepatic decompensation are related to the doses delivered to the tumor and healthy liver. This retrospective study was performed at our center to evaluate whether tumor- and healthy-liver-absorbed dose levels in TARE are predictive of tumor response according to the mRECIST 1.1 criteria and overall survival. One hundred and six patients with hepatocellular carcinoma were treated with [90Y]-loaded resin microspheres and completed the follow-up. The dose delivered to each compartment was calculated using a compartmental model. The model was based on [99mTc]-labelled albumin aggregate images obtained before the start of therapy. Tumor response was assessed after three months of treatment. Kaplan-Meier analysis was used to assess survival. The mean age of our population was 66 ± 13 years with a majority being BCLC B tumors. Forty-two patients presented with portal vein thrombosis. The response rate was 57% in the overall population and 59% in patients with thrombosis. Target-to-background (TBR) values measured on initial [99mTc]MAA-SPECT-imaging and tumor model dosimetric values were associated with tumor response (p < 0.001 and p = 0.009, respectively). A dosimetric threshold of 136.5 Gy was predictive of tumor response with a sensitivity of 84.2% and specificity of 89.4%. Overall survival was 24.1 months [IQR 13.1-36.4] for patients who responded to treatment compared to 10.4 months [IQR 6.3-15.9] for the remaining patients (p = 0.022). In this cohort, the initial [99mTc]MAA imaging is predictive of response and survival. The dosimetry prior to the application of TARE can be used for treatment planning and our results also suggest that the therapy is well-tolerated. In particular, hepatic decompensation can be predicted even in the presence of PVT.
Collapse
Affiliation(s)
- Michael Doppler
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Marlene Reincke
- Department of Medicine II, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Dominik Bettinger
- Department of Medicine II, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Katharina Vogt
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Michael Schultheiss
- Department of Medicine II, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Wibke Uller
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Niklas Verloh
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Christian Goetz
- Department of Nuclear Medicine, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| |
Collapse
|
15
|
Maleux G, Albrecht T, Arnold D, Bargellini I, Cianni R, Helmberger T, Kolligs F, Munneke G, Peynircioglu B, Sangro B, Schaefer N, Pereira H, Zeka B, de Jong N, Bilbao JI. Predictive Factors for Adverse Event Outcomes After Transarterial Radioembolization with Yttrium-90 Resin Microspheres in Europe: Results from the Prospective Observational CIRT Study. Cardiovasc Intervent Radiol 2023:10.1007/s00270-023-03391-4. [PMID: 36914788 PMCID: PMC10322946 DOI: 10.1007/s00270-023-03391-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Using data collected in the prospective observational study CIRSE Registry for SIR-Spheres Therapy, the present study aimed at identifying predictors of adverse events (AEs) following transarterial radioembolization (TARE) with Yttrium-90 resin microspheres for liver tumours. METHODS We analysed 1027 patients enrolled between January 2015 and December 2017 and followed up for 24 months. Four hundred and twenty-two patients with hepatocellular carcinoma (HCC), 120 with intrahepatic carcinoma (ICC), 237 with colorectal liver metastases and 248 with liver metastases from other primaries were included. Prognostic factors were calculated with a univariable analysis by using the overall AEs burden score (AEBS). RESULTS All-cause AEs were reported in 401/1027 (39.1%) patients, with AEs associated with TARE, such as abdominal pain (16.6%), fatigue (17%), and nausea (11.7%) reported most frequently. Grade 3 or higher AEs were reported in 92/1027 (9%) patients. Reports on grade ≥ 3 gastrointestinal ulcerations (0.4%), gastritis (0.3%), radiation cholecystitis (0.2%) or radioembolization-induced liver disease (0.5%) were uncommon. Univariable analysis showed that in HCC, AEBS increased for Eastern Cooperative Oncology Group (ECOG) 0 (p = 0.0045), 1 tumour nodule (0.0081), > 1 TARE treatment (p = 0.0224), no prophylactic embolization (p = 0.0211), partition model dosimetry (p = 0.0007) and unilobar treatment target (0.0032). For ICC, > 1 TARE treatment was associated with an increase in AEBS (p = 0.0224), and for colorectal liver metastases, ECOG 0 (p = 0.0188), > 2 prior systemic treatments (p = 0.0127), and 1 tumour nodule (p = 0.0155) were associated with an increased AEBS. CONCLUSION Our study confirms that TARE is a safe treatment with low toxicity and a minimal impact on quality of life.
Collapse
Affiliation(s)
- Geert Maleux
- Radiology, Universitair Ziekenhuis Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Thomas Albrecht
- Department for Radiology and Interventional Therapy, Vivantes Klinikum Neukölln, Rudower Str. 48, 12351, Berlin, Germany
| | - Dirk Arnold
- Oncology and Hematology, Asklepios Tumorzentrum Hamburg, AK Altona, Paul-Ehrlich-Str. 1, 22763, Hamburg, Germany
| | - Irene Bargellini
- Department of Vascular and Interventional Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Roberto Cianni
- Department of Interventional Radiology, S. Camillo Hospital, Circonvallazione Gianicolense, 85, 00149, Rome, Italy
| | - Thomas Helmberger
- Department of Radiology, Neuroradiology and Minimal-Invasive Therapy, Klinikum Bogenhausen, Englschalkinger Str. 77, 81925, Munich, Germany
| | - Frank Kolligs
- Department of Internal Medicine and Gastroenterology, Helios Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125, Berlin, Germany
| | - Graham Munneke
- Interventional Oncology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London, NW1 2PG, UK
| | - Bora Peynircioglu
- Department of Radiology, School of Medicine, Hacettepe University, Sihhiye Campus, 06100, Ankara, Turkey
| | - Bruno Sangro
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra and CIBEREHD, Avda. Pio XII 36, 31008, Pamplona, Spain
| | - Niklaus Schaefer
- Service de Médecine Nucléaire et Imagerie Moléculaire, University Hospital of Lausanne (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Helena Pereira
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Unité de Recherche Clinique, Paris, France.,Centre d'Investigation Clinique 1418 (CIC1418), INSERM, Paris, France
| | - Bleranda Zeka
- Clinical Research Department, Cardiovascular and Interventional Radiological Society of Europe, Neutorgasse 9, 1010, Vienna, Austria
| | - Niels de Jong
- Clinical Research Department, Cardiovascular and Interventional Radiological Society of Europe, Neutorgasse 9, 1010, Vienna, Austria.
| | - José I Bilbao
- Interventional Radiology, Clínica Universidad de Navarra, Avenida Pio XII, No 36, 31008, Pamplona, Spain
| | | |
Collapse
|
16
|
Chen G, Lu Z, Chen Y, Mok GSP. Voxel-S-value methods adapted to heterogeneous media for quantitative Y-90 microsphere radioembolization dosimetry. Z Med Phys 2023; 33:35-45. [PMID: 36535831 PMCID: PMC10068576 DOI: 10.1016/j.zemedi.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE The absorbed dose estimation from Voxel-S-Value (VSV) method in heterogeneous media is suboptimal as VSVs are calculated in homogeneous media. The aim of this study is to develop and evaluate new VSV methods in order to enhance the accuracy of Y-90 microspheres absorbed dose estimation in liver, lungs, tumors and lung-liver interface regions. METHODS Ten patients with Y-90 microspheres SPECT/CT and PET/CT data, six of whom had additional Tc-99m-macroaggregated albumin SPECT/CT data, were analyzed from the Deep Blue Data Repository. Seven existing VSV methods along with three newly proposed VSV methods were evaluated: liver and lung kernel with center voxel scaling (LiLuCK), liver kernel with density correction and lung kernel with center voxel scaling (LiKDLuCK), liver kernel with center voxel scaling and lung kernel with density correction (LiCKLuKD). Monte Carlo (MC) results were regarded as the gold standard. Absolute absorbed dose errors (%AADE) of these methods for the liver, lungs, tumors, upper liver, and lower lungs were assessed. RESULTS Liver and tumor's median %AADE of all methods were <3% for three types of imaging data. In the lungs, however, three recently proposed VSV methods provided median %AADEs of less than 7%, whereas the differences exceeded 20% for existing methods that did not use a lung kernel. LiCKLuKD could achieve median %AADE <2% in the liver, upper liver and tumors, and median %AADE <7% in the lungs and lower lungs in three types of data. CONCLUSION All methods are consistent with MC in the liver and tumors. Methods with tissue-specific kernel and effective correction achieve smaller errors in lungs. LiCKLuKD has comparable results with MC in absorbed dose estimation of Y-90 radioembolization for all target regions.
Collapse
Affiliation(s)
- Gefei Chen
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China; Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province. No. 25, Taiping St., Luzhou, Sichuan, China.
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China; Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
17
|
Robinson TJ, Du L, Matsuoka L, Sze DY, Kennedy AS, Gandhi RT, Kouri BE, Collins ZS, Kokabi N, Grilli CJ, Wang EA, Lee JS, Brown DB. Survival and Toxicities after Yttrium-90 Transarterial Radioembolization of Cholangiocarcinoma in the RESiN Registry. J Vasc Interv Radiol 2022; 34:694-701.e3. [PMID: 36509236 DOI: 10.1016/j.jvir.2022.10.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To report outcomes in patients with intrahepatic cholangiocarcinoma treated with yttrium-90 resin microspheres (transarterial radioembolization [TARE]) from a multicenter, prospective observational registry. MATERIALS AND METHODS Ninety-five patients (median age, 67 years [interquartile range {IQR}, 59-74]; 50 men) were treated in 27 centers between July 2015 and August 2020. Baseline demographic characteristics included imaging findings, performance status, and previous systemic or locoregional treatments. Dosimetry method was tracked. Overall survival (OS) and progression-free survival were calculated using the Kaplan-Meier method. The best imaging response was calculated using the Response Evaluation Criteria in Solid Tumors v1.1. Grade ≥3 toxicities were assessed using Common Terminology Criteria for Adverse Events v5. Cox regression analysis was performed. RESULTS Fifty-two of 86 (60%) patients had multifocal tumors, and 24/89 (27%) had extrahepatic tumors. The median index tumor diameter was 7.0 cm (IQR, 4.9-10 cm). The activity calculation method was reported in 59/95 (62%) patients, with body surface area being the most frequently used method (45/59, 76%). Median OS for the cohort was 14 months (95% confidence interval, 12-22). OS at 3, 6, 12, and 24 months was 94%, 80%, 63%, and 34%, respectively. Median OS was longer in patients without cirrhosis (19.1 vs 12.2 months, P = .05). Cirrhosis, previous chemotherapy (OS, 19.1 vs 10.6 months for treatment-naïve; P = .07), and imaging response at 6 months (OS, 16.4 vs 9.5 months for no response; P = .06) underwent regression analysis. Imaging response predicted OS at regression (hazard ratio, 0.39; P = .008). Grade 3-4 bilirubin toxicities were noted in 5 of 72 (7%) patients. Grade 3 albumin toxicity was noted in 1 of 72 (1.4%) patients. CONCLUSIONS Objective response at 6 months predicted longer OS after TARE for intrahepatic cholangiocarcinoma. The incidence of liver function toxicity was <10%.
Collapse
Affiliation(s)
- Taylor J Robinson
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Liping Du
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lea Matsuoka
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel Y Sze
- Division of Interventional Radiology, Stanford University, Palo Alto, California
| | - Andrew S Kennedy
- Department of Radiation Oncology, Sarah Cannon Research Institute, Nashville, Tennessee
| | - Ripal T Gandhi
- Division of Interventional Radiology, Miami Cardiac and Vascular Institute/Miami Cancer Institute, Miami, Florida
| | - Brian E Kouri
- Division of Interventional Radiology, Atrium Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Zachary S Collins
- Division of Interventional Radiology, University of Kansas, Kansas City, Kansas
| | - Nima Kokabi
- Division of Interventional Radiology and Image-Guided Therapy, Emory University School of Medicine, Atlanta, Georgia
| | - Christopher J Grilli
- Division of Interventional Radiology, Christiana Medical Center, Newark, Delaware
| | - Eric A Wang
- Division of Interventional Radiology, Carolinas Medical Center, Charlotte, North Carolina
| | - Justin S Lee
- Division of Interventional Radiology, Radiology Associates of Florida, Tampa, Florida
| | - Daniel B Brown
- Division of Interventional Radiology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
18
|
Coskun N, Yildirim A, Yuksel AO, Canyigit M, Ozdemir E. The Radiation Dose Absorbed by Healthy Parenchyma Is a Predictor for the Rate of Contralateral Hypertrophy After Unilobar Radioembolization of the Right Liver. Nucl Med Mol Imaging 2022; 56:291-298. [PMID: 36425272 PMCID: PMC9679057 DOI: 10.1007/s13139-022-00770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose To investigate the predictors of contralateral hypertrophy in patients treated with unilobar transarterial radioembolization (TARE) with yttrium-90-loaded resin microspheres due to unresectable right-liver tumors. Methods Patients who underwent right unilobar TARE with resin microspheres between May 2019 and September 2021 were screened retrospectively. Contralateral hypertrophy was evaluated by calculating the kinetic growth rate (KGR) in 8-10 weeks after TARE. The predictors of increased KGR were determined with linear regression analysis. Results A total of 24 patients (16 with primary and 8 with metastatic liver tumors) were included in the study. After right unilobar TARE, mean volume of the left lobe increased from 368.26 to 436.16 mL, while the mean volume of the right lobe decreased from 1576.22 to 1477.89 mL. The median KGR of the left lobe was 0.28% per week. The radiation dose absorbed by the healthy parenchyma of the right lobe was significantly higher in patients with increased KGR (31.62 vs. 18.78 Gy, p = 0.037). Linear regression analysis showed that the dose absorbed by healthy parenchyma was significantly associated with increased KGR (b = 0.014, p = 0.043). Conclusion Patients who received right unilobar TARE for liver malignancies could develop a substantial contralateral hypertrophy, and the radiation dose absorbed by the healthy parenchyma of the right lobe was significantly associated with increased KGR in the left lobe. TARE could have a role for inducing contralateral hypertrophy as it offers the advantage of concurrent local tumor control along with its hypertrophic effect.
Collapse
Affiliation(s)
- Nazim Coskun
- Department of Nuclear Medicine, Ankara City Hospital, Ankara, Turkey
| | - Aslihan Yildirim
- Department of Nuclear Medicine, Ankara City Hospital, Ankara, Turkey
| | | | - Murat Canyigit
- Department of Radiology, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Elif Ozdemir
- Department of Nuclear Medicine, Ankara City Hospital, Ankara, Turkey
- Department of Nuclear Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
19
|
Zhang Q, Lee KS, Talenfeld AD, Spincemaille P, Prince MR, Wang Y. Prediction of Lung Shunt Fraction for Yttrium-90 Treatment of Hepatic Tumors Using Dynamic Contrast Enhanced MRI with Quantitative Perfusion Processing. Tomography 2022; 8:2687-2697. [PMID: 36412683 PMCID: PMC9680251 DOI: 10.3390/tomography8060224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
There is no noninvasive method to estimate lung shunting fraction (LSF) in patients with liver tumors undergoing Yttrium-90 (Y90) therapy. We propose to predict LSF from noninvasive dynamic contrast enhanced (DCE) MRI using perfusion quantification. Two perfusion quantification methods were used to process DCE MRI in 25 liver tumor patients: Kety's tracer kinetic modeling with a delay-fitted global arterial input function (AIF) and quantitative transport mapping (QTM) based on the inversion of transport equation using spatial deconvolution without AIF. LSF was measured on SPECT following Tc-99m macroaggregated albumin (MAA) administration via hepatic arterial catheter. The patient cohort was partitioned into a low-risk group (LSF ≤ 10%) and a high-risk group (LSF > 10%). Results: In this patient cohort, LSF was positively correlated with QTM velocity |u| (r = 0.61, F = 14.0363, p = 0.0021), and no significant correlation was observed with Kety's parameters, tumor volume, patient age and gender. Between the low LSF and high LSF groups, there was a significant difference for QTM |u| (0.0760 ± 0.0440 vs. 0.1822 ± 0.1225 mm/s, p = 0.0011), and Kety's Ktrans (0.0401 ± 0.0360 vs 0.1198 ± 0.3048, p = 0.0471) and Ve (0.0900 ± 0.0307 vs. 0.1495 ± 0.0485, p = 0.0114). The area under the curve (AUC) for distinguishing between low LSF and high LSF was 0.87 for |u|, 0.80 for Ve and 0.74 for Ktrans. Noninvasive prediction of LSF is feasible from DCE MRI with QTM velocity postprocessing.
Collapse
Affiliation(s)
- Qihao Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | - Yi Wang
- Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
20
|
Reincke M, Schultheiss M, Doppler M, Verloh N, Uller W, Sturm L, Thimme R, Goetz C, Bettinger D. Hepatic decompensation after transarterial radioembolization: A retrospective analysis of risk factors and outcome in patients with hepatocellular carcinoma. Hepatol Commun 2022; 6:3223-3233. [PMID: 36064940 PMCID: PMC9592795 DOI: 10.1002/hep4.2072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
Transarterial radioembolization (TARE) is a well-established therapy for intermediate and advanced tumor stages of hepatocellular carcinoma (HCC). Treatment-associated toxicities are rare. Previous studies have outlined that the prognosis after TARE is determined primarily by tumor stage and liver function. The subset of patients benefiting from TARE remains to be defined. Sixty-one patients with HCC treated with TARE between 2015 and 2020 were retrospectively included in the study. Hepatic decompensation was defined as an increase of bilirubin or newly developed ascites that was not explained by tumor progression within 3 months after TARE. Predictive factors of hepatic decompensation and prognostic factors were assessed. Hepatic decompensation was observed in 27.9% (n = 17) of TARE-treated patients during follow-up. Albumin-bilirubin (ALBI) score at baseline and radiation dose on nontumor liver proved to be independent risk factors for the development of hepatic decompensation in multivariable regression models (ALBI score: odds ratio [OR] 6.425 [1.735;23.797], p < 0.005; radiation dose: OR 1.072 [1.016;1.131], p < 0.011). The occurrence of hepatic decompensation markedly impaired the prognosis of the patients. Survival was significantly worsened. Hepatic decompensation has shown to be an independent negative prognostic factor for death, adjusted for Barcelona Clinic Liver Cancer stage, age and ALBI grade (hazard ratio 5.694 [2.713;11.952], p < 0.001). Conclusion: Hepatic decompensation after TARE for HCC treatment is a highly relevant complication with major effects on the prognosis of patients. Main risk factors are the pretreatment ALBI score and radiation dose. There is an urgent need to define safe cutoff values and exclusion criteria for TARE to limit complications and improve patient outcomes.
Collapse
Affiliation(s)
- Marlene Reincke
- Department of Medicine II, Medical Center University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Michael Schultheiss
- Department of Medicine II, Medical Center University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Michael Doppler
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Niklas Verloh
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Wibke Uller
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Lukas Sturm
- Department of Medicine II, Medical Center University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Berta‐Ottenstein‐Programme, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Robert Thimme
- Department of Medicine II, Medical Center University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Christian Goetz
- Department of Nuclear Medicine, Medical Center University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Dominik Bettinger
- Department of Medicine II, Medical Center University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
21
|
Balli HT, Aikimbaev K, Burak IG, Pehlivan UA, Piskin FC, Sozutok S. Reduction of Hepatopulmonary and Intrahepatic Shunts after Treatment with Sorafenib in Hepatocellular Carcinoma Patients. Cardiovasc Intervent Radiol 2022; 45:1842-1847. [PMID: 36175653 DOI: 10.1007/s00270-022-03283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate the reduction of elevated shunts after treatment with sorafenib in hepatocellular carcinoma (HCC) patients planned for transarterial radioembolization (TARE). MATERIALS AND METHODS Sixteen HCC patients treated with sorafenib were investigated. Shunts were evaluated by SPECT/CT after Technetium-99 m Tc-macroaggregated albumin injection. RESULTS All patients had high LSF (median 43.5%, range 28-86), and two (12.5%) of them had widespread intrahepatic shunts with concomitants elevated (36%) and acceptable (18%) lung shunt fraction (LSF). The mean duration of the sorafenib use was 134.4 ± 59.2 days. While one patient (6.25%) developed hand-foot syndrome, minor side effects were seen in all patients. After sorafenib use, LSF fell below 20% in eight patients, and TARE was applied to all of them. There was strong negative correlation between the failure of shunt reduction and presence of macrovascular invasion (ρ = - 0.775) and infiltrative tumour type (ρ = - 0.775). CONCLUSION Sorafenib use may be beneficial in some selected HCC patients with elevated shunts. Expected results may not be obtained in patients with infiltrative tumour type or macrovascular invasion, but patients with nodular tumour type with the absence of macrovascular invasion may be appropriate candidates for shunt reduction with ensuring subsequent TARE. Further investigations with sufficient patient population and standardized protocols of follow-up periods are needed to clarify the values for sorafenib use in HCC patients with evaluated shunts.
Collapse
Affiliation(s)
- Huseyin Tugsan Balli
- Department of Radiology, Balcali Hospital, Cukurova University Medical School, Adana, Turkey
| | - Kairgeldy Aikimbaev
- Department of Radiology, Balcali Hospital, Cukurova University Medical School, Adana, Turkey.
| | - Isa Guney Burak
- Department of Nuclear Medicine, Balcali Hospital, Cukurova University Medical School, Adana, Turkey
| | - Umur Anil Pehlivan
- Medical Faculty Radiology Department, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Ferhat Can Piskin
- Medical Faculty Radiology Department, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Sinan Sozutok
- Medical Faculty Radiology Department, Balcali Hospital, Cukurova University, Adana, Turkey
| |
Collapse
|
22
|
Jokar N, Moradhaseli F, Ahmadzadehfar H, Jafari E, Nikeghbalian S, Rasekhi AR, Assadi M. Theranostic approach in liver cancer: an emerging paradigm to optimize personalized medicine. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Sharma NK, Kappadath SC, Chuong M, Folkert M, Gibbs P, Jabbour SK, Jeyarajah DR, Kennedy A, Liu D, Meyer JE, Mikell J, Patel RS, Yang G, Mourtada F. The American Brachytherapy Society consensus statement for permanent implant brachytherapy using Yttrium-90 microsphere radioembolization for liver tumors. Brachytherapy 2022; 21:569-591. [PMID: 35599080 PMCID: PMC10868645 DOI: 10.1016/j.brachy.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/25/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To develop a multidisciplinary consensus for high quality multidisciplinary implementation of brachytherapy using Yttrium-90 (90Y) microspheres transarterial radioembolization (90Y TARE) for primary and metastatic cancers in the liver. METHODS AND MATERIALS Members of the American Brachytherapy Society (ABS) and colleagues with multidisciplinary expertise in liver tumor therapy formulated guidelines for 90Y TARE for unresectable primary liver malignancies and unresectable metastatic cancer to the liver. The consensus is provided on the most recent literature and clinical experience. RESULTS The ABS strongly recommends the use of 90Y microsphere brachytherapy for the definitive/palliative treatment of unresectable liver cancer when recommended by the multidisciplinary team. A quality management program must be implemented at the start of 90Y TARE program development and follow-up data should be tracked for efficacy and toxicity. Patient-specific dosimetry optimized for treatment intent is recommended when conducting 90Y TARE. Implementation in patients on systemic therapy should account for factors that may enhance treatment related toxicity without delaying treatment inappropriately. Further management and salvage therapy options including retreatment with 90Y TARE should be carefully considered. CONCLUSIONS ABS consensus for implementing a safe 90Y TARE program for liver cancer in the multidisciplinary setting is presented. It builds on previous guidelines to include recommendations for appropriate implementation based on current literature and practices in experienced centers. Practitioners and cooperative groups are encouraged to use this document as a guide to formulate their clinical practices and to adopt the most recent dose reporting policies that are critical for a unified outcome analysis of future effectiveness studies.
Collapse
Affiliation(s)
- Navesh K Sharma
- Department of Radiation Oncology, Penn State Hershey School of Medicine, Hershey, PA
| | - S Cheenu Kappadath
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX
| | - Michael Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL
| | - Michael Folkert
- Northwell Health Cancer Institute, Radiation Medicine at the Center for Advanced Medicine, New Hyde Park, NY
| | - Peter Gibbs
- Personalised Oncology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Salma K Jabbour
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | | | | | - David Liu
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | - Rahul S Patel
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gary Yang
- Loma Linda University, Loma Linda, CA
| | - Firas Mourtada
- Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE; Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
24
|
Stella M, van Rooij R, Lam MGEH, de Jong HWAM, Braat AJAT. Lung Dose Measured on Postradioembolization 90Y PET/CT and Incidence of Radiation Pneumonitis. J Nucl Med 2022; 63:1075-1080. [PMID: 34772794 PMCID: PMC9258566 DOI: 10.2967/jnumed.121.263143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Indexed: 01/03/2023] Open
Abstract
Radiation pneumonitis is a rare but possibly fatal side effect of 90Y radioembolization. It may occur 1-6 mo after therapy, if a significant part of the 90Y microspheres shunts to the lungs. In current clinical practice, a predicted lung dose greater than 30 Gy is considered a criterion to exclude patients from treatment. However, contrasting findings regarding the occurrence of radiation pneumonitis and lung dose were previously reported in the literature. In this study, the relationship between the lung dose and the eventual occurrence of radiation pneumonitis after 90Y radioembolization was investigated. Methods: We retrospectively analyzed 317 90Y liver radioembolization procedures performed during an 8-y period (February 2012 to September 2020). We calculated the predicted lung mean dose (LMD) using 99mTc-MAA planar scintigraphy (LMDMAA) acquired during the planning phase and left LMD (LMDY-90) using the 90Y PET/CT acquired after the treatment. For the lung dose computation, we used the left lung as the representative lung volume, to compensate for scatter from the liver moving in the craniocaudal direction because of breathing and mainly affecting the right lung. Results: In total, 272 patients underwent 90Y procedures, of which 63% were performed with glass microspheres and 37% with resin microspheres. The median injected activity was 1,974 MBq (range, 242-9,538 MBq). The median LMDMAA was 3.5 Gy (range, 0.2-89.0 Gy). For 14 procedures, LMDMAA was more than 30 Gy. Median LMDY-90 was 1 Gy (range, 0.0-22.1 Gy). No patients had an LMDY-90 of more than 30 Gy. Of the 3 patients with an LMDY-90 of more than 12 Gy, 2 patients (one with an LMDY-90 of 22.1 Gy and an LMDMAA of 89 Gy; the other with an LMDY-90 of 17.7 Gy and an LMDMAA of 34.1 Gy) developed radiation pneumonitis and consequently died. The third patient, with an LMDY-90 of 18.4 Gy (LMDMAA, 29.1 Gy), died 2 mo after treatment, before the imaging evaluation, because of progressive disease. Conclusion: The occurrence of radiation pneumonitis as a consequence of a lung shunt after 90Y radioembolization is rare (<1%). No radiation pneumonitis developed in patients with a measured LMDY-90 lower than 12 Gy.
Collapse
Affiliation(s)
- Martina Stella
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rob van Rooij
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marnix G E H Lam
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hugo W A M de Jong
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Arthur J A T Braat
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
25
|
Raphael MJ, Karanicolas PJ. Regional Therapy for Colorectal Cancer Liver Metastases: Which Modality and When? J Clin Oncol 2022; 40:2806-2817. [PMID: 35649228 DOI: 10.1200/jco.21.02505] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For patients with unresectable colorectal liver metastases (uCRLM), regional therapies leverage the unique, dual blood supply to the liver; the hepatic artery is the main blood supply for liver tumors, whereas the portal vein supplies most normal hepatic parenchyma. Infusion of cancer therapies via the hepatic artery allows selective delivery to the tumors with relative sparing of normal liver tissue and little extrahepatic exposure, thus limiting systemic side effects. There is a paucity of randomized controlled trial evidence to inform the optimal integration of regional therapies into the management of CRLM. Hepatic arterial infusion pump (HAIP) chemotherapy has a potential survival benefit when used in the adjuvant setting after resection of CRLM. HAIP chemotherapy can be safely given with contemporary systemic therapies and is associated with a high objective response and rate of conversion to resectability in patients with uCRLM. Drug-eluting beads coated with irinotecan transarterial chemoembolization is associated with high objective response rates within the liver and has a well-established safety profile in patients with uCRLM. Transarterial radioembolization achieves high rates of response within the liver but is not associated with improvements in overall survival or quality of life in the first- or second-line setting for uCRLM. The best treatment approach is the one that most aligns with a given patients' values, preferences, and philosophy of care. In the first-line setting, HAIP could be offered to motivated patients who hope to achieve conversion to resectability. After progression on chemotherapy, HAIP, transarterial chemoembolization, and transarterial radioembolization are valuable treatment options to consider for patients with liver-limited or liver-predominant CRLM who seek to optimize response rates and regional control.
Collapse
Affiliation(s)
- Michael J Raphael
- Division of Medical Oncology, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Paul J Karanicolas
- Division of Surgical Oncology, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Ytrrium-90 transarterial radioembolization in patients with gastrointestinal malignancies. Clin Transl Oncol 2022; 24:796-808. [PMID: 35013882 DOI: 10.1007/s12094-021-02745-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Transarterial radioembolization (TARE) with yttrium-90 (Y90) is a promising alternative strategy to treat liver tumors and liver metastasis from colorectal cancer (CRC), as it selectively delivers radioactive isotopes to the tumor via the hepatic artery, sparring surrounding liver tissue. The landscape of TARE indications is constantly evolving. This strategy is considered for patients with hepatocellular carcinoma (HCC) with liver-confined disease and preserved liver function in whom neither TACE nor systemic therapy is possible. In patients with liver metastases from CRC, TARE is advised when other chemotherapeutic options have failed. Recent phase III trials have not succeeded to prove benefit in overall survival; however, it has helped to better understand the patients that may benefit from TARE based on subgroup analysis. New strategies and treatment combinations are being investigated in ongoing clinical trials. The aim of this review is to summarize the clinical applications of TARE in patients with gastrointestinal malignancies.
Collapse
|
27
|
Weber M, Lam M, Chiesa C, Konijnenberg M, Cremonesi M, Flamen P, Gnesin S, Bodei L, Kracmerova T, Luster M, Garin E, Herrmann K. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 2022; 49:1682-1699. [PMID: 35146577 PMCID: PMC8940802 DOI: 10.1007/s00259-021-05600-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
Primary liver tumours (i.e. hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICC)) are among the most frequent cancers worldwide. However, only 10-20% of patients are amenable to curative treatment, such as resection or transplant. Liver metastases are most frequently caused by colorectal cancer, which accounts for the second most cancer-related deaths in Europe. In both primary and secondary tumours, radioembolization has been shown to be a safe and effective treatment option. The vast potential of personalized dosimetry has also been shown, resulting in markedly increased response rates and overall survival. In a rapidly evolving therapeutic landscape, the role of radioembolization will be subject to changes. Therefore, the decision for radioembolization should be taken by a multidisciplinary tumour board in accordance with the current clinical guidelines. The purpose of this procedure guideline is to assist the nuclear medicine physician in treating and managing patients undergoing radioembolization treatment. PREAMBLE: The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide among individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. These guidelines are intended to assist practitioners in providing appropriate nuclear medicine care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals taking into account the unique circumstances of each case. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set out in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine involves not only the science but also the art of dealing with the prevention, diagnosis, alleviation and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognised that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- M Weber
- Department of Nuclear medicine, University clinic Essen, Essen, Germany.
| | - M Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - C Chiesa
- Nuclear Medicine, Foundation IRCCS National Tumour Institute, Milan, Italy
| | - M Konijnenberg
- Nuclear Medicine Department, Erasmus MC, Rotterdam, The Netherlands
| | - M Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - P Flamen
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium
| | - S Gnesin
- Institute of Radiation physics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - L Bodei
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - T Kracmerova
- Department of Medical Physics, Motol University Hospital, Prague, Czech Republic
| | - M Luster
- Department of Nuclear medicine, University hospital Marburg, Marburg, Germany
| | - E Garin
- Department of Nuclear Medicine, Cancer, Institute Eugène Marquis, Rennes, France
| | - K Herrmann
- Department of Nuclear medicine, University clinic Essen, Essen, Germany
| |
Collapse
|
28
|
Schartz D, Porter M, Schartz E, Kallas J, Gupta A, Butani D, Cantos A. Transarterial yrittrium-90 radioembolization for unresectable intrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J Vasc Interv Radiol 2022; 33:679-686. [PMID: 35219834 DOI: 10.1016/j.jvir.2022.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/06/2022] [Accepted: 02/13/2022] [Indexed: 12/01/2022] Open
Abstract
PURPOSE To investigate the overall efficacy and survival profile of Yrittrium-90 (Y-90) radioembolization for unresectable intrahepatic cholangiocarcinoma (ICC). MATERIALS AND METHODS A systematic literature review and meta-analysis was completed using a random effects model. Studies describing the use of Y-90 for unresectable ICC were included. Disease control rate (DCR), downstaged to resectable rate, CA19-9 response rate, pooled overall median survival (OS), pooled median progression free survival (PFS), and mean reported survival rates ranging from 3 to 36 months (mo) were evaluated. RESULTS Twenty-one studies detailing a total of 921 patients were included. The overall DCR was 82.3% [95% Confidence Interval (CI): 76.7% to 87.8%, I2 = 81%). In 11% of cases, patients were downstaged to being surgically resectable (CI: 6.1% to 15.9%, I2 = 78%). The CA19-9 response rate was 67.2% (CI: 54.5% to 79,8%, I2 = 60%). From point of radioembolization, PFS was 7.8 months (CI: 4.2 mo to 11.3 mo, I2 = 94%), and overall median survival was 12.7 months (CI: 10.6 mo to 14.8 mo, I2 = 62%). Lastly, the overall mean reported survival proportions were at 3 mo (84% survival, SD: 10%), 6 mo (69%, SD:16%), 12 mo (47%, SD: 19%), 18 mo (31%, SD: 21%), 24 mo (30%, SD 19%), 30 mo (21% (SD: 27%), and at 36 mo (5%, SD 7%). CONCLUSIONS Radioembolization with Y-90 for unresectable ICC remains beneficial for both disease control and survival. Data from ongoing projects will continue to help optimize treatment and patient selection resulting in improved patient outcomes.
Collapse
Affiliation(s)
- Derrek Schartz
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY, USA.
| | - Marc Porter
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY, USA
| | - Emily Schartz
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY, USA
| | - Jeffrey Kallas
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY, USA
| | - Akshya Gupta
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY, USA
| | - Devang Butani
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY, USA
| | - Andrew Cantos
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY, USA
| |
Collapse
|
29
|
Danieli R, Milano A, Gallo S, Veronese I, Lascialfari A, Indovina L, Botta F, Ferrari M, Cicchetti A, Raspanti D, Cremonesi M. Personalized Dosimetry in Targeted Radiation Therapy: A Look to Methods, Tools and Critical Aspects. J Pers Med 2022; 12:205. [PMID: 35207693 PMCID: PMC8874397 DOI: 10.3390/jpm12020205] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
Targeted radiation therapy (TRT) is a strategy increasingly adopted for the treatment of different types of cancer. The urge for optimization, as stated by the European Council Directive (2013/59/EURATOM), requires the implementation of a personalized dosimetric approach, similar to what already happens in external beam radiation therapy (EBRT). The purpose of this paper is to provide a thorough introduction to the field of personalized dosimetry in TRT, explaining its rationale in the context of optimization and describing the currently available methodologies. After listing the main therapies currently employed, the clinical workflow for the absorbed dose calculation is described, based on works of the most experienced authors in the literature and recent guidelines. Moreover, the widespread software packages for internal dosimetry are presented and critical aspects discussed. Overall, a selection of the most important and recent articles about this topic is provided.
Collapse
Affiliation(s)
- Rachele Danieli
- Dipartimento di Fisica, Università degli Studi di Pavia, Via Bassi 6, 27100 Pavia, Italy;
| | - Alessia Milano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Roma, Italy;
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy
| | - Salvatore Gallo
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (S.G.); (I.V.)
- INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Ivan Veronese
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (S.G.); (I.V.)
- INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Alessandro Lascialfari
- INFN-Pavia Unit, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy;
| | - Luca Indovina
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Roma, Italy;
| | - Francesca Botta
- Medical Physics Unit, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milano, Italy; (F.B.); (M.F.)
| | - Mahila Ferrari
- Medical Physics Unit, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milano, Italy; (F.B.); (M.F.)
| | - Alessandro Cicchetti
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy;
| | - Davide Raspanti
- Temasinergie S.p.A., Via Marcello Malpighi 120, 48018 Faenza, Italy;
| | - Marta Cremonesi
- Radiation Research Unit, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milano, Italy;
| |
Collapse
|
30
|
Sarnelli A, Negrini M, Mezzenga E, Feliciani G, D'Arienzo M, Amato A, Paganelli G. Modelling a new approach for radio-ablation after resection of breast ductal carcinoma in-situ based on the BAT-90 medical device. Sci Rep 2022; 12:14. [PMID: 34996956 PMCID: PMC8741759 DOI: 10.1038/s41598-021-03807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/03/2021] [Indexed: 11/28/2022] Open
Abstract
The majority of local recurrences, after conservative surgery of breast cancer, occurs in the same anatomical area where the tumour was originally located. For the treatment of ductal carcinoma in situ (DCIS), a new medical device, named BAT-90, (BetaGlue Technologies SpA) has been proposed. BAT-90 is based on the administration of 90Y β-emitting microspheres, embedded in a bio-compatible matrix. In this work, the Geant4 simulation toolkit is used to simulate BAT-90 as a homogenous cylindrical 90Y layer placed in the middle of a bulk material. The activity needed to deliver a 20 Gy isodose at a given distance z from the BAT-90 layer is calculated for different device thicknesses, tumour bed sizes and for water and adipose bulk materials. A radiobiological analysis has been performed using both the Poisson and logistic Tumour Control Probability (TCP) models. A range of radiobiological parameters (α and β), target sizes, and densities of tumour cells were considered. Increasing α values, TCP increases too, while, for a fixed α value, TCP decreases as a function of clonogenic cell density. The models predict very solid results in case of limited tumour burden while the activity/dose ratio could be further optimized in case of larger tumour beds.
Collapse
Affiliation(s)
- Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Matteo Negrini
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40126, Bologna, Italy
| | - Emilio Mezzenga
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giacomo Feliciani
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Marco D'Arienzo
- Medical Physics Unit, ASL Roma 6, Via Borgo Garibaldi 12, 00041, Albano Laziale, RM, Italy
| | - Antonino Amato
- BetaGlue Technologies Spa, Lungadige Galtarossa 21, 37133, Verona, Italy
| | - Giovanni Paganelli
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
31
|
Boral B, Ballı HT, Sözütok S, Pehlivan UA, Aikimbaev K. Clinical and prognostic significance of CD14 (+) HLA-DR (-/low) myeloid-derived suppressor cells in patients with hepatocellular carcinoma received transarterial radioembolization with Yttrium-90. Scand J Immunol 2021; 95:e13132. [PMID: 34936119 DOI: 10.1111/sji.13132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/21/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. For unresectable HCC, transarterial radioembolization (TARE) with Yttrium-90 is a widely used treatment. The aim of this study was to investigate whether monocytic myeloid-derived suppressor cells (M-MDSC) and CD39+ T cells can be non-invasive predictive biomarkers of radiological response and prognosis in patients with HCC treated with TARE. This study was conducted on 39 patients with HCC who were treated with TARE between August 2018 and December 2019 and the control group consisted of 23 healthy volunteers. CD4+, CD8+, CD39+ T cells, Natural killer (NK) cells, myeloid cells (MC) and M-MDSC parameters are examined in the course of TARE treatment with student t test and Kaplan-Meier method. There were statistically significant differences in M-MDSC, CD39+ T cells and MC values between healthy controls and HCC patients. A statistically significant difference was found in M-MDSC and CD4+ T cells values in the HCC patient group who responded to the treatment compared to those who did not. Survival analysis found that patients with lower frequencies (under 3.81%) of M-MDSC showed more prominent differences of overall survival (OS) compared to patients with all high groups. We found that M-MDSC in the peripheral blood might be a useful non-invasive biomarker to predict OS. We have shown for the first time that M-MDSC is correlated with treatment response in HCC patients treated with TARE. Additionally, we have found that the percentage of CD39+ T cells is high in HCC patients and these cells are positively correlated with M-MDSC.
Collapse
Affiliation(s)
- Barış Boral
- Department of Immunology, Adana Health Practice and Research Center, University of Health Sciences, Adana, Turkey
| | | | - Sinan Sözütok
- Department of Radiology, Çukurova University School of Medicine, Adana, Turkey
| | - Umur Anıl Pehlivan
- Department of Radiology, Çukurova University School of Medicine, Adana, Turkey
| | - Kairgeldy Aikimbaev
- Department of Radiology, Çukurova University School of Medicine, Adana, Turkey
| |
Collapse
|
32
|
Cazzato RL, Hubelé F, De Marini P, Ouvrard E, Salvadori J, Addeo P, Garnon J, Kurtz JE, Greget M, Mertz L, Goichot B, Gangi A, Imperiale A. Liver-Directed Therapy for Neuroendocrine Metastases: From Interventional Radiology to Nuclear Medicine Procedures. Cancers (Basel) 2021; 13:cancers13246368. [PMID: 34944988 PMCID: PMC8699378 DOI: 10.3390/cancers13246368] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are rare and heterogeneous epithelial tumors most commonly arising from the gastroenteropancreatic (GEP) system. GEP-NENs account for approximately 60% of all NENs, and the small intestine and pancreas represent two most common sites of primary tumor development. Approximately 80% of metastatic patients have secondary liver lesions, and in approximately 50% of patients, the liver is the only metastatic site. The therapeutic strategy depends on the degree of hepatic metastatic invasion, ranging from liver surgery or percutaneous ablation to palliative treatments to reduce both tumor volume and secretion. In patients with grade 1 and 2 NENs, locoregional nonsurgical treatments of liver metastases mainly include percutaneous ablation and endovascular treatments, targeting few or multiple hepatic metastases, respectively. In the present work, we provide a narrative review of the current knowledge on liver-directed therapy for metastasis treatment, including both interventional radiology procedures and nuclear medicine options in NEN patients, taking into account the patient clinical context and both the strengths and limitations of each modality.
Collapse
Affiliation(s)
- Roberto Luigi Cazzato
- Interventional Radiology, University Hospitals of Strasbourg, Strasbourg University, 67000 Strasbourg, France; (R.L.C.); (P.D.M.); (J.G.); (M.G.); (A.G.)
- Oncology, Institut de Cancérologie de Strasbourg Europe (ICANS), Strasbourg University, 67200 Strasbourg, France;
| | - Fabrice Hubelé
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, Strasbourg University, 67200 Strasbourg, France; (F.H.); (E.O.)
| | - Pierre De Marini
- Interventional Radiology, University Hospitals of Strasbourg, Strasbourg University, 67000 Strasbourg, France; (R.L.C.); (P.D.M.); (J.G.); (M.G.); (A.G.)
| | - Eric Ouvrard
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, Strasbourg University, 67200 Strasbourg, France; (F.H.); (E.O.)
| | - Julien Salvadori
- Radiophysics, Institut de Cancérologie de Strasbourg Europe (ICANS), 67200 Strasbourg, France;
| | - Pietro Addeo
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Hospitals of Strasbourg, 67200 Strasbourg, France;
| | - Julien Garnon
- Interventional Radiology, University Hospitals of Strasbourg, Strasbourg University, 67000 Strasbourg, France; (R.L.C.); (P.D.M.); (J.G.); (M.G.); (A.G.)
| | - Jean-Emmanuel Kurtz
- Oncology, Institut de Cancérologie de Strasbourg Europe (ICANS), Strasbourg University, 67200 Strasbourg, France;
| | - Michel Greget
- Interventional Radiology, University Hospitals of Strasbourg, Strasbourg University, 67000 Strasbourg, France; (R.L.C.); (P.D.M.); (J.G.); (M.G.); (A.G.)
| | - Luc Mertz
- Radiophysics, University Hospitals of Strasbourg, 67000 Strasbourg, France;
| | - Bernard Goichot
- Internal Medicine, Diabetes and Metabolic Disorders, University Hospitals of Strasbourg, Strasbourg University, 67200 Strasbourg, France;
| | - Afshin Gangi
- Interventional Radiology, University Hospitals of Strasbourg, Strasbourg University, 67000 Strasbourg, France; (R.L.C.); (P.D.M.); (J.G.); (M.G.); (A.G.)
- School of Biomedical Engineering and Imaging Science, King’s College London, Strand, London WC2R 2LS, UK
| | - Alessio Imperiale
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, Strasbourg University, 67200 Strasbourg, France; (F.H.); (E.O.)
- Molecular Imaging—DRHIM, IPHC, UMR 7178, CNRS/Unistra, 67037 Strasbourg, France
- Correspondence: ; Tel.: +33-3-68-76-74-48; Fax: +33-3-68-76-72-56
| |
Collapse
|
33
|
van der Meulen NP, Strobel K, Lima TVM. New Radionuclides and Technological Advances in SPECT and PET Scanners. Cancers (Basel) 2021; 13:cancers13246183. [PMID: 34944803 PMCID: PMC8699425 DOI: 10.3390/cancers13246183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Advances in nuclear medicine are made by technological and radionuclide improvements. Throughout nuclear medicine’s history, these advances were often intertwined and complementary based on different clinical questions, availability and need. This paper covers some of these developments in radionuclides and instrumentation. Abstract Developments throughout the history of nuclear medicine have involved improvements in both instrumentation and radionuclides, which have been intertwined. Instrumentation developments always occurred during the search to improving devices’ sensitivity and included advances in detector technology (with the introduction of cadmium zinc telluride and digital Positron Emission Tomography—PET-devices with silicon photomultipliers), design (total body PET) and configuration (ring-shaped, Single-Photon Emission Computed Tomography (SPECT), Compton camera). In the field of radionuclide development, we observed the continual changing of clinically used radionuclides, which is sometimes influenced by instrumentation technology but also driven by availability, patient safety and clinical questions. Some areas, such as tumour imaging, have faced challenges when changing radionuclides based on availability, when this produced undesirable clinical findings with the introduction of unclear focal uptakes and unspecific uptakes. On the other end of spectrum, further developments of PET technology have seen a resurgence in its use in nuclear cardiology, with rubidium-82 from strontium-82/rubidium-82 generators being the radionuclide of choice, moving away from SPECT nuclides thallium-201 and technetium-99m. These continuing improvements in both instrumentation and radionuclide development have helped the growth of nuclear medicine and its importance in the ever-evolving range of patient care options.
Collapse
Affiliation(s)
- Nicholas P. van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Correspondence: (N.P.v.d.M.); (T.V.M.L.)
| | - Klaus Strobel
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, 6000 Luzern, Switzerland;
| | - Thiago Viana Miranda Lima
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, 6000 Luzern, Switzerland;
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, 1007 Lausanne, Switzerland
- Correspondence: (N.P.v.d.M.); (T.V.M.L.)
| |
Collapse
|
34
|
Kollaard R, Zorz A, Dabin J, Covens P, Cooke J, Crabbé M, Cunha L, Dowling A, Ginjaume M, McNamara L. Review of extremity dosimetry in nuclear medicine. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:R60-R87. [PMID: 34670207 DOI: 10.1088/1361-6498/ac31a2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The exposure of the fingers is one of the major radiation protection concerns in nuclear medicine (NM). The purpose of this paper is to provide an overview of the exposure, dosimetry and protection of the extremities in NM. A wide range of reported finger doses were found in the literature. Historically, the highest finger doses are found at the fingertip in the preparation and dispensing of18F for diagnostic procedures and90Y for therapeutic procedures. Doses can be significantly reduced by following recommendations on source shielding, increasing distance and training. Additionally, important trends contributing to a lower dose to the fingers are the use of automated procedures (especially for positron emission tomography (PET)) and the use of prefilled syringes. On the other hand, the workload of PET procedures has substantially increased during the last ten years. In many cases, the accuracy of dose assessment is limited by the location of the dosimeter at the base of the finger and the maximum dose at the fingertip is underestimated (typical dose ratios between 1.4 and 7). It should also be noted that not all dosimeters are sensitive to low-energy beta particles and there is a risk for underestimation of the finger dose when the detector or its filter is too thick. While substantial information has been published on the most common procedures (using99mTc,18F and90Y), less information is available for more recent applications, such as the use of68Ga for PET imaging. Also, there is a need for continuous awareness with respect to contamination of the fingers, as this factor can contribute substantially to the finger dose.
Collapse
Affiliation(s)
- Robert Kollaard
- Department of Radiation Protection, Consultancy and Services Division, Nuclear Research and Consultancy Group (NRG), Arnhem, The Netherlands
| | - Alessandra Zorz
- Department of Medical Physics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Jérémie Dabin
- Research in Dosimetric Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Peter Covens
- In vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jennie Cooke
- Department of Medical Physics, St James Hospital, Dublin, Ireland
| | - Melissa Crabbé
- Research in Dosimetric Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Lidia Cunha
- Department of Nuclear Medicine, IsoPor-Azores, Angra do Heroismo, Portugal
| | - Anita Dowling
- Department of Medical Physics and Clinical Engineering, St. Vincent's University Hospital, Dublin, Ireland
| | - Mercè Ginjaume
- Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Leanne McNamara
- Department of Medical Physics, University Hospital Limerick, Limerick, Ireland
| |
Collapse
|
35
|
Keane G, Lam M, de Jong H. Beyond the MAA-Y90 Paradigm: The Evolution of Radioembolization Dosimetry Approaches and Scout Particles. Semin Intervent Radiol 2021; 38:542-553. [PMID: 34853500 DOI: 10.1055/s-0041-1736660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radioembolization is a well-established treatment for primary and metastatic liver cancer. There is increasing interest in personalized treatment planning supported by dosimetry, as it provides an opportunity to optimize dose delivery to tumor and minimize nontarget deposition, which demonstrably increases the efficacy and safety of this therapy. However, the optimal dosimetry procedure in the radioembolization setting is still evolving; existing data are limited as few trials have prospectively tailored dose based on personalized planning and predominantly semi-empirical methods are used for dose calculation. Since the pretreatment or "scout" procedure forms the basis of dosimetry calculations, an accurate and reliable technique is essential. 99m Tc-MAA SPECT constitutes the current accepted standard for pretreatment imaging; however, inconsistent patterns in published data raise the question whether this is the optimal agent. Alternative particles are now being introduced to the market, and early indications suggest use of an identical scout and treatment particle may be superior to the current standard. This review will undertake an evaluation of the increasingly refined dosimetric methods driving radioembolization practices, and a horizon scanning exercise identifying alternative scout particle solutions. Together these constitute a compelling vision for future treatment planning methods that prioritize individualized care.
Collapse
Affiliation(s)
- Grace Keane
- Nuclear Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Marnix Lam
- Nuclear Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Hugo de Jong
- Nuclear Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| |
Collapse
|
36
|
Lassmann M, Eberlein U, Gear J, Konijnenberg M, Kunikowska J. Dosimetry for Radiopharmaceutical Therapy: The European Perspective. J Nucl Med 2021; 62:73S-79S. [PMID: 34857624 DOI: 10.2967/jnumed.121.262754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
This review presents efforts in Europe over the last few years with respect to standardization of quantitative imaging and dosimetry and comprises the results of several European research projects on practices regarding radiopharmaceutical therapies (RPTs). Because the European Union has regulatory requirements concerning dosimetry in RPTs, the European Association of Nuclear Medicine released a position paper in 2021 on the use of dosimetry under these requirements. The importance of radiobiology for RPTs is elucidated in another position paper by the European Association of Nuclear Medicine. Furthermore, how dosimetry interacts with clinical requirements is described, with several clinical examples. In the future, more efforts need to be undertaken to increase teaching and standardization efforts and to incorporate radiobiology for further individualizing patient treatment, with the aim of improving the outcome and safety of RPTs.
Collapse
Affiliation(s)
- Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Uta Eberlein
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany;
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
37
|
Subramanian S, Mallia MB, Shinto AS, Mathew AS. Clinical Management of Liver Cancer in India and Other Developing Nations: A Focus on Radiation Based Strategies. Oncol Ther 2021; 9:273-295. [PMID: 34046873 PMCID: PMC8593115 DOI: 10.1007/s40487-021-00154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a global killer with preponderance in Asian and African countries. It poses a challenge for successful management in less affluent or developing nations like India, with large populations and limited infrastructures. This review aims to assess the available options and future directions for management of HCC applicable to such countries. While summarizing current and emerging clinical strategies for detection, staging and therapy of the disease, it highlights radioisotope- and radioactivity-based strategies as part of an overall program. Using the widely accepted Barcelona Clinic Liver Cancer (BCLC) staging system as a base, it evaluates the applicability of different therapeutic approaches and their synergistic combination(s) in the context of a patient-specific dynamic results-based strategy. It distills the conclusions of multiple HCC management-focused consensus recommendations to provide a picture of clinical strategies, especially radiation-related approaches. Additionally, it discusses the logistical and economic feasibility of these approaches in the context of the limitations of the burdened public health infrastructure in India (and like nations) and highlights possible strategies both at the clinical level and in terms of an administrative health policy on HCC to provide the maximum possible benefit to the widest swathe of the affected population.
Collapse
Affiliation(s)
- Suresh Subramanian
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India
| | - Ajit S Shinto
- Apollo Proton Cancer Centre, Chennai, 600096, Tamil Nadu, India
| | | |
Collapse
|
38
|
d'Abadie P, Walrand S, Goffette P, Amini N, Maanen AV, Lhommel R, Jamar F. Antireflux catheter improves tumor targeting in liver radioembolization with resin microspheres. DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY (ANKARA, TURKEY) 2021; 27:768-773. [PMID: 34792032 DOI: 10.5152/dir.2021.20785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We aimed to determine whether antireflux (ARC) catheter may result in better tumor targeting in liver radioembolization using 90Y-resin microspheres. METHODS Patients treated with resin microspheres for hepatocellular carcinoma (HCC) and secondary liver malignancies were retrospectively analyzed. All patients underwent a 99mTc-macroaggregated albumin (99mTc-MAA) single photon emission computed tomography (SPECT) following the planning arteriography with a conventional end-hole catheter. For 90Y-microspheres injection, two groups were defined depending on the type of catheter used: an ARC group (n=38) and a control group treated with a conventional end-hole catheter (n=23). 90Y positron emission tomography computed tomography (PET/CT) was performed after the therapeutic arteriography. The choice of the catheter was not randomized, but left to the choice of the interventional radiologist. 99mTc-MAA SPECT and 90Y PET/CT were co-registered with the baseline imaging to determine a tumor to normal liver ratio (T/NL[MAA or 90Y]) and tumor dose (TD[MAA or 90Y]) for the planning and therapy. RESULTS Overall, 38 patients (115 lesions) and 23 patients (75 lesions) were analyzed in the ARC and control groups, respectively. In the ARC group, T/NL90Y and TD90Y were significantly higher than T/NLMAA and TDMAA. Median (IQR) T/NL90Y was 2.16 (2.15) versus 1.74 (1.43) for T/NLMAA (p < 0.001). Median (IQR) TD90Y was 90.96 Gy (98.31 Gy) versus 73.72 Gy (63.82 Gy) for TDMAA (p < 0.001). In this group, the differences were highly significant for neuroendocrine metastases (NEM) and HCC and less significant for colorectal metastases (CRM). In the control group, no significant differences were demonstrated. CONCLUSION The use of an ARC significantly improves tumor deposition in liver radioembolization with resin microspheres.
Collapse
Affiliation(s)
- Philippe d'Abadie
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Stephan Walrand
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Pierre Goffette
- Department of Interventional Radiology, Saint Luc University Hospital and King Albert II cancer Institute, Brussels, Belgium
| | - Nadia Amini
- Department of Interventional Radiology, Saint Luc University Hospital and King Albert II cancer Institute, Brussels, Belgium
| | - Aline van Maanen
- From the Department of Nuclear Medicine Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Renaud Lhommel
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - François Jamar
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| |
Collapse
|
39
|
Chiesa C, Sjogreen-Gleisner K, Walrand S, Strigari L, Flux G, Gear J, Stokke C, Gabina PM, Bernhardt P, Konijnenberg M. EANM dosimetry committee series on standard operational procedures: a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. EJNMMI Phys 2021; 8:77. [PMID: 34767102 PMCID: PMC8589932 DOI: 10.1186/s40658-021-00394-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this standard operational procedure is to standardize the methodology employed for the evaluation of pre- and post-treatment absorbed dose calculations in 90Y microsphere liver radioembolization. Basic assumptions include the permanent trapping of microspheres, the local energy deposition method for voxel dosimetry, and the patient-relative calibration method for activity quantification.The identity of 99mTc albumin macro-aggregates (MAA) and 90Y microsphere biodistribution is also assumed. The large observed discrepancies in some patients between 99mTc-MAA predictions and actual 90Y microsphere distributions for lesions is discussed. Absorbed dose predictions to whole non-tumoural liver are considered more reliable and the basic predictors of toxicity. Treatment planning based on mean absorbed dose delivered to the whole non-tumoural liver is advised, except in super-selective treatments.Given the potential mismatch between MAA simulation and actual therapy, absorbed doses should be calculated both pre- and post-therapy. Distinct evaluation between target tumours and non-tumoural tissue, including lungs in cases of lung shunt, are vital for proper optimization of therapy. Dosimetry should be performed first according to a mean absorbed dose approach, with an optional, but important, voxel level evaluation. Fully corrected 99mTc-MAA Single Photon Emission Computed Tomography (SPECT)/computed tomography (CT) and 90Y TOF PET/CT are regarded as optimal acquisition methodologies, but, for institutes where SPECT/CT is not available, non-attenuation corrected 99mTc-MAA SPECT may be used. This offers better planning quality than non dosimetric methods such as Body Surface Area (BSA) or mono-compartmental dosimetry. Quantitative 90Y bremsstrahlung SPECT can be used if dedicated correction methods are available.The proposed methodology is feasible with standard camera software and a spreadsheet. Available commercial or free software can help facilitate the process and improve calculation time.
Collapse
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine Unit, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Stephan Walrand
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - Lidia Strigari
- Medical Physics Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Caroline Stokke
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Pablo Minguez Gabina
- Department of Medical Physics and Radiation Protection, Gurutzeta/Cruces University Hospital, Barakaldo, Spain
| | - Peter Bernhardt
- Department of Radiation Physics, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
Kim SP, Juneau D, Cohalan C, Enger SA. Standardizing SPECT/CT dosimetry following radioembolization with yttrium-90 microspheres. EJNMMI Phys 2021; 8:71. [PMID: 34716850 PMCID: PMC8557238 DOI: 10.1186/s40658-021-00413-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Background Multiple post-treatment dosimetry methods are currently under investigation for Yttrium-90 (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{90}\hbox {Y}$$\end{document}90Y) radioembolization. Within each methodology, a variety of dosimetric inputs exists that affect the final dose estimates. Understanding their effects is essential to facilitating proper dose analysis and crucial in the eventual standardization of radioembolization dosimetry. The purpose of this study is to investigate the dose differences due to different self-calibrations and mass density assignments in the non-compartmental and local deposition methods. A practical mean correction method was introduced that permits dosimetry in images where the quality is compromised by patient motion and partial volume effects. Methods Twenty-one patients underwent \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{90}\hbox {Y}$$\end{document}90Y radioembolization and were imaged with SPECT/CT. Five different self-calibrations (FOV, Body, OAR, Liverlung, and Liver) were implemented and dosimetrically compared. The non-compartmental and local deposition method were used to perform dosimetry based on either nominal- or CT calibration-based mass densities. A mean correction method was derived assuming homogeneous densities. Cumulative dose volume histograms, linear regressions, boxplots, and Bland Altman plots were utilized for analysis. Results Up to 270% weighted dose difference was found between self-calibrations with mean dose differences up to 50 Gy in the liver and 23 Gy in the lungs. Between the local deposition and non-compartmental methods, the liver and lung had dose differences within 0.71 Gy and 20 Gy, respectively. The local deposition method’s nominal and CT calibration-based mass density implementations dosimetric metrics were within 1.4% in the liver and 24% in the lungs. The mean lung doses calculated with the CT method were shown to be inflated. The mean correction method demonstrated that the corrected mean doses were greater by up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim 5$$\end{document}∼5 Gy in the liver and lower by up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim 12$$\end{document}∼12 Gy in the lungs. Conclusions The OAR calibration may be utilized as a potentially more accurate and precise self-calibration. The non-compartmental method was found more comparable to the local deposition method in organs that were more homogeneous in mass densities. Due to the potential for inflated lung mean doses, the non-compartmental and local deposition method implemented with nominal mass densities is recommended for more consistent dosimetric results. If patient motion and partial volume effects are present in the liver, our practical correction method will calculate more representative doses in images suboptimal for dosimetry.
Collapse
Affiliation(s)
- S Peter Kim
- Medical Physics Unit, McGill University, Montreal, Canada. .,Biological and Biomedical Engineering, McGill University, Montreal, Canada.
| | - Daniel Juneau
- Department of Medical Imaging, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Claire Cohalan
- Department of Physics and Biomedical Engineering, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Shirin A Enger
- Medical Physics Unit, McGill University, Montreal, Canada.,Biological and Biomedical Engineering, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| |
Collapse
|
41
|
Assessment of radiation sensitivity of unresectable intrahepatic cholangiocarcinoma in a series of patients submitted to radioembolization with yttrium-90 resin microspheres. Sci Rep 2021; 11:19745. [PMID: 34611210 PMCID: PMC8492793 DOI: 10.1038/s41598-021-99219-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
Radioembolization is a valuable therapeutic option in patients with unresectable intrahepatic cholangiocarcinoma. The essential implementation of the absorbed dose calculation methods should take into account also the specific tumor radiosensitivity, expressed by the α parameter. Purpose of this study was to retrospectively calculate it in a series of patients with unresectable intrahepatic cholangiocarcinoma submitted to radioembolization. Twenty-one therapeutic procedures in 15 patients were analysed. Tumor absorbed doses were calculated processing the post-therapeutic 90Y-PET/CT images and the pre-treatment contrast-enhanced CT scans. Tumor absorbed dose and pre- and post-treatment tumor volumes were used to calculate α and α3D parameters (dividing targeted liver in n voxels of the same volume with specific voxel absorbed dose). A tumor volume reduction was observed after treatment. The median of tumor average absorbed dose was 93 Gy (95% CI 81–119) and its correlation with the residual tumor mass was statistically significant. The median of α and α3D parameters was 0.005 Gy−1 (95% CI 0.004–0.008) and 0.007 Gy−1 (95% CI 0.005–0.015), respectively. Multivariate analysis showed tumor volume and tumor absorbed dose as significant predictors of the time to tumor progression. The knowledge of radiobiological parameters gives the possibility to decide the administered activity in order to improve the outcome of the treatment.
Collapse
|
42
|
Accurate non-tumoral 99mTc-MAA absorbed dose prediction to plan optimized activities in liver radioembolization using resin microspheres. Phys Med 2021; 89:250-257. [PMID: 34438353 DOI: 10.1016/j.ejmp.2021.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
AIM The manufacturers' recommended methods to calculate delivered activities in liver radioembolization are simplistic and only slightly personalized. Activity planning could also be based on a 99mTc-macroaggregated albumin SPECT/CT (MAA) using the partition model but its accuracy is controversial. This study evaluates the dose parameters in the normal liver and in the tumor compartments using MAA SPECT/CT (pre-therapeutic imaging) and 90Y TOF-PET/CT (post-therapy imaging). Finally, we propose a prescription of the activity as a function of the normal liver MAA distribution. METHOD 66 procedures of RE (with resin microspheres) corresponding to 171 lesions were analyzed. Tumor to normal targeted liver uptake (T/NTL), tumor absorbed dose (TD) and whole normal liver absorbed (WNLD) were assessed with MAA and 90Y imaging. Secondly, activities were recalculated using the MAA distribution in the normal liver compartment to reach the maximal tolerable liver dose. These Activities were compared to activities defined with the BSA method. RESULTS Compared to 90Y imaging, our study demonstrated an accurate estimation of the WNLD using MAA imaging (Pearson's R = 0.97, p < 0.001). On the contrary, significant variations were found for TD (R = 0.65, p < 0.001). The MAA T/NTL ratio has a 85% positive predictive value in identifying patients who will get a 90Y T/NTL ratio above 1.5. Moreover, activities calculated using the MAA distribution in the normal liver compartment were significantly higher to activities defined with the BSA method. CONCLUSION Whole normal liver absorbed doses are accurately predicted with MAA imaging and could be used to optimize the activity planning.
Collapse
|
43
|
Radiation exposure of the operators in the preparation and administration of yttrium-90 microspheres in the treatment of malignant hepatic lesions: What is the risk? Rev Esp Med Nucl Imagen Mol 2021; 40:293-298. [PMID: 34425970 DOI: 10.1016/j.remnie.2020.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
Liver radioembolization is an emerging treatment against liver primary and secondary tumours. The whole procedure of radioembolization involves different health care specialists with different expertise. During the fractionation and infusion phases, the personnel manipulates high activities of 90Y. In our centre, the number of radioembolization treatments per year is increasing; the aim of this study is to monitor the dose to the operators and to estimate the radiological risk for the operators involved in the RE. At present, two medical devices are approved: Sir-Sphere® and Therasphere™, both loaded with 90Y. The dosimeters used were TLDs placed over the fingertips, for a total of 4 dosimeters for each phase; the selected dose descriptor was Hp0.07. The study concerned 17 patients affected by malignant hepatic lesions, treated from September 2017 to March 2018. We performed 27 procedures: 10 fractionations (with Sir-Sphere®) and 17 infusions to the patients (10 with Sir-Spheres®, 7 with Theraspheres™). For fractionation phase, the average activity of each preparation was 3.34 GBq, the average value of Hp0.07 was 0.50mSv. For infusion phase, the average activity was 1.51 GBq for Sir-Sphere® and 2.10 GBq for Theraspheres™, the average value of Hp0.07 was 0.10mSv. No significant differences were found between senior (Hp0.07 = 0.08mSv) and young operators (Hp0.07 = 0.09mSv), respectively. Similarly, no significant differences were found between the right and left hand, with the same average value of Hp0.07 (0.01mSv). In conclusion, the results are encouraging, since fingertips reported doses very low. The handling of 90Y microspheres and the radioembolization procedure can be carried out under safe conditions.
Collapse
|
44
|
Yıldırım AK, Kökkülünk HT. Comparison of Y-90 and Ho-166 Dosimetry Using Liver Phantom: A Monte Carlo Study. Anticancer Agents Med Chem 2021; 22:1348-1353. [PMID: 34431467 DOI: 10.2174/1871520621666210824111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND It is estimated that more than 1 million people are diagnosed with liver malignancy each year and one of the treatments is radioembolization with Y-90 and Ho-166. <P> Objective: The aim of this study is to calculate the absorbed doses caused by Y-90 and Ho-166 in tumor and liver parenchyma using a phantom via Monte Carlo method. <P> Methods: A liver model phantom including a tumor imitation of sphere (r =1.5cm) was defined in GATE. The total activity of 40 mCi Y-90 and Ho-166 was prescribed into tumor imitation as source and 2x2x2 mm3 voxel-sized DoseActors were identified at 30 locations. The simulation, performed to calculate the absorbed doses left by particles during 1 second for Y-90 and Ho-166, was run for a total of 10 days and 11 days, respectively. Total doses were calculated by taking the doses occurring in 1 second as a reference. <P> Results: The maximum absorbed doses were found to be 2.334E+03±1.576E+01 Gy for Y-90 and 7.006E+02±6.013E-01 Gy for Ho-166 at the center of tumor imitation. The minimum absorbed doses were found to be 2.133E-03±1.883E-01 Gy for Y-90 and 1.152E-02±1.036E-03 Gy for Ho-166 at the farthest location from source. The mean absorbed doses in tumor imitation were found to be 1.50E+03±1.36E+00 Gy and 4.58E+02±4.75E-01 Gy for Y-90 and Ho-166, respectively. And, the mean absorbed doses in normal parenchymal tissue were found to be2.07E+01±9.58E-02 Gy and 3.79E+00±2.63E-02 Gy for Y-90 and Ho-166, respectively. <P> Conclusion: Based on the results, Ho-166 is a good alternative to Y-90 according to dosimetric evaluation.
Collapse
|
45
|
d'Abadie P, Walrand S, Hesse M, Annet L, Borbath I, Van den Eynde M, Lhommel R, Jamar F. Prediction of tumor response and patient outcome after radioembolization of hepatocellular carcinoma using 90Y-PET-computed tomography dosimetry. Nucl Med Commun 2021; 42:747-754. [PMID: 33741864 DOI: 10.1097/mnm.0000000000001395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM 90Y-radioembolization using glass or resin microspheres is increasingly used for the treatment of hepatocellular carcinoma (HCC). The aim of this retrospective study is to determine the prognostic relevance of dosimetric parameters defined with 90Y-PET-CT obtained immediately after radioembolization. METHODS Forty-five HCC patients, mostly with multiple lesions, were treated by radioembolization between 2011 and 2017. After treatment, all underwent a 90Y PET-CT with time of flight reconstruction (90Y-TOF-PET-CT). Tumor absorbed dose and cumulative tumor dose-volume histogram were calculated using a dose point Kernel convolution algorithm. The radiological tumor response was assessed using modified (m)-RECIST criteria. Progression-free-survival (PFS) and overall survival (OS) were analyzed using the Kaplan-Meier method and Cox regression analysis. RESULTS Twenty-six patients were treated with glass microspheres (73 lesions) and nineteen with resin microspheres (60 lesions). Thresholds of 118 and 61 Gy for glass and resin microspheres respectively correlate well with radiological response with a positive predictive value (PPV) of 98 and 80% and discriminate patient outcome with regard to PFS (P = 0.03 and 0.005) and OS (P = 0.003 and 0.007). Using dose volume histogram, a minimal absorbed dose of 40 Gy in 66% of the tumor volume (defined as D66) was highly predictive of radiological response (PPV = 94%), PFS (P < 0.001) and OS (P = 0. 008), for either device. CONCLUSION Dosimetric parameters obtained using 90Y-PET-CT are predictive of tumor response, PFS and OS. In clinical practice, a systematic dosimetric evaluation using 90Y PET should be implemented to help predicting patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Borbath
- Gastroenterology and Oncology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Marc Van den Eynde
- Gastroenterology and Oncology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
46
|
d’Abadie P, Hesse M, Louppe A, Lhommel R, Walrand S, Jamar F. Microspheres Used in Liver Radioembolization: From Conception to Clinical Effects. Molecules 2021; 26:3966. [PMID: 34209590 PMCID: PMC8271370 DOI: 10.3390/molecules26133966] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/31/2023] Open
Abstract
Inert microspheres, labeled with several radionuclides, have been developed during the last two decades for the intra-arterial treatment of liver tumors, generally called Selective Intrahepatic radiotherapy (SIRT). The aim is to embolize microspheres into the hepatic capillaries, accessible through the hepatic artery, to deliver high levels of local radiation to primary (such as hepatocarcinoma, HCC) or secondary (metastases from several primary cancers, e.g., colorectal, melanoma, neuro-endocrine tumors) liver tumors. Several types of microspheres were designed as medical devices, using different vehicles (glass, resin, poly-lactic acid) and labeled with different radionuclides, 90Y and 166Ho. The relationship between the microspheres' properties and the internal dosimetry parameters have been well studied over the last decade. This includes data derived from the clinics, but also computational data with various millimetric dosimetry and radiobiology models. The main purpose of this paper is to define the characteristics of these radiolabeled microspheres and explain their association with the microsphere distribution in the tissues and with the clinical efficacy and toxicity. This review focuses on avenues to follow in the future to optimize such particle therapy and benefit to patients.
Collapse
Affiliation(s)
- Philippe d’Abadie
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.H.); (A.L.); (R.L.); (S.W.); (F.J.)
| | | | | | | | | | | |
Collapse
|
47
|
Lu Z, Chen G, Lin KH, Wu TH, Mok GSP. Evaluation of different CT maps for attenuation correction and segmentation in static 99m Tc-MAA SPECT/CT for 90 Y radioembolization treatment planning: A simulation study. Med Phys 2021; 48:3842-3851. [PMID: 34013551 DOI: 10.1002/mp.14991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Conventional 99m Tc-macroaggregated albumin (99m Tc-MAA) planar scintigraphy overestimates lung shunt fraction (LSF) compared to SPECT/CT. However, the respiratory motion artifact due to the temporal mismatch between static SPECT and helical CT (HCT) may compromise the SPECT quantitation accuracy by incorrect attenuation correction (AC) and volume-of-interest (VOI) segmentation. This study aims to evaluate AC and VOI segmentation effects systematically and to propose a CT map for LSF and tumor-to-normal liver ratio (TNR) estimation in static 99m Tc-MAA SPECT/CT. METHODS The 4D XCAT phantom was used to simulate a phantom population of 120 phantoms, modeling 10 different anatomical variations, nine TNRs (2-13.2), nine tumor sizes (2-6.7 cm diameter), eight tumor locations, three axial motion amplitudes of 1, 1.5, and 2 (cm), and four LSFs of 5%, 10%, 15%, and 20%. An analytical projector for low-energy high-resolution parallel-hole collimator was used to simulate 60 noisy projections over 360°, modeling attenuation and geometric collimator-detector response (GCDR). AC and VOI mismatch effects were investigated independently and together, using cine average CT (CACT), HCT at end-inspiration (HCT-IN), mid-respiration (HCT-MID), and end-expiration (HCT-EX) respectively as attenuation and segmentation maps. SPECT images without motion, AC, and VOI errors were also generated as reference. LSF and TNR errors were measured as compared to the ground truth. RESULTS HCT-MID has slightly better performance for AC effect compared with other CT maps in LSF and TNR estimation, while HCT-EX and HCT-MID perform better for VOI effect. For a respiratory motion amplitude of 1.5 cm and a LSF of 5%, the LSF errors are 19.56 ± 4.58%, -6.79 ± 1.74%, 77.29 ± 14.74%, and 111.25 ± 18.29% corresponding to HCT-MID, HCT-EX, HCT-IN, and CACT in static SPECT. The TNR errors are -12.38 ± 6.42%, -20.55 ± 11.25%, -20.89 ± 9.98%, and -22.89 ± 14.38% respectively. HCT-MID has the best performance for LSF estimation for LSF > 10% and TNR estimation, followed by HCT-EX, HCT-IN, and CACT. CONCLUSIONS The HCT-MID is recommended for AC and segmentation to alleviate respiratory artifacts and improve quantitation accuracy in 90 Y radioembolization treatment planning. HCT-EX would also be a recommended choice if HCT-MID is not available.
Collapse
Affiliation(s)
- Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Gefei Chen
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Kuan-Heng Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Industrial PhD Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Hsin Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| |
Collapse
|
48
|
Factors affecting the response to treatment and survival in hepatocellular carcinoma patients treated with transarterial radioembolisation: a single-centre experience. Eur J Gastroenterol Hepatol 2021; 33:926-931. [PMID: 33731592 DOI: 10.1097/meg.0000000000002117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Transarterial radioembolisation (TARE) is a promising technique for unresectable primary tumours of the liver. We present our clinical experience and the response to treatment and survival data of patients with hepatocellular carcinoma (HCC) who were treated with Y-90 radioembolisation in our hospital's angiography department. MATERIAL AND METHODS The data of all the patients with HCC referred to our department for Y-90 treatment were analysed retrospectively. The patients were selected according to the treatment protocol criteria, and lung shunt fraction was evaluated using macroaggregated albumin scintigraphy before radioembolisation. Patients with compatible blood tests and lung shunt fraction rates were chosen for treatment with Y-90 TARE. RESULTS Twenty-four patients were suitable for Y-90 treatment. The patients were treated with 137 ± 44.6 (80-245) Gy Y-90 glass microspheres. The treatment results were evaluated using modified RECIST criteria, and the partial response, complete response, stable disease and progression rates were found to be 54.2, 16.7, 20.8 and 8.3%, respectively. The median survival rate following treatment was 10 months. Higher alpha-fetoprotein (AFP) levels were related to decreased survival, and posttreatment AFP levels had a significant effect on mortality rates. Higher survival rates were detected in the patients who were treated more selectively than the group treated via a lobar approach. CONCLUSION Y-90 microsphere radioembolisation is a safe method and may be helpful in treating patients with unresectable hepatocellular tumours. More favourable results were obtained in the patients treated using the more selective approach. AFP levels before and after treatment could predict survival rates.
Collapse
|
49
|
Levillain H, Bagni O, Deroose CM, Dieudonné A, Gnesin S, Grosser OS, Kappadath SC, Kennedy A, Kokabi N, Liu DM, Madoff DC, Mahvash A, Martinez de la Cuesta A, Ng DCE, Paprottka PM, Pettinato C, Rodríguez-Fraile M, Salem R, Sangro B, Strigari L, Sze DY, de Wit van der Veen BJ, Flamen P. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging 2021; 48:1570-1584. [PMID: 33433699 PMCID: PMC8113219 DOI: 10.1007/s00259-020-05163-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE A multidisciplinary expert panel convened to formulate state-of-the-art recommendations for optimisation of selective internal radiation therapy (SIRT) with yttrium-90 (90Y)-resin microspheres. METHODS A steering committee of 23 international experts representing all participating specialties formulated recommendations for SIRT with 90Y-resin microspheres activity prescription and post-treatment dosimetry, based on literature searches and the responses to a 61-question survey that was completed by 43 leading experts (including the steering committee members). The survey was validated by the steering committee and completed anonymously. In a face-to-face meeting, the results of the survey were presented and discussed. Recommendations were derived and level of agreement defined (strong agreement ≥ 80%, moderate agreement 50%-79%, no agreement ≤ 49%). RESULTS Forty-seven recommendations were established, including guidance such as a multidisciplinary team should define treatment strategy and therapeutic intent (strong agreement); 3D imaging with CT and an angiography with cone-beam-CT, if available, and 99mTc-MAA SPECT/CT are recommended for extrahepatic/intrahepatic deposition assessment, treatment field definition and calculation of the 90Y-resin microspheres activity needed (moderate/strong agreement). A personalised approach, using dosimetry (partition model and/or voxel-based) is recommended for activity prescription, when either whole liver or selective, non-ablative or ablative SIRT is planned (strong agreement). A mean absorbed dose to non-tumoural liver of 40 Gy or less is considered safe (strong agreement). A minimum mean target-absorbed dose to tumour of 100-120 Gy is recommended for hepatocellular carcinoma, liver metastatic colorectal cancer and cholangiocarcinoma (moderate/strong agreement). Post-SIRT imaging for treatment verification with 90Y-PET/CT is recommended (strong agreement). Post-SIRT dosimetry is also recommended (strong agreement). CONCLUSION Practitioners are encouraged to work towards adoption of these recommendations.
Collapse
Affiliation(s)
- Hugo Levillain
- Department of Nuclear Medicine, Jules Bordet Institute, Université Libre de Bruxelles, Rue Héger-Bordet 1, B-1000, Brussels, Belgium.
| | - Oreste Bagni
- Nuclear Medicine Unit, Santa Maria Goretti Hospital, Latina, Italy
| | - Christophe M Deroose
- Nuclear Medicine, University Hospitals Leuven and Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Arnaud Dieudonné
- Department of Nuclear Medicine, Hôpital Beaujon, AP-HP.Nord, DMU DREAM and Inserm U1149, Clichy, France
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Oliver S Grosser
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Germany and Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| | - S Cheenu Kappadath
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Nima Kokabi
- Division of Interventional Radiology and Image Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - David M Liu
- Department of Radiology, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Armeen Mahvash
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - David C E Ng
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
| | - Philipp M Paprottka
- Department of Interventional Radiology, Technical University Munich, Munich, Germany
| | - Cinzia Pettinato
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Riad Salem
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Bruno Sangro
- Clinica Universidad de Navarra-IDISNA and CIBEREHD, Pamplona, Spain
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniel Y Sze
- Department of Interventional Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Patrick Flamen
- Department of Nuclear Medicine, Jules Bordet Institute, Université Libre de Bruxelles, Rue Héger-Bordet 1, B-1000, Brussels, Belgium
| |
Collapse
|
50
|
Nodari G, Popoff R, Riedinger JM, Lopez O, Pellegrinelli J, Dygai-Cochet I, Tabouret-Viaud C, Presles B, Chevallier O, Gehin S, Gallet M, Latournerie M, Manfredi S, Loffroy R, Vrigneaud JM, Cochet A. Impact of contouring methods on pre-treatment and post-treatment dosimetry for the prediction of tumor control and survival in HCC patients treated with selective internal radiation therapy. EJNMMI Res 2021; 11:24. [PMID: 33687596 PMCID: PMC7943673 DOI: 10.1186/s13550-021-00766-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The aim of this study was to evaluate the impact of the contouring methods on dose metrics and their predictive value on tumor control and survival, in both situations of pre-treatment and post-treatment dosimetry, for patients with advanced HCC treated with SIRT. METHODS Forty-eight patients who underwent SIRT between 2012 and 2020 were retrospectively included in this study. Target volumes were delineated using two methods: MRI-based contours manually drawn by a radiologist and then registered on SPECT/CT and PET/CT via deformable registration (Pre-CMRI and Post-CMRI), 99mTc-MAA-SPECT and 90Y-microspheres-PET 10% threshold contouring (Pre-CSPECT and Post-CPET). The mean absorbed dose (Dm) and the minimal absorbed dose delivered to 70% of the tumor volume (D70) were evaluated with both contouring methods; the tumor-to-normal liver uptake ratio (TNR) was evaluated with MRI-based contours only. Tumor response was assessed using the mRECIST criteria on the follow-up MRIs. RESULTS No significant differences were found for Dm and TNR between pre- and post-treatment. TNR evaluated with radiologic contours (Pre-CMRI and Post-CMRI) were predictive of tumor control at 6 months on pre- and post-treatment dosimetry (OR 5.9 and 7.1, respectively; p = 0.02 and 0.01). All dose metrics determined with both methods were predictive of overall survival (OS) on pre-treatment dosimetry, but only Dm with MRI-based contours was predictive of OS on post-treatment images with a median of 23 months for patients with a supramedian Dm versus 14 months for the others (p = 0.04). CONCLUSION In advanced HCC treated with SIRT, Dm and TNR determined with radiologic contours were predictive of tumor control and OS. This study shows that a rigorous clinical workflow (radiologic contours + registration on scintigraphic images) is feasible and should be prospectively considered for improving therapeutic strategy.
Collapse
Affiliation(s)
- Guillaume Nodari
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France.
| | - Romain Popoff
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France.,ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France
| | - Jean Marc Riedinger
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France
| | - Olivier Lopez
- Department of Vascular and Interventional Radiology, University Hospital Dijon, Dijon, France
| | - Julie Pellegrinelli
- Department of Vascular and Interventional Radiology, University Hospital Dijon, Dijon, France
| | - Inna Dygai-Cochet
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France
| | | | - Benoit Presles
- ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France
| | - Olivier Chevallier
- ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France.,Department of Vascular and Interventional Radiology, University Hospital Dijon, Dijon, France
| | - Sophie Gehin
- Department of Vascular and Interventional Radiology, University Hospital Dijon, Dijon, France
| | - Matthieu Gallet
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France
| | | | - Sylvain Manfredi
- Department of Gastroenterology, University Hospital Dijon, Dijon, France
| | - Romaric Loffroy
- ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France.,Department of Vascular and Interventional Radiology, University Hospital Dijon, Dijon, France
| | - Jean Marc Vrigneaud
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France.,ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France
| | - Alexandre Cochet
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France.,ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France
| |
Collapse
|