1
|
Moon G, Nadeem M, Usiukiewicz S, Jamil M, Idrisov E, Sawh R, Weston A. Bilateral adrenal histoplasmosis presenting as adrenal mass mimicking malignancy in an immunocompetent patient. IDCases 2023; 32:e01803. [PMID: 37250375 PMCID: PMC10209802 DOI: 10.1016/j.idcr.2023.e01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
We report a case of a 78-year-old immunocompetent man who presented with worsening fatigue and lethargy for one month. He had also been complaining of cough and SOB for two months which had been attributed to his underlying COPD and possible pneumonia. CT showed bilateral pleural effusions, ground-glass opacities, cirrhosis, splenomegaly and bilateral adrenal masses which was highly suspicious for malignancy. After pheochromocytoma was ruled out, EUS-FNA guided biopsy was performed on the left adrenal gland. Histology was positive for yeast cells, with fungal staining (PAS) revealing narrow-based budding compatible with Histoplasma. The patient was treated with amphotericin and itraconazole. Our case is unique as he presented with hepatosplenomegaly, which is reported in less than a quarter of cases. Although typically a diagnosis in immunocompromised patients, a high index of clinical suspicion is required to diagnose disseminated histoplasmosis in an immunocompetent patient. The gold standard for diagnosis is fungal tissue culture. However results may take up to weeks. EUS-FNA guided biopsy of adrenal glands can aid in early definitive diagnosis and management.
Collapse
Affiliation(s)
- Gina Moon
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Oklahoma City, OK 73117, USA
| | - Mahum Nadeem
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Oklahoma City, OK 73117, USA
| | - Shana Usiukiewicz
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Oklahoma City, OK 73117, USA
| | - Mohammad Jamil
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Oklahoma City, OK 73117, USA
| | - Evgeny Idrisov
- Department of Digestive Diseases and Nutrition, Oklahoma City VA Health Care System, 921 NE 13th St, Oklahoma City, OK 73104, USA
| | - Ravindranauth Sawh
- Department of Pathology, Oklahoma City VA Health Care System, 921 NE 13th St, Oklahoma City, OK 73104, USA
| | - Allan Weston
- Department of Digestive Diseases and Nutrition, Oklahoma City VA Health Care System, 921 NE 13th St, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
PSMA PET for the Evaluation of Liver Metastases in Castration-Resistant Prostate Cancer Patients: A Multicenter Retrospective Study. Cancers (Basel) 2022; 14:cancers14225680. [PMID: 36428771 PMCID: PMC9688898 DOI: 10.3390/cancers14225680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Background: To evaluate the diagnostic performance of PSMA-PET compared to conventional imaging/liver biopsy in the detection of liver metastases in CRPC patients. Moreover, we evaluated a PSMA-PET/CT-based radiomic model able to identify liver metastases. Methods: Multicenter retrospective study enrolling patients with the following inclusion criteria: (a) proven CRPC patients, (b) PSMA-PET and conventional imaging/liver biopsy performed in a 6 months timeframe, (c) no therapy changes between PSMA-PET and conventional imaging/liver biopsy. PSMA-PET sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for liver metastases were calculated. After the extraction of radiomic features, a prediction model for liver metastases identification was developed. Results: Sixty CRPC patients were enrolled. Within 6 months before or after PSMA-PET, conventional imaging and liver biopsy identified 24/60 (40%) patients with liver metastases. PSMA-PET sensitivity, specificity, PPV, NPV, and accuracy for liver metastases were 0.58, 0.92, 0.82, 0.77, and 0.78, respectively. Either number of liver metastases and the maximum lesion diameter were significantly associated with the presence of a positive PSMA-PET (p < 0.05). On multivariate regression analysis, the radiomic feature-based model combining sphericity, and the moment of inverse difference (Idm), had an AUC of 0.807 (95% CI:0.686-0.920). Conclusion: For liver metastases assessment, [68Ga]Ga-PSMA-11-PET demonstrated moderate sensitivity while high specificity, PPV, and inter-reader agreement compared to conventional imaging/liver biopsy in CRPC patients.
Collapse
|
3
|
Li X, An C, Zhang W. Is it sufficient to evaluate metastatic bone involvement in breast cancer using SPECT/CT? A new approach of SPECT/CT-guided targeted bone marrow biopsy. BMC Cancer 2022; 22:614. [PMID: 35659208 PMCID: PMC9167511 DOI: 10.1186/s12885-022-09702-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objective
To investigate the feasibility, safety, and clinical application value of single photon emission computed tomography/computed tomography (SPECT/CT)-guided bone marrow biopsy (BMB) in breast cancer (BC) patients with suspected bone metastases (BM) and compare its diagnostic performance for detection of BM with SPECT/CT.
Methods
The records of breast cancer patients referred for bone scintigraphy (BS), SPECT/CT and SPECT/CT-guided BMB from January of 2018 to June of 2021 in our hospital were retrospectively reviewed. 49 Patients were consecutively included in this study, all 49 specimens were analyzed by pathological and immunohistochemical studies.The biopsy success rate, total examination time, biopsy operation time, complications, CT radiation dose, and pathological and immunohistochemical results were recorded. The diagnostic performance based on SPECT/CT and SPECT/CT-guided BMB were compared with pathological, immunohistochemical examinations and the results of subsequent follow-up.
Results
Bone samples of the sites with high uptake were obtained in all 49 patients under BMB. No severe postoperative complications occurred. Among all 49 cases, 34 specimens were positive for metastatic breast cancer (69%, 34/49), and positive for benign tissue in 15 cases (31%, 15/49). 1 case of 15 cases was subsequently diagnosed as metastatic breast cancer according to the follow-up result. SPECT/CT-guided BMB demonstrated significantly higher negative predictive value (NPV) when compared to SPECT/CT (p = 0.021 < 0.05). Patients with differential expression of ER, PR, and HER-2 between primary lesions and metastatic lesions accounted for 12, 17, and 5 cases, respectively, and the changing rates were 35.2% (12/34), 50% (17/34), and 14.7% (5/34), respectively. Molecular subtype changes occurred in 7 patients, accounting for 47% (16/34) of metastatic patients.
Conclusion
It is insufficient to evaluate BM in BC patients using SPECT/CT imaging. SPECT/CT-guided BMB provided significantly higher sensitivity and NPV than SPECT/CT for detection of BM in BC patients. Our research redefines a new approach which can confirm diagnosis and potential molecular subtype changes for suspected bone metastatic lesions in BC patients, which can offer important opportunities for precision treatment and improved quality of life of BC patients with BM.
Collapse
|
4
|
Tabacchi E, Nanni C, Bossert I, Maffione AM, Fanti S. Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer. NUCLEAR ONCOLOGY 2022:891-917. [DOI: 10.1007/978-3-031-05494-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Cazzato RL, Hubelé F, De Marini P, Ouvrard E, Salvadori J, Addeo P, Garnon J, Kurtz JE, Greget M, Mertz L, Goichot B, Gangi A, Imperiale A. Liver-Directed Therapy for Neuroendocrine Metastases: From Interventional Radiology to Nuclear Medicine Procedures. Cancers (Basel) 2021; 13:cancers13246368. [PMID: 34944988 PMCID: PMC8699378 DOI: 10.3390/cancers13246368] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are rare and heterogeneous epithelial tumors most commonly arising from the gastroenteropancreatic (GEP) system. GEP-NENs account for approximately 60% of all NENs, and the small intestine and pancreas represent two most common sites of primary tumor development. Approximately 80% of metastatic patients have secondary liver lesions, and in approximately 50% of patients, the liver is the only metastatic site. The therapeutic strategy depends on the degree of hepatic metastatic invasion, ranging from liver surgery or percutaneous ablation to palliative treatments to reduce both tumor volume and secretion. In patients with grade 1 and 2 NENs, locoregional nonsurgical treatments of liver metastases mainly include percutaneous ablation and endovascular treatments, targeting few or multiple hepatic metastases, respectively. In the present work, we provide a narrative review of the current knowledge on liver-directed therapy for metastasis treatment, including both interventional radiology procedures and nuclear medicine options in NEN patients, taking into account the patient clinical context and both the strengths and limitations of each modality.
Collapse
Affiliation(s)
- Roberto Luigi Cazzato
- Interventional Radiology, University Hospitals of Strasbourg, Strasbourg University, 67000 Strasbourg, France; (R.L.C.); (P.D.M.); (J.G.); (M.G.); (A.G.)
- Oncology, Institut de Cancérologie de Strasbourg Europe (ICANS), Strasbourg University, 67200 Strasbourg, France;
| | - Fabrice Hubelé
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, Strasbourg University, 67200 Strasbourg, France; (F.H.); (E.O.)
| | - Pierre De Marini
- Interventional Radiology, University Hospitals of Strasbourg, Strasbourg University, 67000 Strasbourg, France; (R.L.C.); (P.D.M.); (J.G.); (M.G.); (A.G.)
| | - Eric Ouvrard
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, Strasbourg University, 67200 Strasbourg, France; (F.H.); (E.O.)
| | - Julien Salvadori
- Radiophysics, Institut de Cancérologie de Strasbourg Europe (ICANS), 67200 Strasbourg, France;
| | - Pietro Addeo
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Hospitals of Strasbourg, 67200 Strasbourg, France;
| | - Julien Garnon
- Interventional Radiology, University Hospitals of Strasbourg, Strasbourg University, 67000 Strasbourg, France; (R.L.C.); (P.D.M.); (J.G.); (M.G.); (A.G.)
| | - Jean-Emmanuel Kurtz
- Oncology, Institut de Cancérologie de Strasbourg Europe (ICANS), Strasbourg University, 67200 Strasbourg, France;
| | - Michel Greget
- Interventional Radiology, University Hospitals of Strasbourg, Strasbourg University, 67000 Strasbourg, France; (R.L.C.); (P.D.M.); (J.G.); (M.G.); (A.G.)
| | - Luc Mertz
- Radiophysics, University Hospitals of Strasbourg, 67000 Strasbourg, France;
| | - Bernard Goichot
- Internal Medicine, Diabetes and Metabolic Disorders, University Hospitals of Strasbourg, Strasbourg University, 67200 Strasbourg, France;
| | - Afshin Gangi
- Interventional Radiology, University Hospitals of Strasbourg, Strasbourg University, 67000 Strasbourg, France; (R.L.C.); (P.D.M.); (J.G.); (M.G.); (A.G.)
- School of Biomedical Engineering and Imaging Science, King’s College London, Strand, London WC2R 2LS, UK
| | - Alessio Imperiale
- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, Strasbourg University, 67200 Strasbourg, France; (F.H.); (E.O.)
- Molecular Imaging—DRHIM, IPHC, UMR 7178, CNRS/Unistra, 67037 Strasbourg, France
- Correspondence: ; Tel.: +33-3-68-76-74-48; Fax: +33-3-68-76-72-56
| |
Collapse
|
6
|
Cerci JJ, Bogoni M, Cerci RJ, Masukawa M, Neto CCP, Krauzer C, Fanti S, Sakamoto DG, Barreiros RB, Nanni C, Vitola JV. PET/CT-Guided Biopsy of Suspected Lung Lesions Requires Less Rebiopsy Than CT-Guided Biopsy Due to Inconclusive Results. J Nucl Med 2021; 62:1057-1061. [PMID: 33384323 DOI: 10.2967/jnumed.120.252403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/04/2021] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to compare 18F-FDG PET/CT and CT performance in guiding percutaneous biopsies with histologic confirmation of lung lesions. Methods: We prospectively evaluated 341 patients, of whom 216 underwent 18F-FDG PET/CT-guided biopsy and 125 underwent CT-guided biopsy. The pathology results, lesion size, complications, and rebiopsy rate in the 2 groups were evaluated. Results: Of the 216 biopsies with PET/CT guidance, histology demonstrated 170 lesions (78.7%) to be malignant and 46 (21.3%) to be benign. In the CT-guided group, of 125 lesions, 77 (61.6%) were malignant and 48 (38.4%) were benign (P = 0.001). Inconclusive results prompted the need for a second biopsy in 18 patients: 13 of 125 (10.4%) in the CT group and 5 of 216 (2.3%) in PET group (P = 0.001). Complications were pneumothorax (13.2%), hemothorax (0.8%), and hemoptysis (0.6%). No life-threatening adverse events or fatalities were reported. The difference in complication rates between the 2 groups was not significant (P = 0.6). Malignant lesions showed a greater mean size than benign lesions regardless of the group (P = 0.015). Conclusion: PET/CT-guided biopsy of lung lesions led to fewer inconclusive biopsies than CT-guided biopsy, with similar complication rates.
Collapse
Affiliation(s)
- Juliano J Cerci
- PET/CT Department, Quanta Diagnóstico e Terapia, Curitiba, Brazil;
| | - Mateos Bogoni
- PET/CT Department, Quanta Diagnóstico e Terapia, Curitiba, Brazil
| | - Rodrigo J Cerci
- PET/CT Department, Quanta Diagnóstico e Terapia, Curitiba, Brazil
| | | | - Carlos C P Neto
- PET/CT Department, Quanta Diagnóstico e Terapia, Curitiba, Brazil
| | - Cassiano Krauzer
- PET/CT Department, Quanta Diagnóstico e Terapia, Curitiba, Brazil
| | - Stefano Fanti
- Nuclear Medicine Department, University Hospital S. Orsola-Malpighi, Bologna, Italy
| | | | - Renan B Barreiros
- Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil
| | - Cristina Nanni
- Nuclear Medicine Department, University Hospital S. Orsola-Malpighi, Bologna, Italy
| | - João V Vitola
- PET/CT Department, Quanta Diagnóstico e Terapia, Curitiba, Brazil
| |
Collapse
|
7
|
Broccoli A, Nanni C, Cappelli A, Bacci F, Gasbarrini A, Tabacchi E, Piovani C, Argnani L, Ghermandi R, Sabattini E, Golfieri R, Fanti S, Zinzani PL. Diagnostic accuracy of positron emission tomography/computed tomography-driven biopsy for the diagnosis of lymphoma. Eur J Nucl Med Mol Imaging 2020; 47:3058-3065. [PMID: 32556484 PMCID: PMC7680329 DOI: 10.1007/s00259-020-04913-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Abstract
Introduction Biopsy of affected tissue is required for lymphoma diagnosis and to plan treatment. Open incisional biopsy is traditionally the method of choice. Nevertheless, it requires hospitalization, availability of an operating room, and sometimes general anesthesia, and it is associated with several drawbacks. Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) can be potentially used to drive biopsy to the most metabolically active area within a lymph node or extranodal masses. Methods A study of diagnostic accuracy was conducted to assess the performance of a PET-driven needle biopsy in patients with suspect active lymphoma. Results Overall, 99 procedures have been performed: three (3.0%) were interrupted because of pain but were successfully repeated in two cases. Median SUVmax of target lesions was 10.7. In 84/96 cases, the tissue was considered adequate to formulate a diagnosis (diagnostic yield of 87.5%) and to guide the following clinical decision. The target specimen was a lymph node in 60 cases and an extranodal site in 36. No serious adverse events occurred. The sensitivity of this procedure was 96%, with a specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 75%. Conclusion Patients can benefit from a minimally invasive procedure which allows a timely and accurate diagnosis of lymphoma at onset or relapse.
Collapse
Affiliation(s)
- Alessandro Broccoli
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, Medicina Nucleare Metropolitana, Sant'Orsola-Malpighi Hospital, University of Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Alberta Cappelli
- Radiology Unit, Sant'Orsola-Malpighi Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Francesco Bacci
- Haematopathology Unit, Sant'Orsola-Malpighi Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Alessandro Gasbarrini
- Oncological and Degenerative Spine Surgery, Institute of Orthopaedics "Rizzoli", via Pupilli 1, 40136, Bologna, Italy
| | - Elena Tabacchi
- Nuclear Medicine, Medicina Nucleare Metropolitana, Sant'Orsola-Malpighi Hospital, University of Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Carlo Piovani
- Oncological and Degenerative Spine Surgery, Institute of Orthopaedics "Rizzoli", via Pupilli 1, 40136, Bologna, Italy
| | - Lisa Argnani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Riccardo Ghermandi
- Oncological and Degenerative Spine Surgery, Institute of Orthopaedics "Rizzoli", via Pupilli 1, 40136, Bologna, Italy
| | - Elena Sabattini
- Haematopathology Unit, Sant'Orsola-Malpighi Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Rita Golfieri
- Radiology Unit, Sant'Orsola-Malpighi Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Medicina Nucleare Metropolitana, Sant'Orsola-Malpighi Hospital, University of Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Pier Luigi Zinzani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, via Massarenti 9, 40138, Bologna, Italy.
| |
Collapse
|
8
|
Hu EY, Levesque VM, Bay CP, Seol JG, Shyn PB. Liver Tumor Ablation Procedure Duration and Estimated Patient Radiation Dose: Comparing Positron Emission Tomography/CT and CT Guidance. J Vasc Interv Radiol 2020; 31:1052-1059. [PMID: 32534979 DOI: 10.1016/j.jvir.2019.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/12/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To compare procedure duration and patient radiation dose in positron emission tomography/computed tomography (PET/CT) and CT-guided liver tumor ablation procedures. MATERIALS AND METHODS In this retrospective, case-control study, 275 patients underwent 368 image-guided ablation procedures to treat 537 tumors. Radiologists used PET/CT guidance for 117 procedures and CT guidance for 251 procedures. PET/CT-guided procedures were performed by one radiologist (C: P.B.S.). All 3 radiologists (A: J.G.S., B: a radiologist who is not an author on this article, and C: P.B.S.) performed CT-guided procedures. Potential confounders included patient demographics, clinical and tumor characteristics, and procedural variables. RESULTS The mean duration and estimated patient radiation dose of PET/CT-guided procedures performed by radiologist C were 21.5 ± 4.9 minutes longer and 0.7 ± 2.8 mSv higher than CT-guided procedures performed by all radiologists in an unadjusted comparison. Adjusting for confounding, mean duration and estimated dose of PET/CT-guided procedures performed by radiologist C were 28.3 ± 3.8 minutes longer (P < .0001) and 6.2 ± 2.9 mSv higher (P = .03) than CT-guided procedures performed by the same radiologist. Comparing CT-guided procedures performed by all 3 radiologists, adjusted mean durations and estimated patient doses of procedures by the least experienced radiologist, radiologist A, and the second most experienced radiologist, radiologist B, were 24.2 ± 5.1 (P < .0001) and 18.1 ± 8.9 (P = .04) minutes longer and 13.1 ± 3.7 (P < .001) and 14.5 ± 6.4 (P = .02) mSv higher, respectively, than procedures performed by the most experienced radiologist, radiologist C. CONCLUSIONS PET/CT-guided liver ablations had a slightly longer duration with slightly higher estimated patient radiation dose than similar CT-guided liver ablations. Procedure duration and patient dose do not appear to be major impediments to the emerging field of PET/CT-guided tumor ablation.
Collapse
Affiliation(s)
- Emmy Y Hu
- Department of Radiology, Division of Abdominal Imaging and Intervention, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Vincent M Levesque
- Department of Radiology, Division of Abdominal Imaging and Intervention, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Camden P Bay
- Department of Radiology, Division of Abdominal Imaging and Intervention, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Julia G Seol
- Department of Radiology, Division of Abdominal Imaging and Intervention, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Paul B Shyn
- Department of Radiology, Division of Abdominal Imaging and Intervention, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115.
| |
Collapse
|
9
|
Zhao Z, Jordan S, Tse ZTH. Devices for image-guided lung interventions: State-of-the-art review. Proc Inst Mech Eng H 2019; 233:444-463. [DOI: 10.1177/0954411919832042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer-related death. According to the American Cancer Society, there were an estimated 222,500 new cases of lung cancer and 155,870 deaths from lung cancer in the United States in 2017. Accurate localization in lung interventions is one of the keys to reducing the death rate from lung cancer. In this study, a total of 217 publications from 2006 to 2017 about designs of medical devices for localization in lung interventions were screened, shortlisted, and categorized by localization principle and reviewed for functionality. Each study was analyzed for engineering characteristics and clinical significance. Research regarding interventional imaging equipment, navigation systems, and surgical devices was reviewed, and both research prototypes and commercial products were discussed. Finally, the future directions and existing challenges were summarized, including real-time intra-procedure guidance, accuracy of localization, clinical application, clinical adoptability, and clinical regulatory issues.
Collapse
Affiliation(s)
- Zhuo Zhao
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Sophie Jordan
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Zion Tsz Ho Tse
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- 3T Technologies LLC, Atlanta, GA, USA
| |
Collapse
|
10
|
Post-therapy lesions in patients with non-Hodgkin's lymphoma characterized by 18F-FDG PET/CT-guided biopsy using automated robotic biopsy arm. Nucl Med Commun 2018; 39:74-82. [PMID: 29189443 DOI: 10.1097/mnm.0000000000000780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE The aim of this study was to analyse the positive predictive value (PPV) of post-therapy fluorine-18-fluorodeoxyglucose (F-FDG) PET/CT performed for response or recurrence evaluation in patients with non-Hodgkin's lymphoma (NHL) and to appraise the diagnostic utility of F-FDG PET/CT-guided biopsy in this setting. PATIENTS AND METHODS A total of 17 patients with NHL showing F-FDG avid lesions in F-FDG PET/CT performed for response or recurrence assessment underwent F-FDG PET/CT-guided biopsy using automated robotic biopsy arm needle navigation technique. The objectives were analysed in reference to histopathology. RESULTS In all, 15 of the 17 (88.5%) procedures yielded adequate representative tissue samples. Nine out of 15 lesions were positive for residual disease and the remaining revealed benign findings on histopathology. One patient with inconclusive biopsy underwent surgical resection and histopathology confirmed the presence of residual disease. PPV of theF-FDG PET/CT was observed to be 62.5% (10/16). CONCLUSION F-FDG PET/CT for response evaluation in NHL possesses a low PPV and hence warrants histopathological correlation when F-FDG PET/CT findings influence management decision. Diagnostic yield of F-FDG PET/CT-guided biopsy is high and has the potential to reduce sampling errors.
Collapse
|
11
|
Kirov AS, Fanchon LM, Seiter D, Czmielewski C, Russell J, Dogan S, Carlin S, Pinker-Domenig K, Yorke E, Schmidtlein CR, Boyko V, Fujisawa S, Manova-Todorova K, Zanzonico P, Dauer L, Deasy JO, Humm JL, Solomon S. Technical Note: Scintillation well counters and particle counting digital autoradiography devices can be used to detect activities associated with genomic profiling adequacy of biopsy specimens obtained after a low activity 18 F-FDG injection. Med Phys 2018; 45:2179-2185. [PMID: 29480927 DOI: 10.1002/mp.12836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Genomic profiling of biopsied tissue is the basis for precision cancer therapy. However, biopsied materials may not contain sufficient amounts of tumor deoxyribonucleonic acid needed for the analysis. We propose a method to determine the adequacy of specimens for performing genomic profiling by quantifying their metabolic activity. METHODS We estimated the average density of tumor cells in biopsy specimens needed to successfully perform genomic analysis following the Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) protocol from the minimum amount of deoxyribonucleonic acid needed and the volume of tissue typically used for analysis. The average 18 F-FDG uptake per cell was assessed by incubating HT-29 adenocarcinoma tumor cells in 18 F-FDG containing solution and then measuring their activity with a scintillation well counter. Consequently, we evaluated the response of two devices around the minimum expected activities which would indicate genomic profiling adequacy of biopsy specimens obtained under 18 F-FDG PET/CT guidance. Surrogate samples obtained using 18G core needle biopsies of gels containing either 18 F-FDG-loaded cells in the expected concentrations or the corresponding activity were measured using autoradiography and a scintillation well counter. Autoradiography was performed using a CCD-based device with real-time image display as well as with digital autoradiography imaging plates following a 30-min off-line protocol for specimen activity determination against previously established calibration. RESULTS Cell incubation experiments and estimates obtained from quantitative autoradiography of biopsy specimens (QABS) indicate that specimens acquired under 18 F-FDG PET/CT guidance that contained the minimum amount of cells needed for genomic profiling would have an average activity concentration in the range of about 3 to about 9 kBq/mL. When exposed to specimens with similar activity concentration, both a CCD-based autoradiography device and a scintillation well counter produced signals with sufficient signal-to-background ratio for specimen genomic adequacy identification in less than 10 min, which is short enough to allow procedure guidance. CONCLUSION Scintillation well counter measurements and CCD-based autoradiography have adequate sensitivity to detect the tumor burden needed for genomic profiling during 18 F-FDG PET/CT-guided 18G core needle biopsies of liver adenocarcinoma metastases.
Collapse
Affiliation(s)
- Assen S Kirov
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Louise M Fanchon
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Christian Czmielewski
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - James Russell
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Sean Carlin
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katja Pinker-Domenig
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - C Ross Schmidtlein
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Vitaly Boyko
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Sho Fujisawa
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Katia Manova-Todorova
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Lawrence Dauer
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - John L Humm
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Stephen Solomon
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
12
|
A novel stereotactic frame for real PET-guided biopsies: A preclinical proof-of-concept. Phys Med 2017; 41:124-128. [DOI: 10.1016/j.ejmp.2017.05.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
|
13
|
Fanchon LM, Apte A, Schmidtlein CR, Yorke E, Hu YC, Dogan S, Hatt M, Visvikis D, Humm JL, Solomon SB, Kirov AS. Evaluation of the tumor registration error in biopsy procedures performed under real-time PET/CT guidance. Med Phys 2017; 44:5089-5095. [PMID: 28494089 DOI: 10.1002/mp.12334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The purpose of this study is to quantify tumor displacement during real-time PET/CT guided biopsy and to investigate correlations between tumor displacement and false-negative results. METHODS 19 patients who underwent real-time 18 F-FDG PET-guided biopsy and were found positive for malignancy were included in this study under IRB approval. PET/CT images were acquired for all patients within minutes prior to biopsy to visualize the FDG-avid region and plan the needle insertion. The biopsy needle was inserted and a post-insertion CT scan was acquired. The two CT scans acquired before and after needle insertion were registered using a deformable image registration (DIR) algorithm. The DIR deformation vector field (DVF) was used to calculate the mean displacement between the pre-insertion and post-insertion CT scans for a region around the tip of the biopsy needle. For 12 patients one biopsy core from each was tracked during histopathological testing to investigate correlations of the mean displacement between the two CT scans and false-negative or true-positive biopsy results. For 11 patients, two PET scans were acquired; one at the beginning of the procedure, pre-needle insertion, and an additional one with the needle in place. The pre-insertion PET scan was corrected for intraprocedural motion by applying the DVF. The corrected PET was compared with the post-needle insertion PET to validate the correction method. RESULTS The mean displacement of tissue around the needle between the pre-biopsy CT and the postneedle insertion CT was 5.1 mm (min = 1.1 mm, max = 10.9 mm and SD = 3.0 mm). For mean displacements larger than 7.2 mm, the biopsy cores gave false-negative results. Correcting pre-biopsy PET using the DVF improved the PET/CT registration in 8 of 11 cases. CONCLUSIONS The DVF obtained from DIR of the CT scans can be used for evaluation and correction of the error in needle placement with respect to the FDG-avid area. Misregistration between the pre-biopsy PET and the CT acquired with the needle in place was shown to correlate with false negative biopsy results.
Collapse
Affiliation(s)
- Louise M Fanchon
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Adytia Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - C Ross Schmidtlein
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yu-Chi Hu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mathieu Hatt
- INSERM, UMR 1101, LaTIM, IBRBS, UBO, Brest, France
| | | | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Stephen B Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Assen S Kirov
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
14
|
Initial experience with real-time hybrid single-photon emission computed tomography/computed tomography-guided percutaneous transthoracic needle biopsy. Nucl Med Commun 2017; 38:556-560. [DOI: 10.1097/mnm.0000000000000675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Shyn P, Tremblay-Paquet S, Palmer K, Tatli S, Tuncali K, Olubiyi O, Hata N, Silverman S. Breath-hold PET/CT-guided tumour ablation under general anaesthesia: accuracy of tumour image registration and projected ablation zone overlap. Clin Radiol 2017; 72:223-229. [DOI: 10.1016/j.crad.2016.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/16/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022]
|
16
|
Correlation of PET/CT and Image-Guided Biopsies of Pediatric Malignancies. AJR Am J Roentgenol 2017; 208:656-662. [DOI: 10.2214/ajr.15.15914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Imperiale A, Deroose CM, Hindié E, Goichot B. Radionuclide Imaging of Gastrointestinal Neuroendocrine Tumors. DIAGNOSTIC AND THERAPEUTIC NUCLEAR MEDICINE FOR NEUROENDOCRINE TUMORS 2017:321-349. [DOI: 10.1007/978-3-319-46038-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Tabacchi E, Nanni C, Bossert I, Maffione AM, Fanti S. Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer. NUCLEAR ONCOLOGY 2017:749-775. [DOI: 10.1007/978-3-319-26236-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Harmon SA, Tuite MJ, Jeraj R. Molecular image-directed biopsies: improving clinical biopsy selection in patients with multiple tumors. Phys Med Biol 2016; 61:7282-7299. [PMID: 27694707 DOI: 10.1088/0031-9155/61/20/7282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Site selection for image-guided biopsies in patients with multiple lesions is typically based on clinical feasibility and physician preference. This study outlines the development of a selection algorithm that, in addition to clinical requirements, incorporates quantitative imaging data for automatic identification of candidate lesions for biopsy. The algorithm is designed to rank potential targets by maximizing a lesion-specific score, incorporating various criteria separated into two categories: (1) physician-feasibility category including physician-preferred lesion location and absolute volume scores, and (2) imaging-based category including various modality and application-specific metrics. This platform was benchmarked in two clinical scenarios, a pre-treatment setting and response-based setting using imaging from metastatic prostate cancer patients with high disease burden (multiple lesions) undergoing conventional treatment and receiving whole-body [18F]NaF PET/CT scans pre- and mid-treatment. Targeting of metastatic lesions was robust to different weighting ratios and candidacy for biopsy was physician confirmed. Lesion ranked as top targets for biopsy remained so for all patients in pre-treatment and post-treatment biopsy selection after sensitivity testing was completed for physician-biased or imaging-biased scenarios. After identifying candidates, biopsy feasibility was evaluated by a physician and confirmed for 90% (32/36) of high-ranking lesions, of which all top choices were confirmed. The remaining cases represented lesions with high anatomical difficulty for targeting, such as proximity to sciatic nerve. This newly developed selection method was successfully used to quantitatively identify candidate lesions for biopsies in patients with multiple lesions. In a prospective study, we were able to successfully plan, develop, and implement this technique for the selection of a pre-treatment biopsy location.
Collapse
Affiliation(s)
- Stephanie A Harmon
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 7033 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | | | | |
Collapse
|
20
|
Kalathoorakath RR, Sharma A, Sood A, Nahar U, Gorla AKR, Mittal BR. 18F-FDG PET/CT imaging and PET-guided biopsy in evaluation and treatment decision in adrenal histoplasmosis. BJR Case Rep 2016; 2:20150451. [PMID: 30459990 PMCID: PMC6243334 DOI: 10.1259/bjrcr.20150451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 11/28/2022] Open
Abstract
Histoplasmosis is a rare opportunistic fungal infection. It is commonly seen in immunocompromised individuals from endemic areas. Adrenal glands are frequently involved in the disseminated disease. Here, we present the case of a retropositive patient with constitutional symptoms, where whole-body positron emission tomography/CT scan revealed intense 18F-fludeoxyglucose uptake in bulky adrenal glands, and subsequent positron emission tomography-guided biopsy helped in establishing the diagnosis of adrenal histoplasmosis.
Collapse
Affiliation(s)
| | - Aman Sharma
- Department of Internal Medicine, PGIMER, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, PGIMER, Chandigarh, India
| | - Uma Nahar
- Department of Histopathology, PGIMER, Chandigarh, India
| | | | | |
Collapse
|
21
|
Abstract
PET can be used to guide percutaneous needle biopsy to the most metabolic lesion, improving diagnostic yield. PET biopsy guidance can be performed using visual or software coregistration, electromagnetic needle tracking, cone-beam computed tomography (CT), and intraprocedural PET/CT guidance. PET/CT-guided biopsies allow the sampling of lesions that may not be clearly visible on anatomic imaging, or of lesions that are morphologically normal. PET can identify suspicious locations within complex tumors that are most likely to contain important diagnostic and prognostic information.
Collapse
Affiliation(s)
- Ghassan El-Haddad
- Division of Interventional Radiology, Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612-9416, USA.
| |
Collapse
|
22
|
Kato S, Gasbarrini A, Ghermandi R, Gambarotti M, Bandiera S. Spinal chordomas dedifferentiated to osteosarcoma: a report of two cases and a literature review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 25 Suppl 1:251-6. [DOI: 10.1007/s00586-016-4557-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 11/24/2022]
|
23
|
|
24
|
Abstract
PET/computed tomography (CT) combines the anatomic information from CT with PET metabolic characterization. 18F-fluorodeoxyglucose (FDG) PET is helpful to differentiate malignant lesions from benign ones, that usually show lower or no uptake. However, active inflammation or infectious disease might also present FDG uptake. Studies confirm the great value of PET/CT as the imaging method of choice for guiding biopsy procedures. Novel PET radiopharmaceuticals are also being investigated for guiding biopsies.
Collapse
|
25
|
Paparo F, Piccazzo R, Cevasco L, Piccardo A, Pinna F, Belli F, Bacigalupo L, Biscaldi E, De Caro G, Rollandi GA. Advantages of percutaneous abdominal biopsy under PET-CT/ultrasound fusion imaging guidance: a pictorial essay. ACTA ACUST UNITED AC 2015; 39:1102-13. [PMID: 24777592 DOI: 10.1007/s00261-014-0143-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Positron emission tomography (PET) is a functional imaging technique that can investigate the metabolic characteristics of tissues. Currently, PET images are acquired and co-registered with a computed tomography (CT) scan (PET-CT), which is employed for correction of attenuation and anatomical localization. In spite of the high negative predictive value of PET, false-positive results may occur; indeed, Fluorine 18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) uptake is not specific to cancer. As (18)F-FDG uptake may also be seen in non-malignant infectious or inflammatory processes, FDG-avid lesions may necessitate biopsy to confirm or rule out malignancy. However, some PET-positive lesions may have little or no correlative ultrasound (US) and/or CT findings (i.e., low conspicuity on morphological imaging). Since it is not possible to perform biopsy under PET guidance alone, owing to intrinsic technical limitations, PET information has to be integrated into a CT- or US-guided biopsy procedure (multimodal US/PET-CT fusion imaging). The purpose of this pictorial essay is to describe the technique of multimodal imaging fusion between real-time US and PET/CT, and to provide an overview of the clinical settings in which this multimodal integration may be useful in guiding biopsy procedures in PET-positive abdominal lesions.
Collapse
Affiliation(s)
- Francesco Paparo
- Department of Radiology, E.O. Ospedali Galliera, Mura della Cappuccine 14, 16128, Genoa, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Simultaneous 18F-FDOPA PET/CT-Guided Biopsy and Radiofrequency Ablation of Recurrent Neuroendocrine Hepatic Metastasis. Clin Nucl Med 2015; 40:e334-5. [DOI: 10.1097/rlu.0000000000000765] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Povoski SP, Hall NC, Murrey DA, Wright CL, Martin EW. Feasibility of a multimodal (18)F-FDG-directed lymph node surgical excisional biopsy approach for appropriate diagnostic tissue sampling in patients with suspected lymphoma. BMC Cancer 2015; 15:378. [PMID: 25953144 PMCID: PMC4426183 DOI: 10.1186/s12885-015-1381-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/28/2015] [Indexed: 11/22/2022] Open
Abstract
Background 18F-FDG PET/CT imaging is widely utilized in the clinical evaluation of patients with suspected or documented lymphoma. The aim was to describe our cumulative experience with a multimodal 18F-FDG-directed lymph node surgical excisional biopsy approach in patients with suspected lymphoma. Methods Thirteen patients (mean age 51 (±16;22–76) years), with suspected new or suspected recurrent lymphoma suggested by 18F-FDG-avid lesions seen on prior diagnostic whole-body PET/CT imaging, were injected IV with 18F-FDG prior to undergoing same-day diagnostic lymph node surgical excisional biopsy in the operating room. Various 18F-FDG detection strategies were used on the day of surgery, including, (1) same-day pre-resection patient PET/CT; (2) intraoperative gamma probe assessment; (3) clinical scanner specimen PET/CT imaging of whole surgically excised tissue specimens; (4) specimen gamma well counts; and/or (5) same-day post-resection patient PET/CT. Results Same-day 18F-FDG injection dose was 14.8 (±2.4;12.5-20.6) millicuries or 548 (±89;463–762) megabecquerels. Sites of 18F-FDG-avid lesions were 4 inguinal, 3 cervical, 3 abdominal/retroperitoneal, 2 axillary, and 1 gluteal region subcutaneous tissue. Same-day pre-resection patient PET/CT was performed on 6 patients. Intraoperative gamma probe assessment was performed on 13 patients. Clinical scanner PET/CT imaging of whole surgically excised tissue specimens was performed in 10 cases. Specimen gamma well counts were performed in 6 cases. Same-day post-resection patient PET/CT imaging was performed on 8 patients. Time from 18F-FDG injection to same-day pre-resection patient PET/CT, intraoperative gamma probe assessment, and same-day post-resection patient PET/CT were 76 (±8;64–84), 240 (±63;168–304), and 487 (±104;331–599) minutes, respectively. Time from 18F-FDG injection to clinical scanner PET/CT of whole surgically excised tissue specimens was 363 (±60;272–446) minutes. Time from 18F-FDG injection to specimen gamma well counts was 591 (±96;420–689) minutes. Intraoperative gamma probe assessment successfully identified 18F-FDG-avid lesions in 12/13 patients. Histopathologic evaluation confirmed lymphoma in 12/13 patients and benign disease in 1/13 patients. Conclusions A multimodal approach to 18F-FDG-directed lymph node surgical excisional biopsy for suspected lymphoma is technically feasible for guiding appropriate diagnostic tissue sampling of lymph nodes seen as 18F-FDG-avid lesions on diagnostic 18F-FDG PET/CT imaging.
Collapse
Affiliation(s)
- Stephen P Povoski
- Division of Surgical Oncology, Department of Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Nathan C Hall
- Division of Molecular Imaging and Nuclear Medicine, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA. .,Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Douglas A Murrey
- Division of Molecular Imaging and Nuclear Medicine, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Chadwick L Wright
- Division of Molecular Imaging and Nuclear Medicine, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Edward W Martin
- Division of Surgical Oncology, Department of Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
28
|
Fanchon LM, Dogan S, Moreira AL, Carlin SA, Schmidtlein CR, Yorke E, Apte AP, Burger IA, Durack JC, Erinjeri JP, Maybody M, Schöder H, Siegelbaum RH, Sofocleous CT, Deasy JO, Solomon SB, Humm JL, Kirov AS. Feasibility of in situ, high-resolution correlation of tracer uptake with histopathology by quantitative autoradiography of biopsy specimens obtained under 18F-FDG PET/CT guidance. J Nucl Med 2015; 56:538-44. [PMID: 25722446 DOI: 10.2967/jnumed.114.148668] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/26/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Core biopsies obtained using PET/CT guidance contain bound radiotracer and therefore provide information about tracer uptake in situ. Our goal was to develop a method for quantitative autoradiography of biopsy specimens (QABS), to use this method to correlate (18)F-FDG tracer uptake in situ with histopathology findings, and to briefly discuss its potential application. METHODS Twenty-seven patients referred for a PET/CT-guided biopsy of (18)F-FDG-avid primary or metastatic lesions in different locations consented to participate in this institutional review board-approved study, which complied with the Health Insurance Portability and Accountability Act. Autoradiography of biopsy specimens obtained using 5 types of needles was performed immediately after extraction. The response of autoradiography imaging plates was calibrated using dummy specimens with known activity obtained using 2 core-biopsy needle sizes. The calibration curves were used to quantify the activity along biopsy specimens obtained with these 2 needles and to calculate the standardized uptake value, SUVARG. Autoradiography images were correlated with histopathologic findings and fused with PET/CT images demonstrating the position of the biopsy needle within the lesion. Logistic regression analysis was performed to search for an SUVARG threshold distinguishing benign from malignant tissue in liver biopsy specimens. Pearson correlation between SUVARG of the whole biopsy specimen and average SUVPET over the voxels intersected by the needle in the fused PET/CT image was calculated. RESULTS Activity concentrations were obtained using autoradiography for 20 specimens extracted with 18- and 20-gauge needles. The probability of finding malignancy in a specimen is greater than 50% (95% confidence) if SUVARG is greater than 7.3. For core specimens with preserved shape and orientation and in the absence of motion, one can achieve autoradiography, CT, and PET image registration with spatial accuracy better than 2 mm. The correlation coefficient between the mean specimen SUVARG and SUVPET was 0.66. CONCLUSION Performing QABS on core-biopsy specimens obtained using PET/CT guidance enables in situ correlation of (18)F-FDG tracer uptake and histopathology on a millimeter scale. QABS promises to provide useful information for guiding interventional radiology procedures and localized therapies and for in situ high-spatial-resolution validation of radiopharmaceutical uptake.
Collapse
Affiliation(s)
- Louise M Fanchon
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York INSERM, UMR1101, LaTIM, Brest, France
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Andre L Moreira
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Sean A Carlin
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; and
| | - C Ross Schmidtlein
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Aditya P Apte
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital, Zurich, Switzerland
| | - Jeremy C Durack
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; and
| | - Joseph P Erinjeri
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; and
| | - Majid Maybody
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; and
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; and
| | - Robert H Siegelbaum
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; and
| | | | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Stephen B Solomon
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; and
| | - John L Humm
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Assen S Kirov
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
29
|
Nanni C, Gasbarrini A, Cappelli A, Sandler I, Graziani T, Guidalotti P, Golfieri R, Boriani S, Fanti S. FDG PET/CT for bone and soft-tissue biopsy. Eur J Nucl Med Mol Imaging 2015; 42:1333-4. [DOI: 10.1007/s00259-015-3017-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 11/25/2022]
|
30
|
Guralnik L, Rozenberg R, Frenkel A, Israel O, Keidar Z. Metabolic PET/CT-Guided Lung Lesion Biopsies: Impact on Diagnostic Accuracy and Rate of Sampling Error. J Nucl Med 2015; 56:518-22. [DOI: 10.2967/jnumed.113.131466] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/13/2015] [Indexed: 11/16/2022] Open
|
31
|
Aparici CM, Aslam R, Win AZ. Initial Experience of Utilizing Real-Time Intra-Procedural PET/CT Biopsy. J Clin Imaging Sci 2014; 4:54. [PMID: 25337440 PMCID: PMC4204304 DOI: 10.4103/2156-7514.141941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/24/2014] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Nonreal-time Positron Emission Tomography/Computed Tomography (PET/CT) biopsies that use the image co-registration of a prior PET with an intra-procedural CT have been reported. The aim of this study was to report the initial experience of performing real-time intra-procedural PET/CT-guided biopsies. MATERIALS AND METHODS All patients (n = 4) had a prior PET/CT examination of the concerning lesion and no significant CT correlate. On the day of the biopsy, 5 mCi of 18F-fluorodeoxyglucose (FDG) or NaF18 was intravenously injected. After 60 min of biodistribution of the molecular probe, PET/CT images were obtained in a limited one bed position over the region of the concerning lesion to be biopsied. RESULTS One patient had a mesenteric mass and the other three had bone lesions, one located in the rib and two in the iliac bone. The pathology report revealed that two lesions (50%) were malignant and two lesions (50%) were benign. The results of the biopsy changed management in all cases. There was 0% complication rate. CONCLUSIONS No additional software or hardware is required to perform real-time intra-procedural PET/CT-guided biopsies. It can optimize the yield, especially in cases where there are no anatomical abnormalities. Real-time intra-procedural PET/CT biopsy may have benefits over conventional biopsy techniques in terms of accuracy.
Collapse
Affiliation(s)
- Carina Mari Aparici
- Department of Radiology, University California San Francisco, California, USA
| | - Rizwan Aslam
- Department of Radiology, University California San Francisco, California, USA
| | - Aung Zaw Win
- San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
32
|
|
33
|
Povoski SP, Murrey DA, Smith SM, Martin EW, Hall NC. 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals derived from a single-institution 18F-FDG-directed surgery experience: feasibility and quantification of 18F-FDG accumulation within 18F-FDG-avid lesions and background tissues. BMC Cancer 2014; 14:453. [PMID: 24942656 PMCID: PMC4075626 DOI: 10.1186/1471-2407-14-453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/13/2014] [Indexed: 12/31/2022] Open
Abstract
Background 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality for a wide variety of solid malignancies. Currently, only limited data exists regarding the utility of PET/CT imaging at very extended injection-to-scan acquisition times. The current retrospective data analysis assessed the feasibility and quantification of diagnostic 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals. Methods 18F-FDG-avid lesions (not surgically manipulated or altered during 18F-FDG-directed surgery, and visualized both on preoperative and postoperative 18F-FDG PET/CT imaging) and corresponding background tissues were assessed for 18F-FDG accumulation on same-day preoperative and postoperative 18F-FDG PET/CT imaging. Multiple patient variables and 18F-FDG-avid lesion variables were examined. Results For the 32 18F-FDG-avid lesions making up the final 18F-FDG-avid lesion data set (from among 7 patients), the mean injection-to-scan times of the preoperative and postoperative 18F-FDG PET/CT scans were 73 (±3, 70-78) and 530 (±79, 413-739) minutes, respectively (P < 0.001). The preoperative and postoperative mean 18F-FDG-avid lesion SUVmax values were 7.7 (±4.0, 3.6-19.5) and 11.3 (±6.0, 4.1-29.2), respectively (P < 0.001). The preoperative and postoperative mean background SUVmax values were 2.3 (±0.6, 1.0-3.2) and 2.1 (±0.6, 1.0-3.3), respectively (P = 0.017). The preoperative and postoperative mean lesion-to-background SUVmax ratios were 3.7 (±2.3, 1.5-9.8) and 5.8 (±3.6, 1.6-16.2), respectively, (P < 0.001). Conclusions 18F-FDG PET/CT oncologic imaging can be successfully performed at extended injection-to-scan acquisition time intervals of up to approximately 5 half-lives for 18F-FDG while maintaining good/adequate diagnostic image quality. The resultant increase in the 18F-FDG-avid lesion SUVmax values, decreased background SUVmax values, and increased lesion-to-background SUVmax ratios seen from preoperative to postoperative 18F-FDG PET/CT imaging have great potential for allowing for the integrated, real-time use of 18F-FDG PET/CT imaging in conjunction with 18F-FDG-directed interventional radiology biopsy and ablation procedures and 18F-FDG-directed surgical procedures, as well as have far-reaching impact on potentially re-shaping future thinking regarding the “most optimal” injection-to-scan acquisition time interval for all routine diagnostic 18F-FDG PET/CT oncologic imaging.
Collapse
Affiliation(s)
- Stephen P Povoski
- Division of Surgical Oncology, Department of Surgery, Arthur G, James Cancer Hospital and Richard J, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
34
|
Radiopharmaceuticals in the evaluation and treatment of liver lesions. Clin Transl Imaging 2014. [DOI: 10.1007/s40336-014-0060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
|
36
|
Guimarães MD, Marchiori E, Hochhegger B, Chojniak R, Gross JL. CT-guided biopsy of lung lesions: defining the best needle option for a specific diagnosis. Clinics (Sao Paulo) 2014; 69:335-40. [PMID: 24838899 PMCID: PMC4012240 DOI: 10.6061/clinics/2014(05)07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/23/2013] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES To evaluate the performance of fine and cutting needles in computed tomography guided-biopsy of lung lesions suspicious for malignancy and to determine which technique is the best option for a specific diagnosis. METHODS This retrospective study reviewed the data from 362 (71.6%) patients who underwent fine-needle aspiration biopsy and from 97 (19.7%) patients who underwent cutting-needle biopsy between January 2006 and December 2011. The data concerning demographic and lesion characteristics, procedures, biopsy sample adequacy, specific diagnoses, and complications were collected. The success and complication rates of both biopsy techniques were calculated. RESULTS Cutting-needle biopsy yielded significantly higher percentages of adequate biopsy samples and specific diagnoses than did fine-needle aspiration biopsy (p<0.05). The sensitivity, specificity, and accuracy of cutting-needle biopsy were 93.8%, 97.3%, and 95.2%, respectively; those of fine-needle aspiration biopsy were 82.6%, 81.3%, and 81.8%, respectively (all p<0.05). The incidence of pneumothorax was higher for fine-needle aspiration biopsy, and that of hematoma was higher for cutting-needle biopsy (both p<0.05). CONCLUSIONS Our experience using these two techniques for computed tomography-guided percutaneous biopsy showed that cutting-needle biopsy yielded better results than did fine-needle aspiration biopsy and that there was no significant increase in complication rates to indicate the best option for specific diagnoses.
Collapse
Affiliation(s)
| | - Edson Marchiori
- Department of Radiology, Universidade Federal do Rio de Janeiro, Petrópolis, RJ, Brazil
| | - Bruno Hochhegger
- Department of Radiology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rubens Chojniak
- AC Camargo Cancer Center, Department of Imaging, São Paulo, SP, Brazil
| | | |
Collapse
|
37
|
Yokoyama K, Ikeda O, Kawanaka K, Nakasone Y, Tamura Y, Inoue S, Sakamoto F, Yoshida M, Shiraishi S, Yamashita Y. Comparison of CT-guided percutaneous biopsy with and without registration of prior PET/CT images to diagnose mediastinal tumors. Cardiovasc Intervent Radiol 2013; 37:1306-11. [PMID: 24263776 DOI: 10.1007/s00270-013-0793-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 09/01/2013] [Indexed: 11/27/2022]
Abstract
PURPOSE To compare computed tomography (CT)-guided percutaneous biopsy with and without registration of prior positron emission tomography (PET)/CT images in the diagnosis of mediastinal tumors. METHODS We performed clinically indicated percutaneous biopsy in 106 patients with mediastinal tumors in the anterior (n = 61), posterior (n = 21), middle (n = 16), and superior mediastinum (n = 8). The final diagnosis was based on surgical outcomes, or imaging findings and the results of at least 6-month follow-up. The patients underwent CT-guided percutaneous biopsy with (group 1, n = 56) or without (group 2, n = 50) registration of prior PET/CT images obtained no more than 22 days earlier. The registered images were used to plan the procedure and help target the tumors. RESULTS CT-guided percutaneous needle biopsy yielded adequate samples in 101 of 106 (95 %) patients (group 1, n = 53; group 2, n = 48); in 95 patients (94 %), the diagnosis was confirmed by specific histological typing (group 1, n = 51; group 2, n = 44). The diagnostic accuracy of CT-guided percutaneous biopsy with and without the registration of prior PET/CT images was not statistically different (group 1, 96 %; group 2, 93 %, p = 0.324). CONCLUSION CT-guided percutaneous biopsy is an easy and safe procedure that can provide a precise diagnosis in the majority of mediastinal tumors. PET/CT-guided biopsy yielded no special diagnostic advantages.
Collapse
Affiliation(s)
- Koichi Yokoyama
- Department of Diagnostic Radiology, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto, 860-8505, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Win AZ, Aparici CM. Real-time FDG PET/CT-guided bone biopsy in a patient with two primary malignancies. Eur J Nucl Med Mol Imaging 2013; 40:1787-8. [PMID: 23828652 DOI: 10.1007/s00259-013-2492-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Aung Zaw Win
- Department of Radiology, Nuclear Medicine Section, San Francisco Veteran Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA,
| | | |
Collapse
|
39
|
Guimarães MD, Bitencourt AGV, Gross JL, Marchiori E, Chojniak R. Improving the outcome and reducing the risks of imagingguided transthoracic biopsies of lung lesions. TUMORI JOURNAL 2013; 99:e188-9. [DOI: 10.1177/030089161309900432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | - Edson Marchiori
- Department of Radiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
40
|
MRI-guided biopsy: a valuable procedure alternative to avoid the risks of ionizing radiation from diagnostic imaging methods. Cardiovasc Intervent Radiol 2013; 37:858-60. [PMID: 23811807 DOI: 10.1007/s00270-013-0677-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/10/2013] [Indexed: 11/27/2022]
|
41
|
Au WY, Wong SHM, Suen WS, Ma ESK, Chui WH. Asymptomatic bulky Hodgkin lymphoma over 8 years with elevated alpha fetoprotein. Leuk Lymphoma 2013; 55:207-8. [PMID: 23597140 DOI: 10.3109/10428194.2013.796047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|