1
|
Nakahara T, Fujimoto S, Jinzaki M. Molecular imaging of cardiovascular disease: Current status and future perspective. J Cardiol 2025; 85:386-398. [PMID: 39922562 DOI: 10.1016/j.jjcc.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Advancements in knowledge of cardiovascular disease, pharmacology, and chemistry have led to the development of newer radiopharmaceuticals and targets for new and more suitable molecules. Molecular imaging encompasses multiple imaging techniques for identifying the characteristics of key components involved in disease. Despite its limitations in spatial resolution, the affinity for key molecules compensates for disadvantages in diagnosing diseases and elucidating their pathophysiology. This review introduce established molecular tracers involved in clinical practice and emerging tracers already applied in clinical studies, classifying the key component in A: artery, specifically those vulnerable plaque (A-I) inflammatory cells [18F-FDG]; A-II) lipid/fatty acid; A-III) hypoxia; A-IV) angiogenesis; A-V) protease [18F/68Ga-FAPI]; A-VI) thrombus/hemorrhage; A-VII) apoptosis and A-VIII) microcalcification [18F-NaF]) and B: myocardium, including myocardial ischemia, infarction and myocardiopathy (B-I) myocardial ischemia; B-II) myocardial infarction (myocardial damage and fibrosis); B-III) myocarditis and endocarditis; B-IV) sarcoidosis; B-V) amyloidosis; B-VI) metabolism; B-VII) innervation imaging). In addition to cardiovascular-specific tracers tested in animal models, many radiotracers may have been developed in other areas, such as oncology imaging or neuroimaging. While this review does not cover all available tracers, some of them hold potential for future use assessing cardiovascular disease. Advances in molecular biology, pharmaceuticals, and imaging sciences will facilitate the identification of precise disease mechanisms, enabling precise diagnoses, better assessment of disease status, and enhanced therapeutic evaluation in this multi-modality era.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Ji Y, Xu M, Zhao H, Cai H, Chen K, Zhang L, Mao H, Wang F, Zhu J, Fang X. Genetic mechanisms underlying gray matter atrophy in Parkinson's disease: a combined transcriptome and neuroimaging study. Cereb Cortex 2025; 35:bhaf097. [PMID: 40302614 DOI: 10.1093/cercor/bhaf097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/13/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Extensive studies have demonstrated significant gray matter atrophy in patients with Parkinson's disease (PD); however, the underlying gene expression mechanisms remain largely unknown. To comprehensively characterize the gray matter volume alterations in PD patients, we conducted a neuroimaging meta-analysis and validated the observed atrophic phenotypes in an independent dataset. Leveraging the Allen Human Brain Atlas (AHBA), we linked brain transcriptomic data to neuroimaging phenotypes to identify genes associated with PD-related gray matter atrophy. Further enrichment analyses and functional characterization explored the potential roles of these correlated genes in disease pathology. Both the neuroimaging meta-analysis and independent dataset analysis consistently revealed significant gray matter atrophy in PD, particularly in the superior temporal gyrus, highly associated with sensory and motor functions. Spatial transcriptome-neuroimaging correlation analysis identified 1,952 overlapping genes whose expression levels were significantly correlated with the spatial distribution of gray matter atrophy in PD patients. These genes were enriched in several key biological processes and molecular pathways, exhibiting region- and cell type-specific expression, particularly in dopaminergic receptor neurons of brain tissue. This study delineates the spatial distribution of gray matter atrophy in PD and suggests that this neurodegenerative phenotype may result from complex interactions among multiple functionally relevant genes.
Collapse
Affiliation(s)
- Yi Ji
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
- Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
| | - Min Xu
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
- Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Research Center of Clinical Medical Imaging, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Anhui Provincial Institute of Translational Medicine, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Research Center of Clinical Medical Imaging, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Anhui Provincial Institute of Translational Medicine, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Kaidong Chen
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
- Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
| | - Li Zhang
- Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
| | - Haixia Mao
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
- Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
| | - Feng Wang
- Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Research Center of Clinical Medical Imaging, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Anhui Provincial Institute of Translational Medicine, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
- Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299, Qingyang Road, Wuxi City 214023, Jiangsu Province, China
| |
Collapse
|
3
|
Stormezand GN, de Meyer E, Koopmans KP, Brouwers AH, Luurtsema G, Dierckx RAJO. Update on the Role of [ 18F]FDOPA PET/CT. Semin Nucl Med 2024; 54:845-855. [PMID: 39384519 DOI: 10.1053/j.semnuclmed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
[18F]-dihydroxyphenylalanine ([18F]FDOPA) is a radiopharmaceutical used in a broad spectrum of diseases, including neuroendocrine tumors (NETs), congenital hyperinsulinism, parkinsonian syndromes and neuro-oncology. Genetic analysis and disease specific biomarkers may guide the optimum selection of patients that may benefit most from [18F]FDOPA PET in different stages of several neuroendocrine neoplasms and in congenital hyperinsulinism. For clinical routine in neuro-oncology, indications for [18F]FDOPA PET include tumor delineation and distinguishing between treatment related changes and recurrent disease. New developments as the advent of large axial field of view PET/CT or integrated PET/MRI systems may provide more unique opportunities, such as those related to detection of smaller lesions in primary staging of NETs, dose reduction in children with congenital hyperinsulinism, or possibilities to obtain more extensive noninvasive quantification of cerebral uptake by using image derived input functions. Although the widespread use of [18F]FDOPA has been hampered by complex synthesis methods and high production costs in the past, significant efforts have been undertaken to provide robust GMP compliant synthesis methods with high activity yield and molar activity.
Collapse
Affiliation(s)
- Gilles N Stormezand
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Eline de Meyer
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Pieter Koopmans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Yao J, Huang T, Tian Y, Zhao H, Li R, Yin X, Shang S, Chen YC. Early detection of dopaminergic dysfunction and glymphatic system impairment in Parkinson's disease. Parkinsonism Relat Disord 2024; 127:107089. [PMID: 39106761 DOI: 10.1016/j.parkreldis.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
PURPOSE This study aimed to assess the glymphatic function and its correlation with clinical characteristics and the loss of dopaminergic neurons in Parkinson's disease (PD) using hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI) combined with diffusion tensor image analysis along the perivascular space (DTI-ALPS), choroid plexus volume (CPV), and enlarged perivascular space (EPVS) volume. METHODS Twenty-five PD patients and thirty matched healthy controls (HC) participated in the study. All participants underwent 18F-fluorodopa (18F-DOPA) PET-MRI scanning. The striatal standardized uptake value ratio (SUVR), DTI-ALPS index, CPV, and EPVS volume were calculated. Furthermore, we also analysed the relationship between the DTI-ALPS index, CPV, EPVS volume and striatal SUVR as well as clinical characteristics of PD patients. RESULTS PD patients demonstrated significantly lower values in DTI-ALPS (t = 3.053, p = 0.004) and larger CPV (t = 2.743, p = 0.008) and EPVS volume (t = 2.807, p = 0.008) compared to HC. In PD group, the ALPS-index was negatively correlated with the Unified Parkinson's Disease Rating Scale III (UPDRS-III) scores (r = -0.730, p < 0.001), and positively correlated with the mean putaminal SUVR (r = 0.560, p = 0.007) and mean caudal SUVR (r = 0.459, p = 0.032). Moreover, the mean putaminal SUVR was negatively associated with the UPDRS-III scores (r = -0.544, p = 0.009). CONCLUSION DTI-ALPS has the potential to uncover glymphatic dysfunction in patients with PD, with this dysfunction correlating strongly with the severity of disease, together with the mean putaminal and caudal SUVR. PET- MRI can serve as a potential multimodal imaging biomarker for early-stage PD.
Collapse
Affiliation(s)
- Jun Yao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Youyong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongdong Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rushuai Li
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Song'an Shang
- Department of Medical imaging center, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Luo B, Chang L, Qiu C, Dong W, Zhao L, Lu Y, Sun J, Yan J, Wei X, Yan J, Zhang W. Reorganization of motor network in patients with Parkinson's disease after deep brain stimulation. CNS Neurosci Ther 2024; 30:e14792. [PMID: 38867393 PMCID: PMC11168969 DOI: 10.1111/cns.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
AIMS Parkinson's disease (PD) patients experience improvement in motor symptoms after deep brain stimulation (DBS) and before initiating stimulation. This is called the microlesion effect. However, the mechanism remains unclear. The study aims to comprehensively explore the changes in functional connectivity (FC) patterns in movement-related brain regions in PD patients during the microlesion phase through seed-based FC analysis. METHODS The study collected the resting functional magnetic resonance imaging data of 49 PD patients before and after DBS surgery (off stimulation). The cortical and subcortical areas related to motor function were selected for seed-based FC analysis. Meanwhile, their relationship with the motor scale was investigated. RESULTS The motor-related brain regions were selected as the seed point, and we observed various FC declines within the motor network brain regions. These declines were primarily in the left middle temporal gyrus, bilateral middle frontal gyrus, right supplementary motor area, left precentral gyrus, left postcentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus after DBS. CONCLUSION The movement-related network was extensively reorganized during the microlesion period. The study provided new information on enhancing motor function from the network level post-DBS.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Lei Chang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Chang Qiu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Wenwen Dong
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Liang Zhao
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Yue Lu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Jian Sun
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Jiuqi Yan
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Xiang Wei
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Jun Yan
- Department of Geriatric Neurology, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Wenbin Zhang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
6
|
Ozolmez N, Silindir-Gunay M, Volkan-Salanci B. An overview: Radiotracers and nano-radiopharmaceuticals for diagnosis of Parkinson's disease. Appl Radiat Isot 2024; 203:111110. [PMID: 37989065 DOI: 10.1016/j.apradiso.2023.111110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Parkinson's disease (PD) is a widespread progressive neurodegenerative disease. Clinical diagnosis approaches are insufficient to provide an early and accurate diagnosis before a substantial of loss of dopaminergic neurons. PET and SPECT can be used for accurate and early diagnosis of PD by using target-specific radiotracers. Additionally, the importance of BBB penetrating targeted nanosystems has increased in recent years. This article reviews targeted radiopharmaceuticals used in clinics and novel nanocarriers for research purposes of PD imaging.
Collapse
Affiliation(s)
- Nur Ozolmez
- Hacettepe University, Faculty of Pharmacy, Department of Radiopharmacy, Ankara, Turkey.
| | - Mine Silindir-Gunay
- Hacettepe University, Faculty of Pharmacy, Department of Radiopharmacy, Ankara, Turkey.
| | - Bilge Volkan-Salanci
- Hacettepe University, Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey.
| |
Collapse
|
7
|
Xu H, Gu L, Zhang S, Wu Y, Wei X, Wang C, Xu Y, Guo Y. N200 and P300 component changes in Parkinson’s disease: a meta-analysis. Neurol Sci 2022; 43:6719-6730. [DOI: 10.1007/s10072-022-06348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
|
8
|
Zheng JH, Sun WH, Ma JJ, Wang ZD, Chang QQ, Dong LR, Shi XX, Li MJ, Gu Q, Chen SY. Structural and functional abnormalities in Parkinson's disease based on voxel-based morphometry and resting-state functional magnetic resonance imaging. Neurosci Lett 2022; 788:136835. [PMID: 35963477 DOI: 10.1016/j.neulet.2022.136835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To explore differences in gray matter volume (GMV) and white matter volume (WMV) between patients with Parkinson's disease (PD) and healthy controls, and to examine whether the structural abnormalities correlate with functional abnormalities. METHODS T1-weighted magnetic resonance imaging and resting-state functional magnetic resonance imaging (fMRI) were performed on 180 patients with PD and 58 age- and sex-matched healthy controls. We used voxel-based morphometry (VBM) to compare GMV and WMV between groups, and resting-state fMRI to compare amplitudes of low-frequency fluctuations (ALFF) in the structurally abnormal brain regions. RESULTS Structural neuroimaging showed smaller whole-brain GMV, but not WMV, in patients. Furthermore, VBM revealed smaller GMV in the right superior temporal gyrus (STG) and left frontotemporal space in patients, after correction for multiple comparisons. Patients also showed significantly higher ALFF in the right STG. GMV in the right STG and left frontotemporal space in patients correlated negatively with age and scores on Part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale, but not with PD duration. CONCLUSIONS Structural atrophy in the frontotemporal lobe may be a useful imaging biomarker in PD, such as for detecting disease progression. Furthermore, this structural atrophy appears to correlate with enhanced spontaneous brain activity. This study associates particular structural and functional abnormalities with PD neuropathology.
Collapse
Affiliation(s)
- Jin Hua Zheng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Wen Hua Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Jun Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan Province, China.
| | - Zhi Dong Wang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qing Qing Chang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lin Rui Dong
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiao Xue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ming Jian Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Qi Gu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Si Yuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Department of Neurology, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| |
Collapse
|
9
|
He C, Rong S, Zhang P, Li R, Li X, Li Y, Wang L, Zhang Y. Metabolite changes in prefrontal lobes and the anterior cingulate cortex correlate with processing speed and executive function in Parkinson disease patients. Quant Imaging Med Surg 2022; 12:4226-4238. [PMID: 35919059 PMCID: PMC9338382 DOI: 10.21037/qims-21-1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Abstract
Background Processing speed and executive function can be impaired in patients with Parkinson disease (PD). However, the neural factors related to the slowdown in processing speed and dysexecutive function in PD are not completely understood. The objective of this study is to investigate the metabolic changes of the frontal and anterior cingulate cortex (ACC) through the use of 1H magnetic resonance spectroscopy and to explore the association between cognitive function and metabolic ratios. Methods In this retrospective case-control study, we conducted neuropsychological assessments of executive function and information processing speed in healthy controls (HCs) and in patients with PD. Chemical information was obtained for the of N-acetyl-aspartate (NAA):creatine (Cr) ratio and the choline-containing compounds (Cho):Cr ratio within the bilateral prefrontal cortex and ACC. Using hierarchical multiple regression analysis, we analyzed the relationship between cognitive function and metabolic ratios in the bilateral prefrontal lobe and ACC in patients with PD. Results In all, 59 patients with PD and 30 HCs were recruited. Patients with PD showed worse performance in executive function and processing speed compared with HCs (P<0.001). In patients with PD, the Cho:Cr ratios in the ACC (Z=2.20, P=0.028) and the right prefrontal cortex (t=2.16, P=0.034) were significantly increased. The hierarchical multiple regressions in patients with PD showed that the NAA:Cr ratio in the ACC correlated with the Stroop A completion times (P<0.05) and that the NAA:Cr ratio of the right prefrontal cortex correlated with the scores of the Wechsler Adult Intelligence Scale (WAIS)-Digit symbol test (P<0.05). Conclusions Information processing speed and executive function are impaired in patients with PD. Neuronal integrity and membrane turnover in the ACC and the right prefrontal cortex may be important factors in the slowdown of the information processing speed in patients with PD.
Collapse
Affiliation(s)
- Chentao He
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Siming Rong
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruitao Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohong Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Orso B, Arnaldi D, Peira E, Famá F, Giorgetti L, Girtler N, Brugnolo A, Mattioli P, Biassoni E, Donniaquio A, Massa F, Bauckneht M, Miceli A, Morbelli S, Nobili F, Pardini M. The Role of Monoaminergic Tones and Brain Metabolism in Cognition in De Novo Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1945-1955. [PMID: 35811536 DOI: 10.3233/jpd-223308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cognitive impairment is frequent in Parkinson's disease (PD) and several neurotransmitter changes have been reported since the time of diagnosis, although seldom investigated altogether in the same patient cohort. OBJECTIVE Our aim was to evaluate the association between neurotransmitter impairment, brain metabolism, and cognition in a cohort of de novo, drug-naïve PD patients. METHODS We retrospectively selected 95 consecutive drug-naïve PD patients (mean age 71.89±7.53) undergoing at the time of diagnosis a brain [18F]FDG-PET as a marker of brain glucose metabolism and proxy measure of neurodegeneration, [123I]FP-CIT-SPECT as a marker and dopaminergic deafferentation in the striatum and frontal cortex, as well as a marker of serotonergic deafferentation in the thalamus, and quantitative electroencephalography (qEEG) as an indirect measure of cholinergic deafferentation. Patients also underwent a complete neuropsychological battery. RESULTS Positive correlations were observed between (i) executive functions and left cerebellar cortex metabolism, (ii) prefrontal dopaminergic tone and working memory (r = 0.304, p = 0.003), (iii) qEEG slowing in the posterior leads and both memory (r = 0.299, p = 0.004) and visuo-spatial functions (r = 0.357, p < 0.001). CONCLUSIONS In subjects with PD, the impact of regional metabolism and diffuse projection systems degeneration differs across cognitive domains. These findings suggest possible tailored approaches to the treatment of cognitive deficits in PD.
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Enrico Peira
- Istituto nazionale di Fisica Nucleare (IN FN), Genoa section, Genoa, Italy
| | - Francesco Famá
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | | | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Erica Biassoni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Andrea Donniaquio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Alberto Miceli
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|
11
|
Suo X, Lei D, Li N, Li J, Peng J, Li W, Yang J, Qin K, Kemp GJ, Peng R, Gong Q. Topologically convergent and divergent morphological gray matter networks in early-stage Parkinson's disease with and without mild cognitive impairment. Hum Brain Mapp 2021; 42:5101-5112. [PMID: 34322939 PMCID: PMC8449106 DOI: 10.1002/hbm.25606] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Accepted: 06/26/2021] [Indexed: 02/05/2023] Open
Abstract
Patients with Parkinson's disease with mild cognitive impairment (PD-M) progress to dementia more frequently than those with normal cognition (PD-N), but the underlying neurobiology remains unclear. This study aimed to define the specific morphological brain network alterations in PD-M, and explore their potential diagnostic value. Twenty-four PD-M patients, 17 PD-N patients, and 29 healthy controls (HC) underwent a structural MRI scan. Similarity between interregional gray matter volume distributions was used to construct individual morphological brain networks. These were analyzed using graph theory and network-based statistics (NBS), and their relationship to neuropsychological tests was assessed. Support vector machine (SVM) was used to perform individual classification. Globally, compared with HC, PD-M showed increased local efficiency (p = .001) in their morphological networks, while PD-N showed decreased normalized path length (p = .008). Locally, similar nodal deficits were found in the rectus and lingual gyrus, and cerebellum of both PD groups relative to HC; additionally in PD-M nodal deficits involved several frontal and parietal regions, correlated with cognitive scores. NBS found that similar connections were involved in the default mode and cerebellar networks of both PD groups (to a greater extent in PD-M), while PD-M, but not PD-N, showed altered connections involving the frontoparietal network. Using connections identified by NBS, SVM allowed discrimination with high accuracy between PD-N and HC (90%), PD-M and HC (85%), and between the two PD groups (65%). These results suggest that default mode and cerebellar disruption characterizes PD, more so in PD-M, whereas frontoparietal disruption has diagnostic potential.
Collapse
Affiliation(s)
- Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Department of Psychiatry and Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Nannan Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Junying Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Jiaxin Peng
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Jing Yang
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical SciencesUniversity of LiverpoolLiverpoolUK
| | - Rong Peng
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
12
|
Hybrid PET-MRI for early detection of dopaminergic dysfunction and microstructural degradation involved in Parkinson's disease. Commun Biol 2021; 4:1162. [PMID: 34621005 PMCID: PMC8497575 DOI: 10.1038/s42003-021-02705-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/22/2021] [Indexed: 01/10/2023] Open
Abstract
Dopamine depletion and microstructural degradation underlie the neurodegenerative processes in Parkinson’s disease (PD). To explore early alterations and underlying associations of dopamine and microstructure in PD patients utilizing the hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI). Twenty-five PD patients in early stages and twenty-four matched healthy controls underwent hybrid 18F-fluorodopa (DOPA) PET-diffusion tensor imaging (DTI) scanning. The striatal standardized uptake value ratio (SUVR), DTI maps (fractional anisotropy, FA; mean diffusivity, MD) in subcortical grey matter, and deterministic tractography of the nigrostriatal pathway were processed. Values in more affected (MA) side, less affected (LA) side and mean were analysed. Correlations and mediations among PET, DTI and clinical characteristics were further analysed. PD groups exhibited asymmetric pattern of dopaminergic dysfunction in putamen, impaired integrity in the microstructures (nigral FA, putaminal MD, and FA of nigrostriatal projection). On MA side, significant associations between DTI metrics (nigral FA, putaminal MD, and FA of nigrostriatal projection) and motor performance were significantly mediated by putaminal SUVR, respectively. Early asymmetric disruptions in putaminal dopamine concentrations and nigrostriatal pathway microstructure were detected using hybrid PET-MRI. The findings further implied that molecular degeneration mediates the modulation of microstructural disorganization on motor dysfunction in the early stages of PD. To explore early alterations and underlying associations of dopamine levels and microstructure in Parkinson’s Disease (PD), Shang et al use a hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI) approach in early stage patients and age-matched controls. Their data implies that molecular degeneration mediates the effects of microstructural disorganization on motor dysfunction in the early stages of PD.
Collapse
|
13
|
Criswell SR, Searles Nielsen S, Dlamini WW, Warden MN, Perlmutter JS, Sheppard L, Moerlein SM, Lenox-Krug J, Checkoway H, Racette BA. Principal Component Analysis of Striatal and Extrastriatal D2 Dopamine Receptor Positron Emission Tomography in Manganese-Exposed Workers. Toxicol Sci 2021; 182:132-141. [PMID: 33881537 DOI: 10.1093/toxsci/kfab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The relationships between the neurotoxicant manganese (Mn), dopaminergic pathology, and parkinsonism remain unclear. Therefore, we used [11C](N-methyl)benperidol (NMB) positron emission tomography to investigate the associations between Mn exposure, striatal and extrastriatal D2 dopamine receptors (D2R), and motor function in 54 workers with a range of Mn exposure. Cumulative Mn exposure was estimated from work histories, and all workers were examined by a movement specialist and completed a Grooved Pegboard test (GPT). NMB D2R nondisplaceable binding potentials (BPND) were calculated for brain regions of interest. We identified 2 principal components (PCs) in a PC analysis which explained 66.8% of the regional NMB BPND variance (PC1 = 55.4%; PC2 = 11.4%). PC1 was positively correlated with NMB binding in all regions and inversely correlated with age. PC2 was driven by NMB binding in 7 brain regions (all p < .05), positively in the substantia nigra, thalamus, amygdala, and medial orbital frontal gyrus and negatively in the nucleus accumbens, anterior putamen, and caudate. PC2 was associated with both Mn exposure status and exposure duration (years). In addition, PC2 was associated with higher Unified Parkinson's Disease Rating Scale motor subsection 3 (UPDRS3) scores and slower GPT performance. We conclude Mn exposure is associated with both striatal and extrastriatal D2R binding. Multifocal alterations in D2R expression are also associated with motor dysfunction as measured by both the GPT and UPDRS3, demonstrating a link between Mn exposure, striatal and extrastriatal D2R expression, and clinical neurotoxicity.
Collapse
Affiliation(s)
- Susan R Criswell
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Wendy W Dlamini
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Mark N Warden
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Program in Physical Therapy, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Program in Occupational Therapy, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, School of Public Health, Seattle, Washington 98195, USA.,Department of Biostatistics, University of Washington, School of Public Health, Seattle, Washington 98195, USA
| | - Stephen M Moerlein
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Jason Lenox-Krug
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Harvey Checkoway
- Department of Family Medicine and Public Health, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA.,Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA
| | - Brad A Racette
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|
14
|
Cholerton BA, Poston KL, Yang L, Rosenthal LS, Dawson TM, Pantelyat A, Edwards KL, Tian L, Quinn JF, Chung KA, Hiller AL, Hu SC, Montine TJ, Zabetian CP. Semantic fluency and processing speed are reduced in non-cognitively impaired participants with Parkinson's disease. J Clin Exp Neuropsychol 2021; 43:469-480. [PMID: 34355669 DOI: 10.1080/13803395.2021.1927995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Parkinson's disease (PD) is associated with a range of cognitive deficits. Few studies have carefully examined the subtle impacts of PD on cognition among patients who do not meet formal criteria for MCI or dementia. The aim of the current study was thus to describe the impact of PD on cognition in those without cognitive impairment in a well-characterized cohort.Methods: Non-cognitively impaired participants (122 with PD, 122 age- and sex-matched healthy volunteers) underwent extensive cognitive testing. Linear regression analyses compared diagnostic group performance across cognitive measures. For cognitive tasks that were significantly different between groups, additional analyses examined group differences restricting the group inclusion to PD participants with mild motor symptoms or disease duration less than 10 years.Results: Processing speed and semantic verbal fluency were significantly lower in the PD group (B = -3.77, 95% CIs [-5.76 to -1.77], p < .001, and B = -2.02, 95% CIs [-3.12, -0.92], p < .001, respectively), even after excluding those with moderate to severe motor symptoms (B = -2.73, 95% CIs [-4.94 to -0.53], p = .015 and B = -2.11, 95% CIs [-3.32 to -0.91], p < .001, respectively) or longer disease duration (B = -3.89, 95% CIs [-6.14 to -1.63], p < .001 and B = -1.58, 95% CIs [-2.78 to -0.37], p = .010, respectively). Semantic verbal fluency remained significantly negatively associated with PD diagnosis after controlling for processing speed (B = -1.66, 95% CIs [-2.79 to -0.53], p = .004).Conclusions: Subtle decline in specific cognitive domains may be present among people diagnosed with PD but without evidence to support a formal cognitive diagnosis. These results suggest the importance of early awareness of the potential for diminishing aspects of cognition in PD even among those without mild cognitive impairment or dementia.
Collapse
Affiliation(s)
- Brenna A Cholerton
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, CA, USA
| | - Laurice Yang
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, CA, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen L Edwards
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Joseph F Quinn
- Parkinson's Disease Research, Education, and Clinical Center, Portland Veterans Affairs Health Care System, Portland, OR, USA.,Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Kathryn A Chung
- Parkinson's Disease Research, Education, and Clinical Center, Portland Veterans Affairs Health Care System, Portland, OR, USA.,Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Amie L Hiller
- Parkinson's Disease Research, Education, and Clinical Center, Portland Veterans Affairs Health Care System, Portland, OR, USA.,Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Shu-Ching Hu
- Geriatric Research Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Cyrus P Zabetian
- Geriatric Research Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
15
|
The role of the deep convolutional neural network as an aid to interpreting brain [ 18F]DOPA PET/CT in the diagnosis of Parkinson's disease. Eur Radiol 2021; 31:7003-7011. [PMID: 33686474 DOI: 10.1007/s00330-021-07779-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/12/2020] [Accepted: 02/12/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To test the performance of a 3D convolutional neural network (CNN) in analysing brain [18F]DOPA PET/CT in order to identify patients with nigro-striatal neurodegeneration. We evaluated the robustness of the 3D CNN by testing it against a manual regional analysis of the striata by using a striatal-to-occipital ratio (SOR). METHODS We analyzed patients who had undergone [18F]DOPA PET/CT from 2016 to 2018. Two examiners interpreted PET/CT images as positive or negative. Only patients with at least 2 years of follow-up and an ascertained neurological diagnosis were included. A 3D CNN was developed to evaluate [18F]DOPA PET/CT and refine the diagnosis of movement disorder. This system required training and testing, which were carried out on 2/3 and 1/3 of patients, respectively. A regional analysis was also conducted by drawing region of interest on T1-weighted 3D MRI scans, on which the [18F]DOPA PET images were first co-registered. RESULTS Ninety-eight patients were enrolled: 43 presented nigro-striatal degeneration and 55 negative cases used as controls. After training on 69 patients, the diagnostic performance of the 3D CNN was then calculated in 29 patients. Sensitivity, specificity, negative predictive value, positive predictive value and accuracy were 100%, 89%, 100%, 85% and 93%, respectively. When we compared the 3D CNN results with the SOR analysis, we found that the two patients falsely classified as positive by the 3D CNN procedure showed SOR values ≤ 5th percentile of the negative cases' distribution. CONCLUSIONS 3D CNNs are able to interpret [18F]DOPA PET/CT properly, revealing patients affected by Parkinson's disease. KEY POINTS • [18F]DOPA PET/CT is a sensitive diagnostic tool to identify patients with nigro-striatal neurodegeneration. • A semiquantitative evaluation of the images allows a more confident interpretation of the PET findings. • 3D convolutional neural network allows an accurate interpretation of 18F-DOPA PET/CT images, revealing patients affected by Parkinson's disease.
Collapse
|
16
|
Khomenko I, Pronina M, Kataeva G, Kropotov J, Irishina Y, Susin D. Combined 18F-fluorodeoxyglucose positron emission tomography and event-related potentials study of the cognitive impairment mechanisms in Parkinson’s disease. J Clin Neurosci 2020; 72:335-341. [DOI: 10.1016/j.jocn.2019.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
|
17
|
Zhou C, Guan XJ, Guo T, Zeng QL, Gao T, Huang PY, Xuan M, Gu QQ, Xu XJ, Zhang MM. Progressive brain atrophy in Parkinson's disease patients who convert to mild cognitive impairment. CNS Neurosci Ther 2019; 26:117-125. [PMID: 31278861 PMCID: PMC6930819 DOI: 10.1111/cns.13188] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Aims Cognitive impairment is a common symptom in the trajectory of Parkinson's disease (PD). However, the pathological underpinning is not fully known. We aimed to explore the critical structural alterations in the process of cognitive decline and its relationships with the dopaminergic deficit and the level of related cerebrospinal fluid (CSF) proteins. Methods Ninety‐four patients with PD and 32 controls were included in this study. Neuropsychological tests were performed at baseline and after 28 months to identify which patients had normal cognition and which ones developed PD‐MCI after follow‐up (“converters”). Gray matter atrophy was assessed in cross‐sectional and longitudinal analyses, respectively. The associations between altered GMV with dopamine transporter (DAT) results and the level of CSF proteins were assessed. Results Among the 94 patients with normal cognition at baseline, 24 (mean age, 63.1 years) developed PD‐MCI after 28 months of follow‐up, and 70 (mean age, 62.3 years) remained nonconverters. The converters showed significant right temporal atrophy at baseline and extensive atrophy in temporal lobe at follow‐up. Progressive bilateral frontal lobe atrophy was found in the converters. Baseline right temporal atrophy was correlated with the striatal dopaminergic degeneration in the converters. No correlation was found between the right temporal atrophy and the alterations of CSF proteins. Conclusion Early atrophy in temporal lobes and progressive atrophy in frontal lobes might be a biomarker for developing multidomain impairment of cognition and converting to PD‐MCI. Furthermore, cognition‐related temporal atrophy might be associated with dopaminergic deficit reflected by DAT scan but independent of CSF proteins in patients with PD who convert to PD‐MCI.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Jun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiao-Ling Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pei-Yu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan-Quan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Jun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min-Ming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Sampedro F, Marín-Lahoz J, Martínez-Horta S, Pagonabarraga J, Kulisevsky J. Dopaminergic degeneration induces early posterior cortical thinning in Parkinson's disease. Neurobiol Dis 2019; 124:29-35. [DOI: 10.1016/j.nbd.2018.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/10/2018] [Accepted: 11/03/2018] [Indexed: 01/27/2023] Open
|
19
|
Abstract
Once a diagnosis of Parkinson's disease (PD) has been made, even in its earliest prodromal form of subjective memory impairment, cognitive impairment has begun and involves anterior cingulate cortex (ACC). While the Braak staging scheme showed mid- to later-stage PD progression from cingulate allocortex adjacent to the corpus callosum and progressing into its neocortical moieties, the last decade has produced substantial information on the role of cingulate cortex in multiple symptoms, not just global measures of cognition. Voxel-based morphometry has been used in many studies of mild cognitive impairment (MCI) in PD to show reduced thickness in ACC and posterior cingulate cortex (PCC). Regional cerebral blood flow is altered in association with verbal IQ in all the PCC and anterior midcingulate cortex and executive impairments in ACC. Diffusion tensor imaging shows reduced fractional anisotropy throughout the entire cingulum bundle. Amnestic MCI is associated with reduced dopamine-2 receptor binding in ACC and, even in cognitively normal PD cases, dopaminergic pathways in ACC are impaired early in association with executive and language functions. The cholinergic system also has substantial changes in nicotinic and muscarinic receptor binding, and therapy with donepezil improves Mini-Mental State Exam scores and metabolism in pACC and dPCC. Cingulate cortex is also engaged in two critical symptoms: apathy and visual hallucinations. Finally, one can be optimistic that cingulate cortex will play an important role in developing new biomarkers of early PD. These methods have already been shown to be useful in cingulate cortex and include magnetic resonance spectroscopy, next-generation gene expression, and the new α-synuclein proximity ligation assay that specifically recognizes α-synuclein oligomers. Thus the future is bright for developing multivariate, multimodal biomarkers that include cingulate cortex.
Collapse
Affiliation(s)
- Brent A Vogt
- Cingulum Neurosciences Institute, Manlius, NY, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
20
|
Suo X, Lei D, Cheng L, Li N, Zuo P, Wang DJJ, Huang X, Lui S, Kemp GJ, Peng R, Gong Q. Multidelay multiparametric arterial spin labeling perfusion MRI and mild cognitive impairment in early stage Parkinson's disease. Hum Brain Mapp 2018; 40:1317-1327. [PMID: 30548099 DOI: 10.1002/hbm.24451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/05/2023] Open
Abstract
Mild cognitive impairment (MCI), a well-defined nonmotor manifestation of Parkinson's disease (PD), greatly impairs functioning and quality of life. However, the contribution of cerebral perfusion, quantified by arterial spin labeling (ASL), to MCI in PD remains poorly understood. The selection of an optimal delay time is difficult for single-delay ASL, a problem which is avoided by multidelay ASL. This study uses a multidelay multiparametric ASL to investigate cerebral perfusion including cerebral blood flow (CBF) and arterial transit time (ATT) in early stage PD patients exhibiting MCI using a voxel-based brain analysis. Magnetic resonance imaging data were acquired on a 3.0 T system at rest in 39 early stage PD patients either with MCI (PD-MCI, N = 22) or with normal cognition (PD-N, N = 17), and 36 age- and gender-matched healthy controls (HCs). CBF and ATT were compared among the three groups with SPM using analysis of variance followed by post hoc analyses to define regional differences and examine their relationship to clinical data. PD-MCI showed prolonged ATT in right thalamus compared to both PD-N and HC, and in right supramarginal gyrus compared to HC. PD-N showed shorter ATT in left superior frontal cortex compared to HC. Prolonged ATT in right thalamus was negatively correlated with the category fluency test (p = .027, r = -0.495) in the PD-MCI group. This study shows that ATT may be a more sensitive marker than CBF for the MCI, and highlights the potential role of thalamus and inferior parietal region for MCI in early stage PD.
Collapse
Affiliation(s)
- Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Lan Cheng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nannan Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Panli Zuo
- MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, California
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Rong Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Fimm B, Sturm W, Esser A, Schettgen T, Willmes K, Lang J, Gaum PM, Kraus T. Neuropsychological effects of occupational exposure to polychlorinated biphenyls. Neurotoxicology 2017; 63:106-119. [PMID: 28947237 DOI: 10.1016/j.neuro.2017.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022]
Abstract
In the context of a health surveillance program for former PCB-exposed workers of a transformer and capacitor recycling company in Germany, their family members, employees of surrounding companies and area residents a broad range of cognitive functions covering attention, executive processing, reasoning, memory and motor performance was examined. The study aimed at identifying potential adverse effects of PCB load on cognitive functions. Detailed analysis of PCB burden of the participants revealed rather high correlations of lower and higher chlorinated as well as dioxin-like PCBs. Nearly one half of the participants exhibited increased burden in all three PCB classes whereas only 33 out of 237 participants did not show any increased PCB burden. Thus, data analysis followed a two-fold strategy: (1) Based on studies providing data on PCB exposure of the German general population the PCB burden of every participant was classified as normal (percentile rank PR <95) or increased (PR ≥95). Increased burden with respect to lower (LPCBs) and higher chlorinated (HPCBs) as well as dioxin-like (dlPCBs) PCBs was assumed if a participant showed at least one congener surpassing the PR95 criterion for the respective congener class and (2) Overall plasma PCB level per congener class was used as measure of PCB load. In a multivariate approach using structural equation modelling and multiple regression analysis we found a significant impact of PCBs on word fluency and sensorimotor processing irrespective of the measure of PCB burden (PR95 criterion or overall plasma level). However, no effect of PCB burden on memory, attention, and cognitive flexibility could be demonstrated. Particularly, an increase of LPCBs was associated with an overall reduction of verbal fluency of letter and semantic word generation as well as word production based on a single or two alternating criteria. In addition, participants with increased burden of LPCBs exhibited a time-on-task effect in terms of a stronger decline of performance with increasing duration of the verbal fluency task. Moreover, we found adverse effects of HPCBs on Aiming and of dlPCBs on Line Tracking. Results are discussed in terms of (1) a decrease of cerebral dopamine (DA) with non-coplanar PCBs resulting in an impact on fronto-striatal cerebral structures subserving verbal fluency and motor processing, (2) a PCB-induced reduction of norepinephrine leading to the time-on-task effect with verbal fluency, and (3) adverse effects of PCBs on dopaminergic receptors in the cerebellum resulting in impaired fine motor function.
Collapse
Affiliation(s)
- B Fimm
- RWTH Aachen University, Department of Neurology, Pauwelsstraße 30, D-52074 Aachen, Germany.
| | - W Sturm
- RWTH Aachen University, Department of Neurology, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - A Esser
- RWTH Aachen University, Institute of Occupational Medicine, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - T Schettgen
- RWTH Aachen University, Institute of Occupational Medicine, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - K Willmes
- RWTH Aachen University, Department of Neurology, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - J Lang
- RWTH Aachen University, Institute of Occupational Medicine, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - P M Gaum
- RWTH Aachen University, Institute of Occupational Medicine, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - T Kraus
- RWTH Aachen University, Institute of Occupational Medicine, Pauwelsstraße 30, D-52074 Aachen, Germany
| |
Collapse
|
22
|
|
23
|
Hassan A, Benarroch EE. Heterogeneity of the midbrain dopamine system: Implications for Parkinson disease. Neurology 2015; 85:1795-805. [PMID: 26475693 DOI: 10.1212/wnl.0000000000002137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Anhar Hassan
- From the Department of Neurology, Mayo Clinic, Rochester, MN.
| | | |
Collapse
|