1
|
He Q, Zhang Z, Zhang L, Zhang B, Long Y, Zhang Y, Liao Z, Zha Z, Zhang X. Head-to-head comparison between [ 68Ga]Ga-DOTA-NOC and [ 18F]DOPA PET/CT in a diverse cohort of patients with pheochromocytomas and paragangliomas. Eur J Nucl Med Mol Imaging 2024; 51:1989-2001. [PMID: 38300262 DOI: 10.1007/s00259-024-06622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE To compare the detection ability of 68Ga-labelled DOTA-l-Nal3-octreotide ([68Ga]Ga-DOTA-NOC) and 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]DOPA) in patients with phaeochromocytomas and paragangliomas (PPGLs) of different origins and gene mutations, such as germline succinate dehydrogenase complex genes (SDHx). METHODS Eighty-five patients with histopathologically confirmed PPGLs who underwent both [68Ga]Ga-DOTA-NOC and [18F]DOPA PET/CT from March 2017 to June 2023 were enrolled in this retrospective study. For comparative analyses, PPGLs were classified as phaeochromocytoma (PCC), sympathetic paraganglioma (sPGL), and head/neck paraganglioma (HNPGL). Detection rates were analyzed on per-patient and per-lesion bases and compared using the Chi-square/Fischer's exact test. RESULTS Among 85 patients with PPGLs (48 males; 43 years ± 17 [SD]), the patient-based detection rates of [68Ga]Ga-DOTA-NOC and [18F]DOPA PET/CT were 87.1% (74/85) and 89.4% (76/85), respectively (p = 0.634), and the lesion-based detection rates were 80.8% (479/593) and 71.2% (422/593), respectively (p < 0.001). Only one patient with a recurrent PCC presented double-negative imaging, while 66 patients exhibited double-positive imaging. The remaining patients were either [68Ga]Ga-DOTA-NOC-negative/[18F]DOPA-positive (n = 10) or [68Ga]Ga-DOTA-NOC-positive/[18F]DOPA-negative (n = 8). In subgroup analyses, [68Ga]Ga-DOTA-NOC PET/CT detected significantly more metastases of sPGL (91.1%, 236/259) and SDHx-related PPGL (89.6%, 86/96) than [18F]DOPA PET/CT (48.6%[126/259] and 50.0%[48/96], respectively; both p < 0.001). However, [18F]DOPA showed significantly higher detection rates of PCC in both primary/recurrent and metastatic lesions (94.3%[50/53] vs. 62.3%[33/53] and 87.9%[174/198] vs. 69.2%[137/198], respectively; both p < 0.001). Regarding metastases in different organs, [68Ga]Ga-DOTA-NOC PET/CT detected more lesions than [18F]DOPA PET/CT in bone (96.2%[176/183] vs. 66.1%[121/183]; p < 0.001) and lymph nodes (82.0%[73/89] vs. 53.9%[48/89]; p < 0.001) but less lesions in peritoneum (20%[4/20] vs. 100%[20/20]; p < 0.001). CONCLUSION [68Ga]Ga-DOTA-NOC and [18F]DOPA are complementary in diagnosing PPGL under the appropriate clinical setting. [68Ga]Ga-DOTA-NOC should be considered as the ideal first-line tracer for detecting metastases of sPGL and SDHx-related tumours, whereas [18F]DOPA may be the optimal tracer for evaluating non-SDHx-related PCC, especially in detecting primary lesions and monitoring recurrence.
Collapse
Affiliation(s)
- Qiao He
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Zhengkun Zhang
- Department of Urology, the First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Linqi Zhang
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong Province, 510095, People's Republic of China
| | - Bing Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Yali Long
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Yuying Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Zhihong Liao
- Department of Endocrinology, the First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Zhihao Zha
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China.
| | - Xiangsong Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China.
| |
Collapse
|
2
|
Carvalho JG, Gho JMIH, Budde RPJ, Hofland J, Hirsch A. Multimodality Imaging of Cardiac Paragangliomas. Radiol Cardiothorac Imaging 2023; 5:e230049. [PMID: 37693206 PMCID: PMC10483254 DOI: 10.1148/ryct.230049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023]
Abstract
Paragangliomas are rare neuroendocrine tumors of extra-adrenal autonomic paraganglia origin. Paragangliomas rarely involve the heart, and they account for less than 1% of primary cardiac tumors. Most cardiac paragangliomas are incidentally detected at echocardiography or CT or during the workup of symptomatic patients with high catecholamine levels. Paragangliomas are typically located around the great vessels, coronary arteries (atrioventricular groove), or the atria, which can be explained by the tumor origin from the paraganglia and the distribution of the cardiac plexus. At MRI, cardiac paragangliomas typically have low to intermediate signal on T1-weighted images and high signal on T2-weighted images. The tumors are strongly vascularized, with high uptake on first-pass perfusion images and a heterogeneous pattern on late gadolinium enhancement images. Functional imaging is indicated for diagnostic confirmation and to screen for additional tumor locations or metastatic disease. Surgical excision is the only curative treatment. Cardiac CT angiography or invasive angiography should be performed preoperatively to precisely delineate tumor vascularization. In particular, its relation with the coronary arteries should be determined, as paragangliomas can be perfused by the coronary arteries, posing additional surgical challenges and the need for coronary revascularization. This imaging essay reviews the characteristics of paragangliomas and the use of multimodality imaging for diagnosis and treatment. Keywords: CT Angiography, Molecular Imaging, MR Imaging, PET/CT, Cardiac, Heart, Neoplasms-Primary © RSNA, 2023.
Collapse
Affiliation(s)
| | - Johannes M. I. H. Gho
- From the Department of Radiology and Nuclear Medicine (J.G.C.,
J.M.I.H.G., R.P.J.B., A.H.) and Department of Cardiology (J.M.I.H.G., R.P.J.B.,
A.H.), Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40,
3015 GD Rotterdam, the Netherlands; and Department of Internal Medicine, Sector
Endocrinology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Rotterdam, the Netherlands (J.H.)
| | - Ricardo P. J. Budde
- From the Department of Radiology and Nuclear Medicine (J.G.C.,
J.M.I.H.G., R.P.J.B., A.H.) and Department of Cardiology (J.M.I.H.G., R.P.J.B.,
A.H.), Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40,
3015 GD Rotterdam, the Netherlands; and Department of Internal Medicine, Sector
Endocrinology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Rotterdam, the Netherlands (J.H.)
| | - Johannes Hofland
- From the Department of Radiology and Nuclear Medicine (J.G.C.,
J.M.I.H.G., R.P.J.B., A.H.) and Department of Cardiology (J.M.I.H.G., R.P.J.B.,
A.H.), Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40,
3015 GD Rotterdam, the Netherlands; and Department of Internal Medicine, Sector
Endocrinology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Rotterdam, the Netherlands (J.H.)
| | - Alexander Hirsch
- From the Department of Radiology and Nuclear Medicine (J.G.C.,
J.M.I.H.G., R.P.J.B., A.H.) and Department of Cardiology (J.M.I.H.G., R.P.J.B.,
A.H.), Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 40,
3015 GD Rotterdam, the Netherlands; and Department of Internal Medicine, Sector
Endocrinology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Rotterdam, the Netherlands (J.H.)
| |
Collapse
|
3
|
Adhikari A, Bhattarai BR, Aryal A, Thapa N, Kc P, Adhikari A, Maharjan S, Chanda PB, Regmi BP, Parajuli N. Reprogramming natural proteins using unnatural amino acids. RSC Adv 2021; 11:38126-38145. [PMID: 35498070 PMCID: PMC9044140 DOI: 10.1039/d1ra07028b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Unnatural amino acids have gained significant attention in protein engineering and drug discovery as they allow the evolution of proteins with enhanced stability and activity. The incorporation of unnatural amino acids into proteins offers a rational approach to engineer enzymes for designing efficient biocatalysts that exhibit versatile physicochemical properties and biological functions. This review highlights the biological and synthetic routes of unnatural amino acids to yield a modified protein with altered functionality and their incorporation methods. Unnatural amino acids offer a wide array of applications such as antibody-drug conjugates, probes for change in protein conformation and structure-activity relationships, peptide-based imaging, antimicrobial activities, etc. Besides their emerging applications in fundamental and applied science, systemic research is necessary to explore unnatural amino acids with novel side chains that can address the limitations of natural amino acids.
Collapse
Affiliation(s)
- Anup Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Bibek Raj Bhattarai
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashika Aryal
- Department of Chemistry, Birendra Multiple Campus, Tribhuvan University Bharatpur Chitwan Nepal
| | - Niru Thapa
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Puja Kc
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashma Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Sushila Maharjan
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Prem B Chanda
- Department of Chemistry and Physics, Southeastern Louisiana University Hammond Louisiana 70402 USA
| | - Bishnu P Regmi
- Department of Chemistry, Florida Agricultural and Mechanical University Tallahassee Florida 32307 USA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| |
Collapse
|
4
|
Radionuclide-Based Imaging of Breast Cancer: State of the Art. Cancers (Basel) 2021; 13:cancers13215459. [PMID: 34771622 PMCID: PMC8582396 DOI: 10.3390/cancers13215459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Breast cancer is one of the most commonly diagnosed malignant tumors, possessing high incidence and mortality rates that threaten women’s health. Thus, early and effective breast cancer diagnosis is crucial for enhancing the survival rate. Radionuclide molecular imaging displays its advantages for detecting breast cancer from a functional perspective. Noninvasive visualization of biological processes with radionuclide-labeled small metabolic compounds helps elucidate the metabolic state of breast cancer, while radionuclide-labeled ligands/antibodies for receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer. This review focuses on the most recent developments of novel radiotracers as promising tools for early breast cancer diagnosis. Abstract Breast cancer is a malignant tumor that can affect women worldwide and endanger their health and wellbeing. Early detection of breast cancer can significantly improve the prognosis and survival rate of patients, but with traditional anatomical imagine methods, it is difficult to detect lesions before morphological changes occur. Radionuclide-based molecular imaging based on positron emission tomography (PET) and single-photon emission computed tomography (SPECT) displays its advantages for detecting breast cancer from a functional perspective. Radionuclide labeling of small metabolic compounds can be used for imaging biological processes, while radionuclide labeling of ligands/antibodies can be used for imaging receptors. Noninvasive visualization of biological processes helps elucidate the metabolic state of breast cancer, while receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer, contributing to early diagnosis and better management of cancer patients. The rapid development of radionuclide probes aids the diagnosis of breast cancer in various aspects. These probes target metabolism, amino acid transporters, cell proliferation, hypoxia, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), gastrin-releasing peptide receptor (GRPR) and so on. This article provides an overview of the development of radionuclide molecular imaging techniques present in preclinical or clinical studies, which are used as tools for early breast cancer diagnosis.
Collapse
|
5
|
Aulino JM, Kirsch CFE, Burns J, Busse PM, Chakraborty S, Choudhri AF, Conley DB, Jones CU, Lee RK, Luttrull MD, Moritani T, Policeni B, Ryan ME, Shah LM, Sharma A, Shih RY, Subramaniam RM, Symko SC, Bykowski J. ACR Appropriateness Criteria ® Neck Mass-Adenopathy. J Am Coll Radiol 2020; 16:S150-S160. [PMID: 31054741 DOI: 10.1016/j.jacr.2019.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 11/26/2022]
Abstract
A palpable neck mass may be the result of neoplastic, congenital, or inflammatory disease. Older age suggests neoplasia, and a congenital etiology is more prevalent in the pediatric population. The imaging approach is based on the patient age, mass location, and clinical pulsatility. Underlying human papillomavirus-related malignancy should be considered in all age groups. Although the imaging appearance of some processes in the head and neck overlap, choosing the appropriate imaging examination may allow a specific diagnosis, or a limited differential diagnosis. Tissue sampling is indicated to confirm suspected malignancy. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | | | - Claudia F E Kirsch
- Panel Chair, Northwell Health, Zucker Hofstra School of Medicine at Northwell, Manhasset, New York
| | | | - Paul M Busse
- Massachusetts General Hospital, Boston, Massachusetts
| | - Santanu Chakraborty
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada, Canadian Association of Radiologists
| | - Asim F Choudhri
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - David B Conley
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, American Academy of Otolaryngology-Head and Neck Surgery
| | | | - Ryan K Lee
- Einstein Healthcare Network, Philadelphia, Pennsylvania
| | | | | | - Bruno Policeni
- University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Maura E Ryan
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | | | - Aseem Sharma
- Mallinckrodt Institute of Radiology, Saint Louis, Missouri
| | - Robert Y Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | | | - Julie Bykowski
- Specialty Chair, UC San Diego Health Center, San Diego, California
| |
Collapse
|
6
|
Positron Emission Tomography and Molecular Imaging of Head and Neck Malignancies. CURRENT RADIOLOGY REPORTS 2020. [DOI: 10.1007/s40134-020-00366-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Taïeb D, Hicks RJ, Hindié E, Guillet BA, Avram A, Ghedini P, Timmers HJ, Scott AT, Elojeimy S, Rubello D, Virgolini IJ, Fanti S, Balogova S, Pandit-Taskar N, Pacak K. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2019; 46:2112-2137. [PMID: 31254038 PMCID: PMC7446938 DOI: 10.1007/s00259-019-04398-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE Diverse radionuclide imaging techniques are available for the diagnosis, staging, and follow-up of phaeochromocytoma and paraganglioma (PPGL). Beyond their ability to detect and localise the disease, these imaging approaches variably characterise these tumours at the cellular and molecular levels and can guide therapy. Here we present updated guidelines jointly approved by the EANM and SNMMI for assisting nuclear medicine practitioners in not only the selection and performance of currently available single-photon emission computed tomography and positron emission tomography procedures, but also the interpretation and reporting of the results. METHODS Guidelines from related fields and relevant literature have been considered in consultation with leading experts involved in the management of PPGL. The provided information should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals. CONCLUSION Since the European Association of Nuclear Medicine 2012 guidelines, the excellent results obtained with gallium-68 (68Ga)-labelled somatostatin analogues (SSAs) in recent years have simplified the imaging approach for PPGL patients that can also be used for selecting patients for peptide receptor radionuclide therapy as a potential alternative or complement to the traditional theranostic approach with iodine-123 (123I)/iodine-131 (131I)-labelled meta-iodobenzylguanidine. Genomic characterisation of subgroups with differing risk of lesion development and subsequent metastatic spread is refining the use of molecular imaging in the personalised approach to hereditary PPGL patients for detection, staging, and follow-up surveillance.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 264 rue Saint-Pierre, 13005, Marseille Cedex 05, France.
| | - Rodney J Hicks
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Elif Hindié
- Department of Nuclear Medicine, Hôpital Haut-Lévêque, Bordeaux University Hospitals, Pessac, France
| | - Benjamin A Guillet
- Department of Radiopharmacy, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Anca Avram
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Pietro Ghedini
- Nuclear Medicine Unit, Medicina Nucleare Metropolitana, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Henri J Timmers
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Saeed Elojeimy
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, Neuroradiology, Medical Physics, Clinical Laboratory, Microbiology, Pathology, Transfusional Medicine, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Irène J Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Stefano Fanti
- Nuclear Medicine Unit, Medicina Nucleare Metropolitana, University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Sona Balogova
- Department of Nuclear Medicine, Comenius University and St. Elisabeth Oncology Institute, Heydukova 10, 81250, Bratislava, Slovakia
- Department of Nuclear Medicine, Hôpital Tenon Assistance Publique-Hôpitaux de Paris and Sorbonne University, Paris, France
| | - Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Abstract
The mitochondrial enzyme succinate dehydrogenase (SDH) acts as a tumor suppressor. Biallelic inactivation of one of the genes encoding for SDH subunits (collectively named SDHx) leads to complete loss of the protein function and the development of diverse group of tumors. Pheochromocytomas-paragangliomas are the prime example of hereditary tumors caused by SDH deficiency. In this review, we discuss the roles of imaging examinations, and illustrate new insights into genotype-imaging phenotype relationships.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Henri Timmers
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Helali M, Moreau M, Le Fèvre C, Heimburger C, Bund C, Goichot B, Veillon F, Hubelé F, Charpiot A, Noel G, Imperiale A. 18F-FDOPA PET/CT Combined with MRI for Gross Tumor Volume Delineation in Patients with Skull Base Paraganglioma. Cancers (Basel) 2019; 11:cancers11010054. [PMID: 30626096 PMCID: PMC6360018 DOI: 10.3390/cancers11010054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022] Open
Abstract
In this simulation study, we assessed differences in gross tumor volume (GTV) in a series of skull base paragangliomas (SBPGLs) using magnetic resonance imaging (MRI), 18F-dihydroxyphenylalanine (18F-FDOPA) combined positron emission tomography/computed tomography (PET/CT), and 18F-FDOPA PET/MRI images obtained by rigid alignment of PET and MRI. GTV was delineated in 16 patients with SBPGLs on MRI (GTVMRI), 18F-FDOPA PET/CT (GTVPET), and combined PET/MRI (GTVPET/MRI). GTVPET/MRI was the union of GTVMRI and GTVPET after visual adjustment. Three observers delineated GTVMRI and GTVPET/MRI independently. Excellent interobserver reproducibility was found for both GTVMRI and GTVPET/MRI. GTVPET and GTVMRI were not significantly different. However, there was some spatial difference between the locations of GTVMRI, GTVPET, and GTVPET/MRI. The Dice similarity coefficient median value was 0.4 between PET/CT and MRI, and 0.8 between MRI and PET/MRI. The combined use of PET/MRI produced a larger GTV than MRI alone. Nevertheless, both the target-delivered dose and organs-at-risk conservancy were respected when treatment was planned on the PET/MRI-matched data set. Future integration of 18F-FDOPA PET/CT into clinical practice will be necessary to evaluate the influence of this diagnostic modality on SBPGL therapeutic management. If the clinical utility of 18F-FDOPA PET/CT and/or PET/MRI is confirmed, GTVPET/MRI should be considered for tailored radiotherapy planning in patients with SBPGL.
Collapse
Affiliation(s)
- Mehdi Helali
- Biophysics and Nuclear Medicine, University Hospitals of Strasbourg, 67098 Strasbourg, France.
| | - Matthieu Moreau
- Radiophysics, Centre Paul-Strauss, UNICANCER, 67065 Strasbourg, France.
| | - Clara Le Fèvre
- Radiotherapy, Centre Paul-Strauss, 67065 Strasbourg, France.
| | - Céline Heimburger
- Biophysics and Nuclear Medicine, University Hospitals of Strasbourg, 67098 Strasbourg, France.
- ICube, University of Strasbourg/CNRS (UMR 7357) and FMTS, Faculty of Medicine, 67000 Strasbourg, France.
| | - Caroline Bund
- Biophysics and Nuclear Medicine, University Hospitals of Strasbourg, 67098 Strasbourg, France.
- ICube, University of Strasbourg/CNRS (UMR 7357) and FMTS, Faculty of Medicine, 67000 Strasbourg, France.
| | - Bernard Goichot
- Internal Medicine, University Hospitals of Strasbourg, Strasbourg University, 67098 Strasbourg, France.
| | - Francis Veillon
- Radiology, University Hospitals of Strasbourg, Strasbourg University, 67098 Strasbourg, France.
| | - Fabrice Hubelé
- Biophysics and Nuclear Medicine, University Hospitals of Strasbourg, 67098 Strasbourg, France.
- ICube, University of Strasbourg/CNRS (UMR 7357) and FMTS, Faculty of Medicine, 67000 Strasbourg, France.
| | - Anne Charpiot
- Otolaryngology and Maxillofacial Surgery, University Hospitals of Strasbourg, 67098 Strasbourg, France.
| | - Georges Noel
- Radiotherapy, Centre Paul-Strauss, 67065 Strasbourg, France.
- Université de Strasbourg, CNRS, IPHC UMR 7178, Centre Paul Strauss, UNICANCER, 67065 Strasbourg, France.
| | - Alessio Imperiale
- Biophysics and Nuclear Medicine, University Hospitals of Strasbourg, 67098 Strasbourg, France.
- ICube, University of Strasbourg/CNRS (UMR 7357) and FMTS, Faculty of Medicine, 67000 Strasbourg, France.
| |
Collapse
|
10
|
Fluorine-18 labeled amino acids for tumor PET/CT imaging. Oncotarget 2017; 8:60581-60588. [PMID: 28947996 PMCID: PMC5601164 DOI: 10.18632/oncotarget.19943] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Tumor glucose metabolism and amino acid metabolism are usually enhanced, 18F-FDG for tumor glucose metabolism PET imaging has been clinically well known, but tumor amino acid metabolism PET imaging is not clinically familiar. Radiolabeled amino acids (AAs) are an important class of PET/CT tracers that target the upregulated amino acid transporters to show elevated amino acid metabolism in tumor cells. Radiolabeled amino acids were observed to have high uptake in tumor cells but low in normal tissues and inflammatory tissues. The radionuclides used in labeling amino acids include 15O, 13N, 11C, 123I, 18F and 68Ga, among which the most commonly used is 18F [1]. Available data support the use of certain 18F-labeled AAs for PET/CT imaging of gliomas, neuroendocrine tumors, prostate cancer and breast cancer [2, 3]. With the progress of the method of 18F labeling AAs [4-6], 18F-labeled AAs are well established for tumor PET/CT imaging. This review focuses on the current status of key clinical applications of 18F-labeled AAs in tumor PET/CT imaging.
Collapse
|