1
|
Houda Baghous NE, Kafhali ME, Tahmasbi M, Chakir EM, Kessioui AE, Elkhatib A, Sebihi R. Evaluating long-term performance and quality control of the uMI 550 positron emission tomography- computed tomography (PET-CT) system: A comprehensive scientific analysis. Radiography (Lond) 2025; 31:102920. [PMID: 40117731 DOI: 10.1016/j.radi.2025.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Ensuring the long-term performance and reliability of positron emission tomography-computed tomography (PET-CT) systems is essential for accurate clinical diagnostics and treatment planning. This study provides a comprehensive analysis of the periodic quality control (QC) processes of the uMI 550 PET-CT system, focusing on key performance parameters such as standardized uptake value (SUV) accuracy, spatial alignment, and image uniformity. METHODS Periodic semi-annual QC tests were conducted to evaluate the system's performance across multiple parameters. Key metrics included SUV measurements, spatial alignment across X, Y, and Z axes, and uniformity tests. Statistical analyses assessed variability and stability over time, including ANOVA, t-tests, and linear regression. RESULTS The results demonstrated consistent SUV measurements within the reference range of 0.95-1.05, indicating robust quantitative accuracy. Spatial alignment was maintained within a tolerance of -1.5 mm to +1.5 mm, ensuring geometric integrity crucial for accurate image fusion in radiotherapy planning. Uniformity tests showed transverse and axial uniformity values remained within acceptable limits (0.00-0.05), ensuring high-quality imaging across the field of view. Statistical analyses confirmed no significant drift or variability across QC intervals, highlighting the system's reliability over time. CONCLUSION The uMI 550 PET-CT system demonstrated consistent performance across critical parameters, validating its suitability for a wide range of clinical applications. Regular QC testing plays a vital role in maintaining system accuracy and reliability. IMPLICATIONS FOR PRACTICE This study underscores the importance of routine quality control procedures in ensuring the long-term stability and reliability of PET-CT systems. The robust performance of the uMI 550 supports its use in oncology and other diagnostic fields, providing clinicians with confidence in treatment decisions.
Collapse
Affiliation(s)
- N El Houda Baghous
- Laboratory of Material Physics and Subatomic, Department of Physics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - M El Kafhali
- Physical Sciences and Engineering, Innovative Research and Applied Physics (IRAP), Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.
| | - M Tahmasbi
- Department of Radiologic Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - E M Chakir
- Laboratory of Material Physics and Subatomic, Department of Physics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | | | - A Elkhatib
- Health Sciences and Technology Laboratory, Higher Institute of Health Sciences, Hassan 1(er) University, Settat, Morocco
| | - R Sebihi
- Department of Physics, High Energy Physics Laboratory- Modeling and Simulation (HEPL-MS), Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
2
|
Chen YH, Lue KH, Chu SC, Lin CB, Liu SH. The value of 18F-fluorodeoxyglucose positron emission tomography-based radiomics in non-small cell lung cancer. Tzu Chi Med J 2025; 37:17-27. [PMID: 39850392 PMCID: PMC11753514 DOI: 10.4103/tcmj.tcmj_124_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 01/25/2025] Open
Abstract
Currently, the second most commonly diagnosed cancer in the world is lung cancer, and 85% of cases are non-small cell lung cancer (NSCLC). With growing knowledge of oncogene drivers and cancer immunology, several novel therapeutics have emerged to improve the prognostic outcomes of NSCLC. However, treatment outcomes remain diverse, and an accurate tool to achieve precision medicine is an unmet need. Radiomics, a method of extracting medical imaging features, is promising for precision medicine. Among all radiomic tools, 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET)-based radiomics provides distinct information on glycolytic activity and heterogeneity. In this review, we collected relevant literature from PubMed and summarized the various applications of 18F-FDG PET-derived radiomics in improving the detection of metastasis, subtyping histopathologies, characterizing driver mutations, assessing treatment response, and evaluating survival outcomes of NSCLC. Furthermore, we reviewed the values of 18F-FDG PET-based deep learning. Finally, several challenges and caveats exist in the implementation of 18F-FDG PET-based radiomics for NSCLC. Implementing 18F-FDG PET-based radiomics in clinical practice is necessary to ensure reproducibility. Moreover, basic studies elucidating the underlying biological significance of 18F-FDG PET-based radiomics are lacking. Current inadequacies hamper immediate clinical adoption; however, radiomic studies are progressively addressing these issues. 18F-FDG PET-based radiomics remains an invaluable and indispensable aspect of precision medicine for NSCLC.
Collapse
Affiliation(s)
- Yu-Hung Chen
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University, Hualien, Taiwan
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Bin Lin
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shu-Hsin Liu
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
3
|
Tsuzura K, Wagatsuma K, Kamitaka Y, Miwa K, Miyaji N, Kamiya T, Yokotsuka N, Ishii K. Phantom test procedures for a new neuro-oncological amino acid PET tracer: [ 18F]fluciclovine. Ann Nucl Med 2025; 39:21-30. [PMID: 39207631 DOI: 10.1007/s12149-024-01973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Amino acid positron emission tomography (PET) examinations using anti-1-amino-3-[18F]-fluorocyclobutane-1-carboxylic acid ([18F]FACBC) were allowed for routine clinical use in July 2024. However, phantom test procedures for [18F]FACBC reconstruction parameters have not yet been established. The present study aimed to establish new phantom test procedures for [18F]FACBC brain PET imaging to determine optimal reconstruction parameters. METHODS Background (BG) activity as well as hot sphere and target-to-background ratios (TBRs) of [18F]FACBC were estimated based on brain activity and tumor-to-normal tissue ratios (TNR) in a Japanese clinical trial of [18F]FACBC. Phantom experiments proceeded under [18F]FACBC or L-[methyl-11C]-methionine ([11C]MET) conditions. The number of iterations and the Gaussian filter parameters were determined from the reconstruction parameters %contrastmean and coefficients of variation (CVs) in ordered subset expectation maximization (OSEM) and time-of-flight (TOF) with or without point-spread-function (PSF) correction. RESULTS The amounts of activity in the hot spheres and BG were 1.1 and 5.5 kBq/mL, respectively, and the TBR was 5.0 at the start of acquisition. The %contrastmean of all hot spheres was higher with [18F]FACBC than [11C]MET, and %contrastmean converged between 4 and 6 iterations in hot spheres with diameters < 10 mm. We used four iterations for OSEM + TOF and five for OSEM + TOF + PSF correction for [18F]FACBC and [11C]MET images. The CV was higher for [18F]FACBC than [11C]MET. The optimal sizes of Gaussian filters for OSEM + TOF and OSEM + TOF + PSF correction of image reconstruction were 5 mm for [18F]FACBC, and 4 and 3 mm, respectively, for [11C]MET images. CONCLUSIONS We estimated phantom activity and TBR based on brain activity in a Japanese clinical trial and established new phantom test procedures for [18F]FACBC. We recommend that the optimal reconstruction parameters for [18F]FACBC should be set to the same number of iterations as [11C]MET and that the FWHM of Gaussian filter should have a few mm higher than [11C]MET to reduce image noise from brain normal tissue.
Collapse
Affiliation(s)
- Kaede Tsuzura
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kei Wagatsuma
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-Cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-Cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima, 960-8516, Japan
| | - Noriaki Miyaji
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima, 960-8516, Japan
| | - Takashi Kamiya
- Department of Medical Technology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriyo Yokotsuka
- Faculty of Medical Technology, Department of Radiological Technology, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-Cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
4
|
Fukuda S, Wagatsuma K, Miwa K, Yakushiji Y, Kamitaka Y, Yamao T, Miyaji N, Ishii K. Optimization of penalization function in Bayesian penalized likelihood reconstruction algorithm for [ 18F]flutemetamol amyloid PET images. Phys Eng Sci Med 2024; 47:1627-1637. [PMID: 39133373 DOI: 10.1007/s13246-024-01476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Point-spread-function (PSF) correction is not recommended for amyloid PET images due to Gibbs artifacts. Q.Clear™, a Bayesian Penalized Likelihood (BPL) reconstruction method without incorporating PSF correction reduces these artifacts but degrades image contrast by our previous findings. The present study aimed to recover lost contrast by optimizing reconstruction parameters in time-of-flight (TOF) BPL reconstruction of amyloid PET images without PSF correction. We selected candidate conditions based on a phantom study and then determined which were optimal in a clinical study. Phantom images were reconstructed under conditions of 1‒9 iterations, β 300-1000 and γ factors from 2 to 10 in TOF-BPL without PSF correction. We evaluated the %contrast and the coefficients of variation (CV, %). Standardized uptake value ratios (SUVr) and Centiloid scales (CL) were calculated from PET images acquired from 71 participants after an [18F]flutemetamol injection. Both %contrast and CV were independent of iterations, whereas a trade-off was found between γ factors and β. We selected a γ factors of 5 without PSF correction (iterations, 1; β, 500) and of 10 without PSF correction (iterations, 1; β, 800) as candidates for clinical investigation. The SUVr and CL remained stable across various conditions, and CL scales effectively discriminated amyloid PET using measured values. The optimal reconstruction parameters of TOF-BPL for [18F]flutemetamol PET images were γ factor 10, iterations 1 and β 800, without PSF correction.
Collapse
Affiliation(s)
- Shohei Fukuda
- Medical Engineering, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kei Wagatsuma
- Medical Engineering, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima, 960-8516, Japan
| | - Yu Yakushiji
- Medical Engineering, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima, 960-8516, Japan
| | - Noriaki Miyaji
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima, 960-8516, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
5
|
Calatayud-Jordán J, Carrasco-Vela N, Chimeno-Hernández J, Carles-Fariña M, Olivas-Arroyo C, Bello-Arqués P, Pérez-Enguix D, Martí-Bonmatí L, Torres-Espallardo I. Y-90 PET/MR imaging optimization with a Bayesian penalized likelihood reconstruction algorithm. Phys Eng Sci Med 2024; 47:1397-1413. [PMID: 38884672 DOI: 10.1007/s13246-024-01452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Positron Emission Tomography (PET) imaging after90 Y liver radioembolization is used for both lesion identification and dosimetry. Bayesian penalized likelihood (BPL) reconstruction algorithms are an alternative to ordered subset expectation maximization (OSEM) with improved image quality and lesion detectability. The investigation of optimal parameters for90 Y image reconstruction of Q.Clear, a commercial BPL algorithm developed by General Electric (GE), in PET/MR is a field of interest and the subject of this study. The NEMA phantom was filled at an 8:1 sphere-to-background ratio. Acquisitions were performed on a PET/MR scanner for clinically relevant activities between 0.7 and 3.3 MBq/ml. Reconstructions with Q.Clear were performed varying the β penalty parameter between 20 and 6000, the acquisition time between 5 and 20 min and pixel size between 1.56 and 4.69 mm. OSEM reconstructions of 28 subsets with 2 and 4 iterations with and without Time-of-Flight (TOF) were compared to Q.Clear with β = 4000. Recovery coefficients (RC), their coefficient of variation (COV), background variability (BV), contrast-to-noise ratio (CNR) and residual activity in the cold insert were evaluated. Increasing β parameter lowered RC, COV and BV, while CNR was maximized at β = 4000; further increase resulted in oversmoothing. For quantification purposes, β = 1000-2000 could be more appropriate. Longer acquisition times resulted in larger CNR due to reduced image noise. Q.Clear reconstructions led to higher CNR than OSEM. A β of 4000 was obtained for optimal image quality, although lower values could be considered for quantification purposes. An optimal acquisition time of 15 min was proposed considering its clinical use.
Collapse
Affiliation(s)
- José Calatayud-Jordán
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Carrasco-Vela
- Radiophysics and Radiological Protection Service, Clinical University Hospital of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - José Chimeno-Hernández
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Montserrat Carles-Fariña
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Consuelo Olivas-Arroyo
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Pilar Bello-Arqués
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Daniel Pérez-Enguix
- Department of Radiology, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Department of Radiology, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Irene Torres-Espallardo
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| |
Collapse
|
6
|
Hashimoto H, Kuronuma K, Hyun MC, Han D, Builoff V, Cadet S, Dey D, Berman DS, Kwiecinski J, Slomka PJ. Head-to-head comparison of 18F-sodium fluoride coronary PET imaging between a silicon photomultiplier with digital photon counting and conventional scanners. J Nucl Cardiol 2024; 42:102045. [PMID: 39343355 PMCID: PMC11964467 DOI: 10.1016/j.nuclcard.2024.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND We compared silicone photomultipliers with digital photon counting (SiPM) and photomultiplier tubes (PMT) positron emission tomography (PET) in imaging coronary plaque activity with 18F-sodium fluoride (18F-NaF) and evaluated comprehensively SiPM PET reconstruction settings. METHODS In 25 cardiovascular disease patients (mean age 67 ± 12 years), we conducted 18F-NaF PET on a SiPM (Biograph Vision) and conventional PET (Discovery 710) on the same day as part of a prospective clinical trial (NCT03689946). Following administration of 250 MBq of 18F-NaF, patients underwent a contrast-enhanced CT angiography and a 30-min PET acquisition in list-mode on each PET consecutively. Image noise was defined as mean standard deviation of blood pool activity within the left atria. Target-to-background ratio (TBR) and signal-to-noise ratio (SNR) were measured within the whole-vessel tubular three-dimensional volumes of interest on the cardiac motion and attenuation-corrected 18F-NaF PET images using dedicated software. RESULTS There were significant differences in image noise and background activity between the two PETs (Image noise (%), PMT: 7.6 ± 3.7 vs SiPM: 4.0 ± 2.3, P < 0.001; background activity, PMT: 1.4 ± 0.4 vs SiPM: 1.0 ± 0.3, P < 0.001). Similarly, the SNR and TBR were significantly higher in vessels scanned with the SiPM PET (SNR, PMT: 16.3 ± 11.5 vs SiPM: 32.7 ± 29.8, P < 0.001; TBR, PMT: 0.8 ± 0.4 vs SiPM: 1.1 ± 0.6, P < 0.001). SiPM PET image reconstruction with a 256 matrix, 1.4 mm pixel, and 2 mm Gaussian filter provided best trade off in terms of maximal SNR, TBR, and clinically practical file size. CONCLUSIONS In 18F-NaF coronary PET imaging, the SiPM PET showed superior image contrast and less image noise compared with PMT PET.
Collapse
Affiliation(s)
- Hidenobu Hashimoto
- Department of Medicine, Division of Artificial Intelligence in Medicine, Imaging, and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keiichiro Kuronuma
- Department of Medicine, Division of Artificial Intelligence in Medicine, Imaging, and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Cardiology, Nihon University, Tokyo, Japan
| | - Mark C Hyun
- Department of Medicine, Division of Artificial Intelligence in Medicine, Imaging, and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Donghee Han
- Department of Medicine, Division of Artificial Intelligence in Medicine, Imaging, and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Valerie Builoff
- Department of Medicine, Division of Artificial Intelligence in Medicine, Imaging, and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sebastian Cadet
- Department of Medicine, Division of Artificial Intelligence in Medicine, Imaging, and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Department of Medicine, Division of Artificial Intelligence in Medicine, Imaging, and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Berman
- Department of Medicine, Division of Artificial Intelligence in Medicine, Imaging, and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Kwiecinski
- Department of Medicine, Division of Artificial Intelligence in Medicine, Imaging, and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr J Slomka
- Department of Medicine, Division of Artificial Intelligence in Medicine, Imaging, and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Mohymen AA, Farag HI, Reda SM, Monem AS, Ali SA. Investigating the Impact of Voxel Size and Postfiltering on Quantitative Analysis of Positron Emission Tomography/Computed Tomography: A Phantom Study. J Med Phys 2024; 49:597-607. [PMID: 39926131 PMCID: PMC11801078 DOI: 10.4103/jmp.jmp_123_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 02/11/2025] Open
Abstract
Aim This study aims to investigate the influence of voxel size and postfiltering on the quantification of standardized uptake value (SUV) in positron emission tomography/computed tomography (PET/CT) images. Materials and Methods National Electrical Manufacturers Association phantom with the spheres of different sizes were utilized to simulate the lesions. The phantom was scanned using a PET/CT scanner, and the acquired images were reconstructed using two different matrix sizes, (192 × 192) and (256 × 256), and a wide range of postfiltering values. Results The findings demonstrated that postfiltering significantly affected SUV measurements. The changes in postfiltering values can result in overestimation or underestimation of SUV values, highlighting the importance of carefully selecting appropriate filters. Increasing the matrix size improved SUVmax and SUVmean values, particularly for small-sized spheres. Smaller voxel reconstructions slightly reduced partial volume effects and partially enhanced SUV quantification. Conclusions Careful consideration of postfiltering values and matrix size selection can lead to better SUV quantification. These findings emphasize the need to optimize the reconstruction parameters to enhance the clinical utility of PET/CT in detecting and evaluating malignant lesions.
Collapse
Affiliation(s)
- Ahmed Abdel Mohymen
- Department of Nuclear Medicine and Radiation Therapy, National Cancer Institute, Cairo University, Giza, Egypt
| | - Hamed Ibrahim Farag
- Department of Nuclear Medicine and Radiation Therapy, National Cancer Institute, Cairo University, Giza, Egypt
| | - Sameh M. Reda
- Department of Radiometry, National Institute of Standards, Giza, Egypt
| | - Ahmed Soltan Monem
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Said A. Ali
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Pu Y, Penney BC, Zhang J, Little K, Simon CA, Feinberg N, Zhang MH, Hwang G, Appelbaum DE. Comparison of Measurement and Prognostic Power of SUV Between High-Definition and Standard PET Imaging in Non-Small Cell Lung Cancer Patients. J Nucl Med Technol 2024; 52:229-233. [PMID: 39019575 DOI: 10.2967/jnmt.124.267684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 07/19/2024] Open
Abstract
This study aimed to evaluate the measurement and prognostic ability of the SUVmax of whole-body tumors (SUVmaxwb) in non-small cell lung cancer (NSCLC) patients, comparing high-definition (HD) PET imaging with standard-definition (SD) PET imaging. Methods: The study included 242 consecutive NSCLC patients who underwent baseline 18F-FDG PET/CT from April 2018 to January 2021. Two imaging techniques were used: HD PET (using ordered-subsets expectation maximization with point-spread function modeling and time-of-flight techniques and smaller voxels) and SD PET (with ordered-subsets expectation maximization and time-of-flight techniques). SUVmaxwb was determined by measuring all the tumor lesions in the whole body, and tumor-to-background ratio (TBR) was calculated using the background SUVmean of various body parts. Results: The patient cohort had an average age of 68.3 y, with 59.1% being female. During a median follow-up of 29.6 mo, 83 deaths occurred. SUVmaxwb was significantly higher in HD PET than SD PET, with respective medians of 17.4 and 11.8. The TBR of 1,125 tumoral lesions was also higher in HD PET. Univariate Cox regression analysis showed that SUVmaxwb from both HD and SD PET were significantly associated with overall survival. However, after adjusting for TNM (tumor, node, metastasis) stage, only SUVmaxwb from SD PET remained significantly associated with survival. Conclusion: HD PET imaging in NSCLC patients yields higher SUVmaxwb and TBR, enhancing tumor visibility. Despite this, its prognostic value is less significant than SD PET after adjusting clinical TNM stage. Thus, consideration should be given to using HD PET reconstruction to increase tumor visibility, and SD PET is recommended for NSCLC patient prognostication and therapeutic evaluation, as well as for the classification of lung nodules.
Collapse
Affiliation(s)
- Yonglin Pu
- Department of Radiology, University of Chicago, Chicago, Illinois;
| | - Bill C Penney
- Department of Radiology, University of Chicago, Chicago, Illinois
| | - Jingmian Zhang
- Fourth Hospital of Hebei Medical University, Shijiazhuang, China; and
| | - Kevin Little
- Department of Radiology, University of Chicago, Chicago, Illinois
| | - Cassie A Simon
- Cancer Registry, University of Chicago, Chicago, Illinois
| | | | | | - Gloria Hwang
- Department of Radiology, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
9
|
Parry R, Wright K, Bellinge JW, Ebert MA, Rowshanfarzad P, Francis RJ, Schultz CJ. Training and assessing convolutional neural network performance in automatic vascular segmentation using Ga-68 DOTATATE PET/CT. Int J Cardiovasc Imaging 2024; 40:1847-1861. [PMID: 38967895 PMCID: PMC11473569 DOI: 10.1007/s10554-024-03171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
To evaluate a convolutional neural network's performance (nnU-Net) in the assessment of vascular contours, calcification and PET tracer activity using Ga-68 DOTATATE PET/CT. Patients who underwent Ga-68 DOTATATE PET/CT imaging over a 12-month period for neuroendocrine investigation were included. Manual cardiac and aortic segmentations were performed by an experienced observer. Scans were randomly allocated in ratio 64:16:20 for training, validation and testing of the nnU-Net model. PET tracer uptake and calcium scoring were compared between segmentation methods and different observers. 116 patients (53.5% female) with a median age of 64.5 years (range 23-79) were included. There were strong, positive correlations between all segmentations (mostly r > 0.98). There were no significant differences between manual and AI segmentation of SUVmean for global cardiac (mean ± SD 0.71 ± 0.22 vs. 0.71 ± 0.22; mean diff 0.001 ± 0.008, p > 0.05), ascending aorta (mean ± SD 0.44 ± 0.14 vs. 0.44 ± 0.14; mean diff 0.002 ± 0.01, p > 0.05), aortic arch (mean ± SD 0.44 ± 0.10 vs. 0.43 ± 0.10; mean diff 0.008 ± 0.16, p > 0.05) and descending aorta (mean ± SD < 0.001; 0.58 ± 0.12 vs. 0.57 ± 0.12; mean diff 0.01 ± 0.03, p > 0.05) contours. There was excellent agreement between the majority of manual and AI segmentation measures (r ≥ 0.80) and in all vascular contour calcium scores. Compared with the manual segmentation approach, the CNN required a significantly lower workflow time. AI segmentation of vascular contours using nnU-Net resulted in very similar measures of PET tracer uptake and vascular calcification when compared to an experienced observer and significantly reduced workflow time.
Collapse
Affiliation(s)
- R Parry
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Cardiology, Royal Perth Hospital, Perth, Australia.
| | - K Wright
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
| | - J W Bellinge
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - M A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
- School of Medicine and Population Health, University of Wisconsin, Madison, WI, USA
| | - P Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
| | - R J Francis
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - C J Schultz
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
10
|
Jain A, Usmani S, Al Riyami K, Mittal A, Abubakar S, Al Busaidi A, Kheruka SC, Al Sukaiti R. High Physiological 18 F-FDG Uptake in Normal Pituitary Gland on Digital PET Scanner. World J Nucl Med 2024; 23:161-167. [PMID: 39170838 PMCID: PMC11335388 DOI: 10.1055/s-0044-1786733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Purpose Recently developed digital positron emission tomography/computed tomography (PET/CT) scanners (digital PET [dPET]) have given new dimensions to molecular imaging. dPET scanner has very high sensitivity, spatial resolution, and image contrast that leads to increased uptake of signal in small-volume structures like pituitary gland (PG) making them visible on PET/CT scan even in absence of any pathology. Adequate knowledge of physiological fluoro-2 deoxy D glucose uptake in PG is required in interpretation of dPET for correct diagnosis and reducing unnecessary additional imaging. The aim of this study is to evaluate the frequency of physiological PG uptake on dPET. Material and Methods Eighty-eight subjects (mean age, 54.44 ± 14.18 years; range, 26-84 years; 63 females and 25 males) with normal PG on magnetic resonance imaging brain and imaged within 6 months on dPET were included in this research study. Out of 88 patients, 20 control subjects (mean age, 58.15 ± 11.08 years: 15 females and 5 males) underwent PET/CT on conventional PET. All images were acquired with similar and standard acquisition protocol and reconstruction done with Time of flight with Point spread function. PG uptake was compared visually and quantitatively. Results PG uptake was seen in 43 patients (48.8%). Out of 43 patients, 31 (72%) showed low uptake, 11 (26%) showed intermediate grade of uptake, and 1 patient (2%) showed intermediate-to-high uptake and was categorized as high-grade uptake. In the control group of 20 patients, 3 (15%) showed low uptake, while none of them showed intermediate or high uptake. Conclusion Physiological PG uptake is commonly seen on dPET. Low-to-intermediate grade of PG uptake on dPET in an asymptomatic patient is physiological and does not require further evaluation and should be reported with caution.
Collapse
Affiliation(s)
- Anjali Jain
- Department of Radiology & Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care, and Research Center, Muscat, Oman
| | - Sharjeel Usmani
- Department of Radiology & Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care, and Research Center, Muscat, Oman
| | - Khulood Al Riyami
- Department of Radiology & Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care, and Research Center, Muscat, Oman
| | - Avni Mittal
- Department of Radiology & Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care, and Research Center, Muscat, Oman
| | - Sofiullah Abubakar
- Department of Radiology & Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care, and Research Center, Muscat, Oman
| | - Asiya Al Busaidi
- Department of Radiology & Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care, and Research Center, Muscat, Oman
| | - Subhash Chand Kheruka
- Department of Radiology & Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care, and Research Center, Muscat, Oman
| | - Rashid Al Sukaiti
- Department of Radiology & Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care, and Research Center, Muscat, Oman
| |
Collapse
|
11
|
Dzuko Kamga J, Floch R, Kerleguer K, Bourhis D, Le Pennec R, Hennebicq S, Salaün PY, Abgral R. Case-control study of the characteristics and risk factors of hot clot artefacts on 18F-FDG PET/CT. Cancer Imaging 2024; 24:114. [PMID: 39192363 DOI: 10.1186/s40644-024-00760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
INTRODUCTION The pulmonary Hot Clot artifact (HCa) on 18F-FDG PET/CT is a poorly understood phenomenon, corresponding to the presence of a focal tracer uptake without anatomical lesion on combined CTscan. The hypothesis proposed in the literature is of microembolic origin. Our objectives were to determine the incidence of HCa, to analyze its characteristics and to identify associated factors. METHODS All 18F-FDG PET/CT retrieved reports containing the keywords (artifact/vascular adhesion/no morphological abnormality) during the period June 2021-2023 at Brest University Hospital were reviewed for HCa. Each case was associated with 2 control patients (same daily work-list). The anatomical and metabolic characteristics of HCa were analyzed. Factors related to FDG preparation/administration, patient and vascular history were investigated. Case-control differences between variables were tested using Chi-2 test and OR (qualitative) or Student's t-test (quantitative). RESULTS Of the 22,671 18F-FDG PET/CT performed over 2 years, 211 patients (0.94%) showed HCa. The focus was single in 97.6%, peripheral in 75.3%, and located independently in the right or left lung (51.1% vs. 48.9%). Mean ± SD values for SUVmax, SUVmean, MTV and TLG were 11.3 ± 16.5, 5.1 ± 5.0, 0.3 ± 0.3 ml and 1.5 ± 2.1 g respectively. The presence of vascular adhesion (p < 0.001), patient age (p = 0.002) and proximal venous access (p = 0.001) were statistically associated with the presence of HCa. CONCLUSION HCa is a real but rare phenomenon (incidence around 1%), mostly unique, intense, small in volume (< 1 ml), and associated with the presence of vascular FDG uptake, confirming the hypothesis of a microembolic origin due to probable vein wall trauma at the injection site.
Collapse
Affiliation(s)
- Jacques Dzuko Kamga
- Nuclear Medicine Department, CHRU Brest, Boulevard Tanguy Prigent, Brest, France.
| | - Romain Floch
- Nuclear Medicine Department, CHRU Brest, Boulevard Tanguy Prigent, Brest, France
| | - Kevin Kerleguer
- Nuclear Medicine Department, CHRU Brest, Boulevard Tanguy Prigent, Brest, France
| | - David Bourhis
- Nuclear Medicine Department, CHRU Brest, Boulevard Tanguy Prigent, Brest, France
- UMR Inserm GETBO 1304, University of Western Brittany, Brest, France
| | - Romain Le Pennec
- Nuclear Medicine Department, CHRU Brest, Boulevard Tanguy Prigent, Brest, France
- UMR Inserm GETBO 1304, University of Western Brittany, Brest, France
| | - Simon Hennebicq
- Nuclear Medicine Department, CHRU Brest, Boulevard Tanguy Prigent, Brest, France
| | - Pierre-Yves Salaün
- Nuclear Medicine Department, CHRU Brest, Boulevard Tanguy Prigent, Brest, France
- UMR Inserm GETBO 1304, University of Western Brittany, Brest, France
| | - Ronan Abgral
- Nuclear Medicine Department, CHRU Brest, Boulevard Tanguy Prigent, Brest, France.
- UMR Inserm GETBO 1304, University of Western Brittany, Brest, France.
| |
Collapse
|
12
|
Lue KH, Chen YH, Chu SC, Lin CB, Wang TF, Liu SH. Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study. Ann Nucl Med 2024; 38:647-658. [PMID: 38704786 DOI: 10.1007/s12149-024-01936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To investigate the prognostic value of 18F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment. METHODS We retrospectively analyzed the pre-treatment 18F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog (n = 166) and digital (n = 51) PET cohorts. 18F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively. RESULTS In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUVmax, metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, p < 0.001) and digital PET cohorts (HR = 1.284, p = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, p < 0.001, c-index = 0.708 and HR = 1.256, p = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively). CONCLUSIONS Combining 18F-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.
Collapse
Affiliation(s)
- Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, No.880, Sec.2, Chien-kuo Rd., Hualien, 970302, Taiwan
| | - Yu-Hung Chen
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, No.880, Sec.2, Chien-kuo Rd., Hualien, 970302, Taiwan.
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.707, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan.
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan.
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
- Department of Hematology and Oncology, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Chih-Bin Lin
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
- Department of Internal Medicine, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tso-Fu Wang
- School of Medicine, College of Medicine, Tzu Chi University, No.701, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
- Department of Hematology and Oncology, Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Shu-Hsin Liu
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, No.880, Sec.2, Chien-kuo Rd., Hualien, 970302, Taiwan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No.707, Sec.3, Zhongyang Rd, Hualien, 970473, Taiwan
| |
Collapse
|
13
|
Sartoretti T, Skawran S, Gennari AG, Maurer A, Euler A, Treyer V, Sartoretti E, Waelti S, Schwyzer M, von Schulthess GK, Burger IA, Huellner MW, Messerli M. Fully automated computational measurement of noise in positron emission tomography. Eur Radiol 2024; 34:1716-1723. [PMID: 37644149 PMCID: PMC10873217 DOI: 10.1007/s00330-023-10056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES To introduce an automated computational algorithm that estimates the global noise level across the whole imaging volume of PET datasets. METHODS [18F]FDG PET images of 38 patients were reconstructed with simulated decreasing acquisition times (15-120 s) resulting in increasing noise levels, and with block sequential regularized expectation maximization with beta values of 450 and 600 (Q.Clear 450 and 600). One reader performed manual volume-of-interest (VOI) based noise measurements in liver and lung parenchyma and two readers graded subjective image quality as sufficient or insufficient. An automated computational noise measurement algorithm was developed and deployed on the whole imaging volume of each reconstruction, delivering a single value representing the global image noise (Global Noise Index, GNI). Manual noise measurement values and subjective image quality gradings were compared with the GNI. RESULTS Irrespective of the absolute noise values, there was no significant difference between the GNI and manual liver measurements in terms of the distribution of noise values (p = 0.84 for Q.Clear 450, and p = 0.51 for Q.Clear 600). The GNI showed a fair to moderately strong correlation with manual noise measurements in liver parenchyma (r = 0.6 in Q.Clear 450, r = 0.54 in Q.Clear 600, all p < 0.001), and a fair correlation with manual noise measurements in lung parenchyma (r = 0.52 in Q.Clear 450, r = 0.33 in Q.Clear 600, all p < 0.001). Classification performance of the GNI for subjective image quality was AUC 0.898 for Q.Clear 450 and 0.919 for Q.Clear 600. CONCLUSION An algorithm provides an accurate and meaningful estimation of the global noise level encountered in clinical PET imaging datasets. CLINICAL RELEVANCE STATEMENT An automated computational approach that measures the global noise level of PET imaging datasets may facilitate quality standardization and benchmarking of clinical PET imaging within and across institutions. KEY POINTS • Noise is an important quantitative marker that strongly impacts image quality of PET images. • An automated computational noise measurement algorithm provides an accurate and meaningful estimation of the global noise level encountered in clinical PET imaging datasets. • An automated computational approach that measures the global noise level of PET imaging datasets may facilitate quality standardization and benchmarking as well as protocol harmonization.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Stephan Skawran
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Antonio G Gennari
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Alexander Maurer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - André Euler
- University of Zurich, Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elisabeth Sartoretti
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Stephan Waelti
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Radiology and Nuclear Medicine, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Moritz Schwyzer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Gustav K von Schulthess
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, Kantonsspital Baden, Baden, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Qi C, Sui X, Yu H, Wang S, Hu Y, Sun H, Yang X, Wang Y, Zhou Y, Shi H. Phantom study and clinical application of total-body 18F-FDG PET/CT imaging: How to use small voxel imaging better? EJNMMI Phys 2024; 11:17. [PMID: 38358541 PMCID: PMC10869323 DOI: 10.1186/s40658-023-00597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/28/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Conventional PET/CT imaging reconstruction is typically performed using voxel size of 3.0-4.0 mm in three axes. It is hypothesized that a smaller voxel sizes could improve the accuracy of small lesion detection. This study aims to explore the advantages and conditions of small voxel imaging on clinical application. METHODS Both NEMA IQ phantom and 30 patients with an injected dose of 3.7 MBq/kg were scanned using a total-body PET/CT (uEXPLORER). Images were reconstructed using matrices of 192 × 192, 512 × 512, and 1024 × 1024 with scanning duration of 3 min, 5 min, 8 min, and 10 min, respectively. RESULTS In the phantom study, the contrast recovery coefficient reached the maximum in matrix group of 512 × 512, and background variability increased as voxel size decreased. In the clinical study, SUVmax, SD, and TLR increased, while SNR decreased as the voxel size decreased. When the scanning duration increased, SNR increased, while SUVmax, SD, and TLR decreased. The SUVmean was more reluctant to the changes in imaging matrix and scanning duration. The mean subjective scores for all 512 × 512 groups and 1024 × 1024 groups (scanning duration ≥ 8 min) were over three points. One false-positive lesion was found in groups of 512 × 512 with scanning duration of 3 min, 1024 × 1024 with 3 min and 5 min, respectively. Meanwhile, the false-negative lesions found in group of 192 × 192 with duration of 3 min and 5 min, 512 × 512 with 3 min and 1024 × 1024 with 3 min and 5 min were 5, 4, 1, 4, and 1, respectively. The reconstruction time and storage space occupation were significantly increased as the imaging matrix increased. CONCLUSIONS PET/CT imaging with smaller voxel can improve SUVmax and TLR of lesions, which is advantageous for the diagnosis of small or hypometabolic lesions if with sufficient counts. With an 18F-FDG injection dose of 3.7 MBq/kg, uEXPLORER PET/CT imaging using matrix of 512 × 512 with 5 min or 1024 × 1024 with 8 min can meet the image requirements for clinical use.
Collapse
Affiliation(s)
- Chi Qi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Xiuli Sui
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Siyang Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yan Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hongyan Sun
- Central Research Institute, United Imaging Healthcare Group Co, Ltd, Shanghai, People's Republic of China
| | - Xinlan Yang
- Central Research Institute, United Imaging Healthcare Group Co, Ltd, Shanghai, People's Republic of China
| | - Yihan Wang
- Central Research Institute, United Imaging Healthcare Group Co, Ltd, Shanghai, People's Republic of China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co, Ltd, Shanghai, People's Republic of China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People's Republic of China.
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China.
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
15
|
Watanabe S, Hirata K, Magota K, Takenaka J, Wakabayashi N, Shinyama D, Yasuda K, Homma A, Kudo K. Comparative study of physiological FDG uptake in small structures between silicon photomultiplier-based PET and conventional PET. Ann Nucl Med 2024; 38:131-138. [PMID: 37943379 DOI: 10.1007/s12149-023-01884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE Silicon photomultiplier-based positron emission tomography/computed tomography (SiPM-PET/CT) has the superior spatial resolution to conventional PET/CT (cPET/CT). This head-to-head comparison study compared the images of physiological 18F-fluorodeoxyglucose (FDG) accumulation in small-volume structures between SiPM-PET/CT and cPET/CT in patients scanned with both modalities, and we investigated whether the thresholds that are reported to be useful for differentiating physiological accumulations from malignant lesions can also be applied to SiPM-PET/CT. METHODS We enrolled 21 consecutive patients with head and neck malignancies who underwent whole-body FDG-PET/CT for initial staging or a follow-up evaluation (October 2020 to March 2022). After being injected with FDG, all patients underwent PET acquisition on both Vereos PET-CT and Gemini TF64 PET-CT systems (both Philips Healthcare) in random order. For each patient, the maximum standardized uptake value (SUVmax) was measured in the pituitary gland, esophagogastric junction (EGJ), adrenal glands, lumbar enlargement of the spinal cord, and epididymis. We measured the liver SUVmean and the blood pool SUVmean to calculate the target-to-liver ratio (TLR) and the target-to-blood ratio (TBR), respectively. Between-groups differences in each variable were examined by a paired t-test. We also investigated whether there were cases of target uptake greater than the reported threshold for distinguishing pathological from physiological accumulations. RESULTS Data were available for 19 patients. Ten patients were in Group 1, i.e., the patients who underwent SiPM-PET first, and the remaining nine patients who underwent cPET first were in Group 2. In the SiPM-PET results, the SUVmax of all targets was significantly higher than that obtained by cPET in all patients, and this tendency was also observed when the patients were divided into Groups 1/2. The TLRs of all targets were significantly higher in SiPM-PET than in cPET in all patients, and SiPM-PET also showed significantly higher TBRs for all targets except the EGJ (p = 0.052). CONCLUSIONS The physiological uptake in the small structures studied herein showed high accumulation on SiPM-PET. Our results also suggest that the thresholds reported for cPET to distinguish pathological accumulations likely lead to false-positive findings in SIPM-PET evaluations.
Collapse
Affiliation(s)
- Shiro Watanabe
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Nuclear Medicine, Hokkaido University Hospital, Kita 14 Nishi 5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
- Department of Nuclear Medicine, Hokkaido University Hospital, Kita 14 Nishi 5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan.
- Division of Medical AI Education and Research, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Keiichi Magota
- Division of Medical Imaging and Technology, Hokkaido University Hospital, Sapporo, Japan
| | - Junki Takenaka
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Nuclear Medicine, Hokkaido University Hospital, Kita 14 Nishi 5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Naoto Wakabayashi
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
- Department of Nuclear Medicine, Hokkaido University Hospital, Kita 14 Nishi 5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | | | - Koichi Yasuda
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
- Division of Medical AI Education and Research, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Maronnier Q, Robaine N, Chaltiel L, Dierickx LO, Cassou-Mounat T, Terroir M, Vija L, Vallot D, Brillouet S, Lamesa C, Filleron T, Caselles O, Courbon F. Insertion of synthetic lesions on patient data: a method for evaluating clinical performance differences between PET systems. EJNMMI Phys 2024; 11:9. [PMID: 38252388 PMCID: PMC10803700 DOI: 10.1186/s40658-023-00610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Performance assessment of positron emission tomography (PET) scanners is crucial to guide clinical practice with efficiency. We have already introduced and experimentally evaluated a simulation method allowing the creation of a controlled ground truth for system performance assessment. In the current study, the goal was to validate the method using patient data and demonstrate its relevance to assess PET performances accuracy in clinical conditions. METHODS Twenty-four patients were recruited and sorted into two groups according to their body mass index (BMI). They were administered with a single dose of 2 MBq/kg 18F-FDG and scanned using clinical protocols consecutively on two PET systems: the Discovery-IQ (DIQ) and the Discovery-MI (DMI). For each BMI group, sixty synthetic lesions were dispatched in three subgroups and inserted at relevant anatomical locations. Insertion of synthetic lesions (ISL) was performed at the same location into the two consecutive exams. Two nuclear medicine physicians evaluated individually and blindly the images by qualitatively and semi-quantitatively reporting each detected lesion and agreed on a consensus. We assessed the inter-system detection rates of synthetic lesions and compared it to an initial estimate of at least 1.7 more targets detected on the DMI and the detection rates of natural lesions. We determined the inter-reader variability, evaluated according to the inter-observer agreement (IOA). Adequate inter-reader variability was found for IOA above 80%. Differences in standardized uptake value (SUV) metrics were also studied. RESULTS In the BMI ≤ 25 group, the relative true positive rate (RTPR) for synthetic and natural lesions was 1.79 and 1.83, respectively. In the BMI > 25 group, the RTPR for synthetic and natural lesions was 2.03 and 2.27, respectively. For each BMI group, the detection rate using ISL was consistent to our estimate and with the detection rate measured on natural lesions. IOA above 80% was verified for any scenario. SUV metrics showed a good agreement between synthetic and natural lesions. CONCLUSIONS ISL proved relevant to evaluate performance differences between PET scanners. Using these synthetically modified clinical images, we can produce a controlled ground truth in a realistic anatomical model and exploit the potential of PET scanner for clinical purposes.
Collapse
Affiliation(s)
- Quentin Maronnier
- Nuclear Medicine Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France.
| | - Nesrine Robaine
- Nuclear Medicine Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Léonor Chaltiel
- Biostatistics Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Lawrence O Dierickx
- Nuclear Medicine Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Thibaut Cassou-Mounat
- Nuclear Medicine Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Marie Terroir
- Nuclear Medicine Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Lavinia Vija
- Nuclear Medicine Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Delphine Vallot
- Medical Physics Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Séverine Brillouet
- Radiopharmacy Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Chloé Lamesa
- Radiopharmacy Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Thomas Filleron
- Biostatistics Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Olivier Caselles
- Medical Physics Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Frédéric Courbon
- Nuclear Medicine Department, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| |
Collapse
|
17
|
Sousa JM, Appel L, Engström M, Nyholm D, Ahlström H, Lubberink M. Comparison of quantitative [ 11C]PE2I brain PET studies between an integrated PET/MR and a stand-alone PET system. Phys Med 2024; 117:103185. [PMID: 38042064 DOI: 10.1016/j.ejmp.2023.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
PET/MR systems demanded great efforts for accurate attenuation correction (AC) but differences in technology, geometry and hardware attenuation may also affect quantitative results. Dedicated PET systems using transmission-based AC are regarded as the gold standard for quantitative brain PET. The study aim was to investigate the agreement between quantitative PET outcomes from a PET/MR scanner against a stand-alone PET system. Nine patients with Parkinsonism underwent two 80-min dynamic PET scans with the dopamine transporter ligand [11C]PE2I. Images were reconstructed with resolution-matched settings using 68Ge-transmission (stand-alone PET), and zero-echo-time MR (PET/MR) scans for AC. Non-displaceable binding potential (BPND) and relative delivery (R1) were evaluated using volumes of interest and voxel-wise analysis. Correlations between systems were high (r ≥ 0.85) for both quantitative outcome parameters in all brain regions. Striatal BPND was significantly lower on PET/MR than on stand-alone PET (-7%). R1 was significantly overestimated in posterior cortical regions (9%) and underestimated in striatal (-9%) and limbic areas (-6%). The voxel-wise evaluation revealed that the MR-safe headphones caused a negative bias in both parametric BPND and R1 images. Additionally, a significant positive bias of R1 was found in the auditory cortex, most likely due to the acoustic background noise during MR imaging. The relative bias of the quantitative [11C]PE2I PET data acquired from a SIGNA PET/MR system was in the same order as the expected test-retest reproducibility of [11C]PE2I BPND and R1, compared to a stand-alone ECAT PET scanner. MR headphones and background noise are potential sources of error in functional PET/MR studies.
Collapse
Affiliation(s)
- João M Sousa
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
| | - Lieuwe Appel
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | - Dag Nyholm
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden; Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden; Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Mark Lubberink
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
18
|
Barloese M, Petersen CL. Sustainable health care: a real-world appraisal of a modern imaging department. Clin Imaging 2024; 105:110025. [PMID: 37989018 DOI: 10.1016/j.clinimag.2023.110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
RATIONALE AND OBJECTIVES There is universal interest in increasing sustainability in health care, including in imaging. We studied and characterized energy consumption in a representative imaging department in Denmark to identify and quantify the effect of specific optimizations. METHODS Protocols and energy parameters for the three main scanner modalities along with supportive systems and workflows were monitored and scrutinized. Potential savings were measured and/or calculated. RESULTS Only few optimizations were identified at the protocol level. However, examination of usage patterns and cooling systems revealed numerous potential optimizations which fell into three categories. 1) Optimizations requiring minimal changes in installations or workflows, for example, reduction of bed-position time, 2) optimizations requiring altered work flows such as strict adherence to timed shut-down procedures and 3) optimizations requiring retro-fitting equipment, typically at considerable monetary expense, for example fitting variable flow control on pumps. The single biggest identified optimization was raising the temperature of the circulating cooling water. CONCLUSION This study highlights the complexity of increasing sustainability in health care, specifically in imaging. We identified multiple potential optimizations but also technical, monetary and organizational barriers preventing immediate implementation.
Collapse
Affiliation(s)
- Mads Barloese
- Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Kettegaards Alle 30, DK-2650 Hvidovre, Copenhagen, Denmark.
| | - Claus Leth Petersen
- Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Kettegaards Alle 30, DK-2650 Hvidovre, Copenhagen, Denmark
| |
Collapse
|
19
|
Miyaji N, Miwa K, Yamashita K, Motegi K, Wagatsuma K, Kamitaka Y, Yamao T, Ishiyama M, Terauchi T. Impact of irregular waveforms on data-driven respiratory gated PET/CT images processed using MotionFree algorithm. Ann Nucl Med 2023; 37:665-674. [PMID: 37796394 DOI: 10.1007/s12149-023-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES MotionFree® (AMF) is a data-driven respiratory gating (DDG) algorithm for image processing that has recently been introduced into clinical practice. The present study aimed to verify the accuracy of respiratory waveform and the effects of normal and irregular respiratory motions using AMF with the DDG algorithm. METHODS We used a NEMA IEC body phantom comprising six spheres (37-, 28-, 22-, 17-, 13-, and 10 mm diameter) containing 18F. The sphere-to-background ratio was 4:1 (21.2 and 5.3 kBq/mL). We acquired PET/CT images from a stationary or moving phantom placed on a custom-designed motion platform. Respiratory motions were reproduced based on normal (sinusoidal or expiratory-paused waveforms) and irregular (changed amplitude or shifted baseline waveforms) movements. The "width" parameters in AMF were set at 10-60% and extracted data during the expiratory phases of each waveform. We verified the accuracy of the derived waveforms by comparing those input from the motion platform and output determined using AMF. Quantitative accuracy was evaluated as recovery coefficients (RCs), improvement rate, and %change that were calculated based on sphere diameter or width. We evaluated statistical differences in activity concentrations of each sphere between normal and irregular waveforms. RESULTS Respiratory waveforms derived from AMF were almost identical to the input waveforms on the motion platform. Although the RCs in each sphere for expiratory-paused and ideal stationary waveforms were almost identical, RCs except the expiratory-paused waveform were lower than those for the stationary waveform. The improvement rate decreased more for the irregular, than the normal waveforms with AMF in smaller spheres. The %change was improved by decreasing the width of waveforms with a shifted baseline. Activity concentrations significantly differed between normal waveforms and those with a shifted baseline in spheres < 28 mm. CONCLUSIONS The PET images using AMF with the DDG algorithm provided the precise waveform of respiratory motions and the improvement of quantitative accuracy in the four types of respiratory waveforms. The improvement rate was the most obvious in expiratory-paused waveforms, and the most subtle in those with a shifted baseline. Optimizing the width parameter in irregular waveform will benefit patients who breathe like the waveform with the shifted baseline.
Collapse
Affiliation(s)
- Noriaki Miyaji
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-Shi, Fukushima, 960-8516, Japan.
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-Shi, Fukushima, 960-8516, Japan
| | - Kosuke Yamashita
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kazuki Motegi
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kei Wagatsuma
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-Ku Sagamihara, Kanagawa, 252-0373, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-Shi, Fukushima, 960-8516, Japan
| | - Mitsutomi Ishiyama
- Department of Radiology, Virginia Mason Medical Center, 1100 9Th Ave, Seattle, Washington, 98101, USA
| | - Takashi Terauchi
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
20
|
Yamagishi S, Miwa K, Kamitaki S, Anraku K, Sato S, Yamao T, Kubo H, Miyaji N, Oguchi K. Performance Characteristics of a New-Generation Digital Bismuth Germanium Oxide PET/CT System, Omni Legend 32, According to NEMA NU 2-2018 Standards. J Nucl Med 2023; 64:1990-1997. [PMID: 37857503 DOI: 10.2967/jnumed.123.266140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
The Omni Legend 32 PET/CT system features silicon photomultiplier (SiPM)-based detectors with bismuth germanium oxide crystals and a 32-cm axial field of view (FOV). The present study aimed to determine the performance characteristics of the Omni Legend 32 PET/CT system according to National Electrical Manufacturers Association (NEMA) NU 2-2018 standards. Methods: The PET component of this system comprises 22 detector modules; each module contains 24 detector blocks with 72 bismuth germanium oxide crystals with a volume of 4.1 × 4.1 × 30 mm coupled to 18 SiPM devices with a 6 × 6 mm area, resulting in an axial FOV of 32 cm. The spatial resolution, sensitivity, count rate performance, and image quality delivered by PET were evaluated using the NEMA NU 2-2018 standard. PET images of 2 patients were evaluated to get a visual first impression of the Omni Legend 32 PET/CT system together with Precision DL. Results: The average spatial resolution at 1, 10, and 20 cm from the central axis was 4.3, 5.3, and 6.2 mm, respectively, for filtered backprojection and 3.7, 4.3, and 5.1 mm, respectively, for ordered-subset expectation maximization. The NEMA sensitivity was 47.30 and 47.05 cps/kBq at the axial center of the FOV and at a 10-cm radial offset, respectively. The scatter fraction, count rate accuracy, and peak noise-equivalent count rates were 35.4%, 1.7%, and 501.7 kcps, respectively, at 15.7 kBq/mL. Contrast recovery for the NEMA body phantom from the smallest to the largest sphere ranged from 61.3% to 93.0%, with a background variability of 5.4%-11.7% and a lung error of 5.1% for Q.Clear (β-value, 50). Good patient image quality was obtained with the Omni Legend 32. Conclusion: The Omni Legend 32 has class-leading sensitivity and count rates within the category of whole-body PET systems while maintaining spatial resolution broadly comparable to that of other current SiPM-based PET/CT systems. This combination of properties results in a very good image quality.
Collapse
Affiliation(s)
- Shin Yamagishi
- Center of Radiology and Diagnostic Imaging, Aizawa Hospital, Nagano, Japan; and
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Shun Kamitaki
- Center of Radiology and Diagnostic Imaging, Aizawa Hospital, Nagano, Japan; and
| | - Kouichi Anraku
- Center of Radiology and Diagnostic Imaging, Aizawa Hospital, Nagano, Japan; and
| | - Shun Sato
- Center of Radiology and Diagnostic Imaging, Aizawa Hospital, Nagano, Japan; and
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Hitoshi Kubo
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Noriaki Miyaji
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Kazuhiro Oguchi
- Center of Radiology and Diagnostic Imaging, Aizawa Hospital, Nagano, Japan; and
| |
Collapse
|
21
|
Lue KH, Chen YH, Chu SC, Chang BS, Lin CB, Chen YC, Lin HH, Liu SH. A comparison of 18 F-FDG PET-based radiomics and deep learning in predicting regional lymph node metastasis in patients with resectable lung adenocarcinoma: a cross-scanner and temporal validation study. Nucl Med Commun 2023; 44:1094-1105. [PMID: 37728592 DOI: 10.1097/mnm.0000000000001776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
OBJECTIVE The performance of 18 F-FDG PET-based radiomics and deep learning in detecting pathological regional nodal metastasis (pN+) in resectable lung adenocarcinoma varies, and their use across different generations of PET machines has not been thoroughly investigated. We compared handcrafted radiomics and deep learning using different PET scanners to predict pN+ in resectable lung adenocarcinoma. METHODS We retrospectively analyzed pretreatment 18 F-FDG PET from 148 lung adenocarcinoma patients who underwent curative surgery. Patients were separated into analog (n = 131) and digital (n = 17) PET cohorts. Handcrafted radiomics and a ResNet-50 deep-learning model of the primary tumor were used to predict pN+ status. Models were trained in the analog PET cohort, and the digital PET cohort was used for cross-scanner validation. RESULTS In the analog PET cohort, entropy, a handcrafted radiomics, independently predicted pN+. However, the areas under the receiver-operating-characteristic curves (AUCs) and accuracy for entropy were only 0.676 and 62.6%, respectively. The ResNet-50 model demonstrated a better AUC and accuracy of 0.929 and 94.7%, respectively. In the digital PET validation cohort, the ResNet-50 model also demonstrated better AUC (0.871 versus 0.697) and accuracy (88.2% versus 64.7%) than entropy. The ResNet-50 model achieved comparable specificity to visual interpretation but with superior sensitivity (83.3% versus 66.7%) in the digital PET cohort. CONCLUSION Applying deep learning across different generations of PET scanners may be feasible and better predict pN+ than handcrafted radiomics. Deep learning may complement visual interpretation and facilitate tailored therapeutic strategies for resectable lung adenocarcinoma.
Collapse
Affiliation(s)
- Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology,
| | - Yu-Hung Chen
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology,
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
- School of Medicine, College of Medicine, Tzu Chi University,
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University,
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
| | - Bee-Song Chang
- Department of Cardiothoracic Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
| | - Chih-Bin Lin
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
| | - Yen-Chang Chen
- School of Medicine, College of Medicine, Tzu Chi University,
- Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien,
| | - Hsin-Hon Lin
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan and
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shu-Hsin Liu
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology,
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
| |
Collapse
|
22
|
Boanova LG, Altmayer S, Watte G, Raupp AA, Francisco MZ, De Oliveira GS, Hochhegger B, Andrade RGF. Detection of Liver Lesions in Colorectal Cancer Patients Using 18F-FDG PET/CT Dual-Time-Point Scan Imaging. Cancers (Basel) 2023; 15:5403. [PMID: 38001662 PMCID: PMC10670707 DOI: 10.3390/cancers15225403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the diagnostic performance of dual-time-point fluorine-18-fluorodeoxyglucose positron emission computed tomography/computed tomography (18F-FDG PET/CT) compared to conventional early imaging for detecting colorectal liver metastases (CRLM) in colorectal cancer (CRC) patients. METHODS One hundred twenty-four consecutive CRC patients underwent dual-time-point imaging scans on a retrospective basis. Histopathological confirmation and/or clinical follow-up were accepted as the gold standard. Standard uptake values (SUV), signal-to-noise ratio (SNR), retention index (RI), tumor-to-normal liver ratio (TNR), and lesion sizes were measured for early and delayed PET scans. The diagnostic performance of early and delayed images was calculated on a per-patient basis and compared using McNemar's test. RESULTS Among the 124 patients, 57 (46%) had CRLM, 6 (4.8%) had benign lesions, and 61 (49.2%) had no concerning lesions detected. Smaller CRLM lesions (<5 cm3) showed significantly higher uptake in the delayed scans relative to early imaging (p < 0.001). The SUV and TNR increased significantly in delayed imaging of all metastatic lesions (p < 0.001). The retention index of all CRLM was high (40.8%), especially for small lesions (54.8%). A total of 177 lesions in delayed images and 124 in standard early images were identified. In a per-patient analysis, delayed imaging had significantly higher sensitivity (100% vs. 87.7%) and specificity (91.0% vs. 94.0%) compared to early imaging (p-value = 0.04). CONCLUSIONS The detection of liver lesions using dual-time-point PET/CT scan improves the sensitivity and specificity for the detection of colorectal liver metastasis.
Collapse
Affiliation(s)
- Luciane G. Boanova
- Faculty of Medicine, Pontificial Catholic University of Rio Grande do Sul, Av. Ipiranga 6690, Porto Alegre 90619-900, Brazil (B.H.)
- Department of Nuclear Medicine, Hospital Mae de Deus, Av. Jose de Alencar 286, Porto Alegre 90880-481, Brazil;
| | - Stephan Altmayer
- Faculty of Medicine, Pontificial Catholic University of Rio Grande do Sul, Av. Ipiranga 6690, Porto Alegre 90619-900, Brazil (B.H.)
| | - Guilherme Watte
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite 245, Porto Alegre 90050-170, Brazil; (G.W.); (M.Z.F.)
| | - Ana Amelia Raupp
- Department of Nuclear Medicine, Hospital Mae de Deus, Av. Jose de Alencar 286, Porto Alegre 90880-481, Brazil;
| | - Martina Zaguini Francisco
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite 245, Porto Alegre 90050-170, Brazil; (G.W.); (M.Z.F.)
| | - Guilherme Strieder De Oliveira
- School of Medicine, Federal University of Rio Grande do Sul, R. Ramiro Barcelos, 2400—Santa Cecília, Porto Alegre 90035-003, Brazil;
| | - Bruno Hochhegger
- Faculty of Medicine, Pontificial Catholic University of Rio Grande do Sul, Av. Ipiranga 6690, Porto Alegre 90619-900, Brazil (B.H.)
| | - Rubens G. F. Andrade
- Faculty of Medicine, Pontificial Catholic University of Rio Grande do Sul, Av. Ipiranga 6690, Porto Alegre 90619-900, Brazil (B.H.)
| |
Collapse
|
23
|
Jacobsen MC, Rigaud B, Simiele SJ, Rauch GM, Ning MS, Vedam S, Klopp AH, Stafford RJ, Brock KK, Venkatesan AM. Feasibility of quantitative diffusion-weighted imaging during intra-procedural MRI-guided brachytherapy of locally advanced cervical and vaginal cancers. Brachytherapy 2023; 22:736-745. [PMID: 37612174 PMCID: PMC11798583 DOI: 10.1016/j.brachy.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE To determine the feasibility of quantitative apparent diffusion coefficient (ADC) acquisition during magnetic resonance imaging-guided brachytherapy (MRgBT) using reduced field-of-view (rFOV) diffusion-weighted imaging (DWI). METHODS AND MATERIALS T2-weighted (T2w) MR and full-FOV single-shot echo planar (ssEPI) DWI were acquired in 7 patients with cervical or vaginal malignancy at baseline and prior to brachytherapy, while rFOV-DWI was acquired during MRgBT following brachytherapy applicator placement. The gross target volume (GTV) was contoured on the T2w images and registered to the ADC map. Voxels at the GTV's maximum Maurer distance comprised a central sub-volume (GTVcenter). Contour ADC mean and standard deviation were compared between timepoints using repeated measures ANOVA. RESULTS ssEPI-DWI mean ADC increased between baseline and prebrachytherapy from 1.03 ± 0.18 10-3 mm2/s to 1.34 ± 0.28 10-3 mm2/s for the GTV (p = 0.06) and from 0.84 ± 0.13 10-3 mm2/s to 1.26 ± 0.25 10-3 mm2/s at the level of the GTVcenter (p = 0.03), consistent with early treatment response. rFOV-DWI during MRgBT demonstrated mean ADC values of 1.28 ± 0.14 10-3 mm2/s and 1.28 ± 0.19 10-3 mm2/s for the GTV and GTVcenter, respectively (p = 0.02 and p = 0.03 relative to baseline). No significant differences were observed between ssEPI-DWI and rFOV-DWI ADC measurements. CONCLUSIONS Quantitative ADC measurement in the setting of MRI guided brachytherapy implant placement for cervical and vaginal cancers is feasible using rFOV-DWI, with comparable mean ADC comparable to prebrachytherapy ssEPI-DWI, and may enable MRI-guided radiotherapy targeting of low ADC, radiation resistant sub-volumes of tumor.
Collapse
Affiliation(s)
- Megan C Jacobsen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Bastien Rigaud
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samantha J Simiele
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gaiane M Rauch
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew S Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sastry Vedam
- University of Maryland, Department of Radiation Oncology, Baltimore, MD
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - R Jason Stafford
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aradhana M Venkatesan
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
24
|
Itti E, Blanc-Durand P, Berriolo-Riedinger A, Kanoun S, Kraeber-Bodéré F, Meignan M, Gat E, Gouill SL, Casasnovas RO, Bodet-Milin C. Validation of the ΔSUV max for Interim PET Interpretation in Diffuse Large B-Cell Lymphoma on the Basis of the GAINED Clinical Trial. J Nucl Med 2023; 64:1706-1711. [PMID: 37734837 DOI: 10.2967/jnumed.123.265871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
The GAINED phase 3 trial (ClinicalTrials.gov identifier: NCT01659099) evaluated a PET-driven consolidative strategy in patients with diffuse large B-cell lymphoma. In this post hoc analysis, we aimed to compare the prognostic value of the per-protocol PET interpretation criteria (Menton 2011 consensus) with the change in the SUVmax (ΔSUVmax) alone. Methods: Real-time central review of 18F-FDG PET/CT was performed in 581 patients after 2 cycles (PET2) and 4 cycles (PET4) of immunochemotherapy using the Menton 2011 criteria, combining the ΔSUVmax (cutoffs of 66% and 70% at PET2 and PET4, respectively) and the Deauville scale. In "special cases," when the baseline SUVmax was less than 10.0 or the interim residual tumor SUVmax was greater than 5.0, the Menton 2011 experts' consensus agreed that the ΔSUVmax may not be reliable and that the Deauville score is preferable. Prognostic values of Menton 2011 and ΔSUVmax were evaluated by Kaplan-Meier analyses in terms of progression-free survival (PFS). Results: Seventeen percent of patients at PET2 (100/581) and 8% at PET4 (49/581) had PET-negative results by ΔSUVmax but were considered to have PET-positive results according to Menton 2011 with residual SUVmax of greater than 5.0. For the population with PET2-positive results, 2-y PFS was 70% (range, 58%-80%) with ΔSUVmax alone, whereas the outcome tended to be better for those who were considered to have PET-positive results by Menton 2011, 81% (range, 72%-87%). Conversely, all 10 patients with baseline SUVmax of less than 10.0 had PET2-positive results by ΔSUVmax but were considered to have PET2-negative results by Menton 2011. These patients had the same 2-y PFS as patients with PET2-negative/PET4-negative results, indicating that the ΔSUVmax yielded false-positive results in this situation. Conclusion: We recommend the use of the ΔSUVmax alone rather than the Menton 2011 criteria for assessing the interim metabolic response in patients with diffuse large B-cell lymphoma, except when the baseline SUVmax is less than 10.0.
Collapse
Affiliation(s)
- Emmanuel Itti
- Nuclear Medicine, CHU Henri Mondor, Paris-Est University, Créteil, France;
| | - Paul Blanc-Durand
- Nuclear Medicine, CHU Henri Mondor, Paris-Est University, Créteil, France
| | | | - Salim Kanoun
- Nuclear Medicine, Georges-François Leclerc Center, Dijon, France
| | | | - Michel Meignan
- Nuclear Medicine, CHU Henri Mondor, Paris-Est University, Créteil, France
| | - Elodie Gat
- Lymphoma Study Association Recherche Clinique (LYSARC), Pierre-Bénite, France
| | | | | | - Caroline Bodet-Milin
- Nantes University, Angers University, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| |
Collapse
|
25
|
Honoré d’Este S, Andersen FL, Andersen JB, Jakobsen AL, Sanchez Saxtoft E, Schulze C, Hansen NL, Andersen KF, Reichkendler MH, Højgaard L, Fischer BM. Potential Clinical Impact of LAFOV PET/CT: A Systematic Evaluation of Image Quality and Lesion Detection. Diagnostics (Basel) 2023; 13:3295. [PMID: 37958190 PMCID: PMC10650426 DOI: 10.3390/diagnostics13213295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
We performed a systematic evaluation of the diagnostic performance of LAFOV PET/CT with increasing acquisition time. The first 100 oncologic adult patients referred for 3 MBq/kg 2-[18F]fluoro-2-deoxy-D-glucose PET/CT on the Siemens Biograph Vision Quadra were included. A standard imaging protocol of 10 min was used and scans were reconstructed at 30 s, 60 s, 90 s, 180 s, 300 s, and 600 s. Paired comparisons of quantitative image noise, qualitative image quality, lesion detection, and lesion classification were performed. Image noise (n = 50, 34 women) was acceptable according to the current standard of care (coefficient-of-varianceref < 0.15) after 90 s and improved significantly with increasing acquisition time (PB < 0.001). The same was seen in observer rankings (PB < 0.001). Lesion detection (n = 100, 74 women) improved significantly from 30 s to 90 s (PB < 0.001), 90 s to 180 s (PB = 0.001), and 90 s to 300 s (PB = 0.002), while lesion classification improved from 90 s to 180 s (PB < 0.001), 180 s to 300 s (PB = 0.021), and 90 s to 300 s (PB < 0.001). We observed improved image quality, lesion detection, and lesion classification with increasing acquisition time while maintaining a total scan time of less than 5 min, which demonstrates a potential clinical benefit. Based on these results we recommend a standard imaging acquisition protocol for LAFOV PET/CT of minimum 180 s to maximum 300 s after injection of 3 MBq/kg 2-[18F]fluoro-2-deoxy-D-glucose.
Collapse
Affiliation(s)
- Sabrina Honoré d’Este
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Julie Bjerglund Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Annika Loft Jakobsen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Eunice Sanchez Saxtoft
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christina Schulze
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Naja Liv Hansen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Michala Holm Reichkendler
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Liselotte Højgaard
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, Copenhagen University, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, Copenhagen University, Blegdamsvej 3b, 2200 Copenhagen, Denmark
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
26
|
Wu Y, Sun X, Zhang B, Zhang S, Wang X, Sun Z, Liu R, Zhang M, Hu K. Marriage of radiotracers and total-body PET/CT rapid imaging system: current status and clinical advances. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2023; 13:195-207. [PMID: 38023815 PMCID: PMC10656629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 12/01/2023]
Abstract
Radiotracers and medical imaging equipment are the two main keys to molecular imaging. While radiotracers are of great interest to research and industry, medical imaging equipment technology is blossoming everywhere. Total-body PET/CT (TB-PET/CT) has emerged in response to this trend and is rapidly gaining traction in the fields of clinical oncology, cardiovascular medicine, inflammatory/infectious diseases, and pediatric diseases. In addition, the use of a growing number of radiopharmaceuticals in TB-PET/CT systems has shown promising results. Notably, the distinctive features of TB-PET/CT, such as its ultra-long axial field of view (194 cm), ultra-high sensitivity, and capability for low-dose tracer imaging, have enabled enhanced imaging quality while reducing the radiation dose. The envisioned whole-body dynamic imaging, delayed imaging, personalized disease management, and ultrafast acquisition for motion correction, among others, are achieved. This review highlights two key factors affecting molecular imaging, describing the rapid imaging effects of radiotracers allowed at low doses on TB-PET/CT and the improvements offered compared to conventional PET/CT.
Collapse
Affiliation(s)
- Yuxuan Wu
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Xiaona Sun
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Boyang Zhang
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Zhicheng Sun
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
| | - Ruping Liu
- Beijing Engineering Research Center of Printed Electronics, School of Printing and Packaging Engineering, Beijing Institute of Graphic CommunicationBeijing 102600, China
| | - Mingrong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| |
Collapse
|
27
|
de Jong TL, Koopman D, van der Worp CAJ, Stevens H, Vuijk FA, Vahrmeijer AL, Mieog JSD, de Groot JWB, Meijssen MAC, Nieuwenhuijs VB, de Geus-Oei LF, Jager PL, Patijn GA. Added value of digital FDG-PET/CT in disease staging and restaging in patients with resectable or borderline resectable pancreatic cancer. Surg Oncol 2023; 47:101909. [PMID: 36739788 DOI: 10.1016/j.suronc.2023.101909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND We studied the added value of digital FDG-PET/CT in disease staging and restaging compared to the standard work-up with contrast enhanced CT (ceCT) and CA19-9 in patients with resectable or borderline resectable pancreatic cancer who received neo-adjuvant therapy. Primary endpoints were tumor response compared to ceCT and CA19.9 as well as the ability to detect distant metastatic disease. METHODS 35 patients were included in this dual-center prospective study. FDG-PET using digital photon counting technology combined with CT scans were acquired before (T1) and after neo-adjuvant therapy (T2). Patients were staged and restaged based on standard protocol with ceCT and CA 19.9, while all PET/CT scans were stored securely and not included in clinical decision making. After the pancreatic resection, an expert team retrospectively assessed the CT tumor diameter, CA19-9, tumor FDG-uptake, and appearance of metastatic disease of all patients for both time points. RESULTS CA19-9 levels, CT tumor diameter, and tumor FDG-uptake on PET significantly decreased from T1 to T2 (p = 0.017, p = 0.001, and p < 0.0001). The change in FDG-uptake values showed a strong positive correlation with the change in CT tumor diameter and change in CA19-9 (R = 0.75 and R = 0.73, respectively). In addition, small-volume liver lesions were detected on digital PET/CT in 5/35 patients (14%), 4 of which were pathology confirmed at laparotomy. Only one of these five cases was detected on baseline staging ceCT (3%). CONCLUSION We found that adding digital PET/CT strengthens restaging after neo-adjuvant therapy based on the observed strong correlation with ceCT tumor diameter and Ca19.9. Also, digital PET/CT was found to detect occult metastatic disease not visualized on ceCT, that would have resulted in altered disease staging and therapeutic strategy in a substantial proportion of patients.
Collapse
Affiliation(s)
- Tonke L de Jong
- Department of Nuclear Medicine, Isala Hospital, Zwolle, the Netherlands
| | - Daniëlle Koopman
- Department of Nuclear Medicine, Isala Hospital, Zwolle, the Netherlands
| | | | - Henk Stevens
- Department of Nuclear Medicine, Isala Hospital, Zwolle, the Netherlands
| | - Floris A Vuijk
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Maarten A C Meijssen
- Department of Gastroenterology and Hepatology, Isala Hospital, Zwolle, the Netherlands
| | | | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands
| | - Pieter L Jager
- Department of Nuclear Medicine, Isala Hospital, Zwolle, the Netherlands
| | - Gijs A Patijn
- Department of Surgery, Isala Hospital, Zwolle, the Netherlands.
| |
Collapse
|
28
|
Okamoto M, Hasegawa T, Oda K, Miyatake H, Kikuchi K, Inoue Y, Satoh Y, Inaoka Y, Kawamoto M, Shima K, Kanbayashi K, Yoshii M, Kanno T, Wagatsuma K, Hashimoto M. Dedicated phantom tools using traceable 68Ge/ 68Ga point-like sources for dedicated-breast PET and positron emission mammography scanners. Radiol Phys Technol 2023; 16:49-56. [PMID: 36622563 DOI: 10.1007/s12194-022-00692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 01/10/2023]
Abstract
Since the early 2000s, many types of positron emission tomography (PET) scanners dedicated to breast imaging for the diagnosis of breast cancer have been introduced. However, conventional performance evaluation methods developed for whole-body PET scanners cannot be used for such devices. In this study, we developed phantom tools for evaluating the quantitative accuracy of positron emission mammography (PEM) and dedicated-breast PET (dbPET) scanners using novel traceable point-like 68Ge/68 Ga sources. The PEM phantom consisted of an acrylic cube (100 × 100 × 40 mm) and three point-like sources. The dbPET phantom comprised an acrylic cylinder (ø100 × 100 mm) and five point-like sources. These phantoms were used for evaluating the fundamental responses of clinical PEM and dbPET scanners to point-like inputs in a medium. The results showed that reasonable recovery values were obtained based on region-of-interest analyses of the reconstructed images. The developed phantoms using traceable 68Ge/68 Ga point-like sources were useful for evaluating the physical characteristics of PEM and dbPET scanners. Thus, they offer a practical, reliable, and universal measurement scheme for evaluating various types of PET scanners using common sets of sealed sources.
Collapse
Affiliation(s)
- Mio Okamoto
- Juntendo University Hospital, 3-1-3, Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.,Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tomoyuki Hasegawa
- Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan. .,School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Keiichi Oda
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Hiroki Miyatake
- Department of Radiology, Kitasato University Hospital, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Kei Kikuchi
- Department of Radiology, Kitasato University Hospital, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0375, Japan
| | - Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoko Satoh
- Yamanashi PET Imaging Clinic, 3046-2, Shimokato, Chuo, Yamanashi, 409-3821, Japan
| | - Yuichi Inaoka
- Shimadzu Corporation, 1, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Masami Kawamoto
- Advanced Medical Center, Shonan Kamakura General Hospital, 1370-1, Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Koji Shima
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Kenji Kanbayashi
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Miho Yoshii
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Tomoyuki Kanno
- Division of Radiology, Yuai Clinic, 1-6-2, Shinyokohama, Kouhokuku, Yokohama, Kanagawa, 223-0059, Japan
| | - Kei Wagatsuma
- Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.,School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Masatoshi Hashimoto
- Kitasato University Graduate School of Medical Sciences, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan.,School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
29
|
Genomic and Glycolytic Entropy Are Reliable Radiogenomic Heterogeneity Biomarkers for Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:ijms24043988. [PMID: 36835402 PMCID: PMC9959107 DOI: 10.3390/ijms24043988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Radiogenomic heterogeneity features in 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) have become popular in non-small cell lung cancer (NSCLC) research. However, the reliabilities of genomic heterogeneity features and of PET-based glycolytic features in different image matrix sizes have yet to be thoroughly tested. We conducted a prospective study with 46 NSCLC patients to assess the intra-class correlation coefficient (ICC) of different genomic heterogeneity features. We also tested the ICC of PET-based heterogeneity features from different image matrix sizes. The association of radiogenomic features with clinical data was also examined. The entropy-based genomic heterogeneity feature (ICC = 0.736) is more reliable than the median-based feature (ICC = -0.416). The PET-based glycolytic entropy was insensitive to image matrix size change (ICC = 0.958) and remained reliable in tumors with a metabolic volume of <10 mL (ICC = 0.894). The glycolytic entropy is also significantly associated with advanced cancer stages (p = 0.011). We conclude that the entropy-based radiogenomic features are reliable and may serve as ideal biomarkers for research and further clinical use for NSCLC.
Collapse
|
30
|
Young JR, Mugu VK, Johnson GB, Ehman EC, Packard AT, Homb AC, Nathan MA, Thanarajasingam G, Kemp BJ. Bayesian penalized likelihood PET reconstruction impact on quantitative metrics in diffuse large B-cell lymphoma. Medicine (Baltimore) 2023; 102:e32665. [PMID: 36820562 PMCID: PMC9907923 DOI: 10.1097/md.0000000000032665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Evaluate the quantitative, subjective (Deauville score [DS]) and reader agreement differences between standard ordered subset expectation maximization (OSEM) and Bayesian penalized likelihood (BPL) positron emission tomography (PET) reconstruction methods. A retrospective review of 104 F-18 fluorodeoxyglucose PET/computed tomography (CT) exams among 52 patients with diffuse large B-cell lymphoma. An unblinded radiologist moderator reviewed both BPL and OSEM PET/CT exams. Four blinded radiologists then reviewed the annotated cases to provide a visual DS for each annotated lesion. Significant (P < .001) differences in BPL and OSEM PET methods were identified with greater standard uptake value (SUV) maximum and SUV mean for BPL. The DS was altered in 25% of cases when BPL and OSEM were reviewed by the same radiologist. Interobserver DS agreement was higher for OSEM (>1 cm lesion = 0.89 and ≤1 cm lesion = 0.84) compared to BPL (>1 cm lesion = 0.85 and ≤1 cm lesion = 0.81). Among the 4 readers, average intraobserver visual DS agreement between OSEM and BPL was 0.67 for lesions >1cm and 0.4 for lesions ≤1 cm. F-18 Fluorodeoxyglucose PET/CT of diffuse large B-cell lymphoma reconstructed with BPL has higher SUV values, altered DSs and reader agreement when compared to OSEM. This report finds volumetric PET measurements such as metabolic tumor volume to be similar between BPL and OSEM PET reconstructions. Efforts such as adoption of European Association Research Ltd accreditation should be made to harmonize PET data with an aim at balancing the need for harmonization and sensitivity for lesion detection.
Collapse
Affiliation(s)
- Jason R. Young
- Department of Radiology, Mayo Clinic, Rochester MN
- * Correspondence: Jason R Young, Department of Radiology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224 (e-mail: )
| | | | - Geoffrey B. Johnson
- Department of Radiology, Mayo Clinic, Rochester MN
- Department of Immunology, Mayo Clinic, Rochester MN
| | | | | | | | | | | | | |
Collapse
|
31
|
Li X, Li Z, Huang M, Wang R, Li M, Yang H, Lu X, Cai H, Tian R. Gallium-68-Labeled Z PDGFRβ Affibody: A Potential PET Probe for Platelet-Derived Growth Factor Receptor β-Expressing Carcinomas. Mol Pharm 2023; 20:1357-1364. [PMID: 36692381 DOI: 10.1021/acs.molpharmaceut.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) has been demonstrated to be an effective biomarker for a variety of malignant cancers, and affibody-based PDGFRβ molecules have potential as positron emission tomography (PET) tracers for the diagnosis of cancers. Based on previous pharmacokinetics studies, short-lived positron emission radionuclides, such as fluorine-18 and gallium-68, would be more suitable for affibody-based PET imaging. Thus, in the present study, we prepared a gallium-68-labeled PDGFRβ-targeting dimeric affibody conjugate and evaluated its capability for visualizing malignant tumors by micro-PET/computed tomography (CT) imaging. The PDGFRβ-targeting ZPDGFRβ affibody was conjugated with the p-NCS-Bn-DOTA macrocyclic ligand and radiolabeled with gallium-68 to generate the 68Ga-DOTA-ZPDGFRβ PET probe . Then, several types of malignant carcinoma cells (U-87 MG, LS 174T, A549, H1688, and H446) were used to evaluate the targeted cellular binding capability of the PET probe through in vitro/in vivo cellular assays and whole-body imaging by micro-PET/CT. The 68Ga-DOTA-ZPDGFRβ was successfully prepared with a radiochemical yield of 93% and exhibited ideal stability for up to 4 h at room temperature in vitro. This radioactive conjugate demonstrated specific binding ability with PDGFRβ-expressing U-87 MG cells, which was suppressed by PDGFRβ ligands. The biodistribution of 68Ga-DOTA-ZPDGFRβ indicated fast liver clearance and a kidney-bladder excretion route. The U-87 MG xenografted tumor was clearly visualized with 68Ga-DOTA-ZPDGFRβ at 1 h postinjection using micro-PET/CT imaging. 68Ga-DOTA-ZPDGFRβ is a potential radiopharmaceutical for the diagnosis of PDGFRβ-expressing tumors.
Collapse
Affiliation(s)
- Xin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhao Li
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rang Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mufeng Li
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Lu
- Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huawei Cai
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Thorwarth D. Clinical use of positron emission tomography for radiotherapy planning - Medical physics considerations. Z Med Phys 2023; 33:13-21. [PMID: 36272949 PMCID: PMC10068574 DOI: 10.1016/j.zemedi.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
PET/CT imaging plays an increasing role in radiotherapy treatment planning. The aim of this article was to identify the major use cases and technical as well as medical physics challenges during integration of these data into treatment planning. Dedicated aspects, such as (i) PET/CT-based radiotherapy simulation, (ii) PET-based target volume delineation, (iii) functional avoidance to optimized organ-at-risk sparing and (iv) functionally adapted individualized radiotherapy are discussed in this article. Furthermore, medical physics aspects to be taken into account are summarized and presented in form of check-lists.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
33
|
Subesinghe M, Ilyas H, Dunn JT, Mir N, Duran A, Mikhaeel NG, Barrington SF. The frequency of change in five-point scale score with a Bayesian penalised likelihood PET reconstruction algorithm on interim FDG PET-CT and its potential implications for therapy decisions in Hodgkin's lymphoma. Clin Radiol 2023; 78:e89-e98. [PMID: 36333130 DOI: 10.1016/j.crad.2022.09.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
AIM To assess the effect of a Bayesian penalised likelihood (BPL) reconstruction algorithm on the five-point scale (5-PS) score, response categorisation, and potential implications for therapy decisions after interim 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET)-computed tomography (CT) (iPET-CT) to guide treatment in classical Hodgkin's lymphoma (HL). MATERIALS AND METHODS The present study included new patients with HL undergoing iPET-CT from 2014-2019 after two cycles of doxorubicin (Adriamycin), bleomycin, vincristine, and dacarbazine (ABVD). Two reporters categorised response using the 5-PS and measured maximum standardised uptake values (SUVmax) of the most avid tumour residuum, mediastinal blood pool, and normal liver with ordered subset expected maximisation (OSEM) and BPL reconstructions. RESULTS Eighty-one iPET-CT examinations were reviewed. Compared with OSEM, BPL increased the 5-PS score by a single score in 18/81 (22.2%) patients. The frequency of potential treatment intensification by changing a score of 3-4 was 13.6% (11/81) and represented 25% (11/44) of patients with a score of 3 on OSEM. All 11 patients remained in remission without a change in therapy (mean 63 months) except one who required second-line treatment for refractory disease. Median SUVmax of tumour residuum was significantly higher with BPL compared with OSEM (2.7 versus 2.4, p<<0.0001), whilst liver SUVmax was significantly lower for both reporters (up to 6.6%, p<0.0001). CONCLUSION BPL PET reconstruction increased the 5-PS score on iPET-CT in 22% of HL patients and can potentially result in unnecessary treatment escalation in over half of these patients.
Collapse
Affiliation(s)
- M Subesinghe
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - H Ilyas
- Department of Nuclear Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J T Dunn
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - N Mir
- Department of Haematology, Lewisham and Greenwich NHS Trust, London, UK
| | - A Duran
- Department of Haematology, Lewisham and Greenwich NHS Trust, London, UK
| | - N G Mikhaeel
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - S F Barrington
- King's College London & Guy's and St Thomas' PET Centre, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
34
|
Miwa K, Yoshii T, Wagatsuma K, Nezu S, Kamitaka Y, Yamao T, Kobayashi R, Fukuda S, Yakushiji Y, Miyaji N, Ishii K. Impact of γ factor in the penalty function of Bayesian penalized likelihood reconstruction (Q.Clear) to achieve high-resolution PET images. EJNMMI Phys 2023; 10:4. [PMID: 36681994 PMCID: PMC9868206 DOI: 10.1186/s40658-023-00527-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/16/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The Bayesian penalized likelihood PET reconstruction (BPL) algorithm, Q.Clear (GE Healthcare), has recently been clinically applied to clinical image reconstruction. The BPL includes a relative difference penalty (RDP) as a penalty function. The β value that controls the behavior of RDP determines the global strength of noise suppression, whereas the γ factor in RDP controls the degree of edge preservation. The present study aimed to assess the effects of various γ factors in RDP on the ability to detect sub-centimeter lesions. METHODS All PET data were acquired for 10 min using a Discovery MI PET/CT system (GE Healthcare). We used a NEMA IEC body phantom containing spheres with inner diameters of 10, 13, 17, 22, 28 and 37 mm and 4.0, 5.0, 6.2, 7.9, 10 and 13 mm. The target-to-background ratio of the phantom was 4:1, and the background activity concentration was 5.3 kBq/mL. We also evaluated cold spheres containing only non-radioactive water with the same background activity concentration. All images were reconstructed using BPL + time of flight (TOF). The ranges of β values and γ factors in BPL were 50-600 and 2-20, respectively. We reconstructed PET images using the Duetto toolbox for MATLAB software. We calculated the % hot contrast recovery coefficient (CRChot) of each hot sphere, the cold CRC (CRCcold) of each cold sphere, the background variability (BV) and residual lung error (LE). We measured the full width at half maximum (FWHM) of the micro hollow hot spheres ≤ 13 mm to assess spatial resolution on the reconstructed PET images. RESULTS The CRChot and CRCcold for different β values and γ factors depended on the size of the small spheres. The CRChot, CRCcold and BV increased along with the γ factor. A 6.2-mm hot sphere was obvious in BPL as lower β values and higher γ factors, whereas γ factors ≥ 10 resulted in images with increased background noise. The FWHM became smaller when the γ factor increased. CONCLUSION High and low γ factors, respectively, preserved the edges of reconstructed PET images and promoted image smoothing. The BPL with a γ factor above the default value in Q.Clear (γ factor = 2) generated high-resolution PET images, although image noise slightly diverged. Optimizing the β value and the γ factor in BPL enabled the detection of lesions ≤ 6.2 mm.
Collapse
Affiliation(s)
- Kenta Miwa
- grid.411582.b0000 0001 1017 9540Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima 960-8516 Japan ,grid.420122.70000 0000 9337 2516Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015 Japan ,grid.471467.70000 0004 0449 2946Department of Radiology, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima, Fukushima 960-1295 Japan
| | - Tokiya Yoshii
- grid.471467.70000 0004 0449 2946Department of Radiology, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima, Fukushima 960-1295 Japan
| | - Kei Wagatsuma
- grid.420122.70000 0000 9337 2516Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015 Japan ,grid.410786.c0000 0000 9206 2938School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Shogo Nezu
- grid.452478.80000 0004 0621 7227Department of Radiology, Ehime University Hospital, 454 Shitsukawa, Touon-shi, Ehime 791-0204 Japan
| | - Yuto Kamitaka
- grid.420122.70000 0000 9337 2516Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Tensho Yamao
- grid.411582.b0000 0001 1017 9540Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima 960-8516 Japan
| | - Rinya Kobayashi
- grid.412767.1Department of Radiology, Tokai University Hospital, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193 Japan
| | - Shohei Fukuda
- grid.411731.10000 0004 0531 3030Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501 Japan
| | - Yu Yakushiji
- grid.411731.10000 0004 0531 3030Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501 Japan
| | - Noriaki Miyaji
- grid.410807.a0000 0001 0037 4131Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550 Japan
| | - Kenji Ishii
- grid.420122.70000 0000 9337 2516Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015 Japan
| |
Collapse
|
35
|
Chen YH, Lue KH, Chu SC, Chang BS, Lin CB. The combined tumor-nodal glycolytic entropy improves survival stratification in nonsmall cell lung cancer with locoregional disease. Nucl Med Commun 2023; 44:100-107. [PMID: 36437543 DOI: 10.1097/mnm.0000000000001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate whether combining primary tumor and metastatic nodal glycolytic heterogeneity on 18 F-fluorodeoxyglucose PET ( 18 F-FDG PET) improves prognostic prediction in nonsmall cell lung cancer (NSCLC) with locoregional disease. METHODS We retrospectively analyzed 18 F-FDG PET-derived features from 94 patients who had undergone curative treatments for regional nodal metastatic NSCLC. Overall survival (OS) and progression-free survival (PFS) were analyzed using univariate and multivariate Cox regression models. We used the independent prognosticators to construct models to predict survival. RESULTS Combined entropy (entropy derived from the combination of the primary tumor and metastatic nodes) and age independently predicted OS (both P = 0.008) and PFS ( P = 0.007 and 0.050, respectively). At the same time, the Eastern Cooperative Oncology Group status was another independent risk factor for unfavorable OS ( P = 0.026). Our combined entropy-based models outperformed the traditional staging system (c-index = 0.725 vs. 0.540, P < 0.001 for OS; c-index = 0.638 vs. 0.511, P = 0.003 for PFS) and still showed prognostic value in subgroups according to sex, histopathology, and different initial curative treatment strategies. CONCLUSION Combined primary tumor-nodal glycolytic heterogeneity independently predicted survival outcomes. In combination with clinical risk factors, our models provide better survival predictions and may enable tailored treatment strategies for NSCLC with locoregional disease.
Collapse
Affiliation(s)
- Yu-Hung Chen
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- School of Medicine, College of Medicine, Tzu Chi University
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology
| | - Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University
- Departments of Hematology and Oncology
| | | | - Chih-Bin Lin
- Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
36
|
Fukai S, Daisaki H, Shimada N, Ishiyama M, Umeda T, Yamashita K, Miyaji N, Takiguchi T, Kawakami H, Terauchi T. Evaluation of data-driven respiratory gating for subcentimeter lesions using digital PET/CT system and three-axis motion phantom. Biomed Phys Eng Express 2022; 9. [PMID: 36541506 DOI: 10.1088/2057-1976/aca90d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Introduction.The application of data-driven respiratory gating (DDG) for subcentimeter lesions with respiratory movement remains poorly understood. Hence, this study aimed to clarify DDG application for subcentimeter lesions and the ability of digital Positron emission tomography/computed tomography (PET/CT) system combined with DDG to detect these lesions under three-axis respiration.Methods.Discovery MI PET/CT system and National Electrical Manufacturers Association (NEMA) body phantom with Micro Hollow Sphere (4, 5, 6, 8, 10, and 13 mm) were used. The NEMA phantom was filled with18F-FDG solutions of 42.4 and 5.3 kBq/ml for each hot sphere and background region. The 3.6 s cycles of three-axis respiratory motion were reproduced using the motion platform UniTraQ. The PET data acquisition was performed in stationary and respiratory-moving states. The data were reconstructed in three PET groups: stationary (NM-PET), no gating with respiratory movement (NG-PET), and DDG gating with respiratory movement (DDG-PET) groups. For image quality, percent contrast (QH); maximum, peak, and mean standardized uptake value (SUV); background region; and detectability index (DI) were evaluated in each PET group. Visual assessment was also conducted.Results.The groups with respiratory movement had deteriorated QHand SUVs compared with NM-PET. Compared with NG-PET, DDG-PET has significantly improved QHand SUVs in spheres above 6 mm. The background region showed no significant difference between groups. The SUVmax, SUVpeak, and QHvalues of 8 mm sphere were highest in NM-PET, followed by DDG-PET and NG-PET. In visual assessment, the spheres above 6 mm were detected in all PET groups. DDG application did not detect new lesions, but it increased DI and visual score.Conclusions. The application of principal component analysis (PCA)-based DDG algorithm improves both image quality and quantitative SUVs in subcentimeter lesions measuring above 6 mm. Although DDG application cannot detect new subcentimeter lesions, it increases the visual indices.
Collapse
Affiliation(s)
- Shohei Fukai
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.,Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, Maebashi, Gunma 371-0052, Japan
| | - Hiromitsu Daisaki
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, Maebashi, Gunma 371-0052, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Naoki Shimada
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Mitsutomi Ishiyama
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Takuro Umeda
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Kosuke Yamashita
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Noriaki Miyaji
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tomohiro Takiguchi
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Hideyuki Kawakami
- APEX Medical, Inc., Kuramae Myouken-ya Building 5F, 3-17-4 Kuramae, Taito-ku, Tokyo 111-0051, Japan
| | - Takashi Terauchi
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
37
|
Parry R, Majeed K, Pixley F, Hillis GS, Francis RJ, Schultz CJ. Unravelling the role of macrophages in cardiovascular inflammation through imaging: a state-of-the-art review. Eur Heart J Cardiovasc Imaging 2022; 23:e504-e525. [PMID: 35993316 PMCID: PMC9671294 DOI: 10.1093/ehjci/jeac167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death and disability for patients across the world. Our understanding of atherosclerosis as a primary cholesterol issue has diversified, with a significant dysregulated inflammatory component that largely remains untreated and continues to drive persistent cardiovascular risk. Macrophages are central to atherosclerotic inflammation, and they exist along a functional spectrum between pro-inflammatory and anti-inflammatory extremes. Recent clinical trials have demonstrated a reduction in major cardiovascular events with some, but not all, anti-inflammatory therapies. The recent addition of colchicine to societal guidelines for the prevention of recurrent cardiovascular events in high-risk patients with chronic coronary syndromes highlights the real-world utility of this class of therapies. A highly targeted approach to modification of interleukin-1-dependent pathways shows promise with several novel agents in development, although excessive immunosuppression and resulting serious infection have proven a barrier to implementation into clinical practice. Current risk stratification tools to identify high-risk patients for secondary prevention are either inadequately robust or prohibitively expensive and invasive. A non-invasive and relatively inexpensive method to identify patients who will benefit most from novel anti-inflammatory therapies is required, a role likely to be fulfilled by functional imaging methods. This review article outlines our current understanding of the inflammatory biology of atherosclerosis, upcoming therapies and recent landmark clinical trials, imaging modalities (both invasive and non-invasive) and the current landscape surrounding functional imaging including through targeted nuclear and nanobody tracer development and their application.
Collapse
Affiliation(s)
- Reece Parry
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Kamran Majeed
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Waikato District Health Board, Hamilton 3204, New Zealand
| | - Fiona Pixley
- School of Biomedical Sciences, Pharmacology and Toxicology, University of Western Australia, Perth 6009, Australia
| | - Graham Scott Hillis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Roslyn Jane Francis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth 6009, Australia
| | - Carl Johann Schultz
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| |
Collapse
|
38
|
Maronnier Q, Courbon F, Caselles O. Evaluation of a method based on synthetic data inserted into raw data prior to reconstruction for the assessment of PET scanners. EJNMMI Phys 2022; 9:68. [PMID: 36182994 PMCID: PMC9526779 DOI: 10.1186/s40658-022-00496-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Background Performance assessment of positron emission tomography (PET) scanners is crucial to guide clinical practice with efficiency. Even though clinical data are the final target, their use to characterize systems response is constrained by the lack of ground truth. Phantom tests overcome this limitation by controlling the object of study, but remain simple and are not representative of patient complexity. The objective of this study is to evaluate the accuracy of a simulation method using synthetic spheres inserted into acquired raw data prior to reconstruction, simulating multiple scenarios in comparison with equivalent physical experiments. Methods We defined our experimental framework using the National Electrical Manufacturers Association NU-2 2018 Image Quality standard, but replaced the standard sphere set with more appropriate sizes (4, 5, 6, 8, 10 and 13 mm) better suited to current PET scanner performance. Four experiments, with different spheres-to-background ratios (2:1, 4:1, 6:1 and 8:1), were performed. An additional dataset was acquired with a radioactive background but no activity within the spheres (water only) to establish a baseline. Then, we artificially simulated radioactive spheres to reproduce other experiments using synthetic data inserted into the original sinogram. Images were reconstructed following standard guidelines using ordered subset expectation maximization algorithm along with a Bayesian penalized likelihood algorithm. We first visually compared experimental and simulated images. Afterward, we measured the activity concentration values into the spheres to calculate the mean and maximum recovery coefficients (RCmean and RCmax) which we used in a quantitative analysis. Results No significant visual differences were identified between experimental and simulated series. Mann–Whitney U tests comparing simulated and experimental distributions showed no statistical differences for both RCmean (P value = 0.611) and RCmax (P value = 0.720). Spearman tests revealed high correlation for RCmean (ρ = 0.974, P value < 0.001) and RCmax (ρ = 0.974, P value < 0.001) between both datasets. From Bland–Altman plots, we highlighted slight shifts in RCmean and RCmax of, respectively, 2.1 ± 16.9% and 3.3 ± 22.3%. Conclusions We evaluated the efficiency of our hybrid method in faithfully mimicking practical situations producing satisfactory results compared to equivalent experimental data. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00496-6.
Collapse
Affiliation(s)
- Quentin Maronnier
- Medical Physics Department, Institut Claudius Regaud, Toulouse, France.
| | - Frédéric Courbon
- Medical Physics Department, Institut Claudius Regaud, Toulouse, France
| | - Olivier Caselles
- Medical Physics Department, Institut Claudius Regaud, Toulouse, France
| |
Collapse
|
39
|
Gavriilidis P, Koole M, Annunziata S, Mottaghy FM, Wierts R. Positron Range Corrections and Denoising Techniques for Gallium-68 PET Imaging: A Literature Review. Diagnostics (Basel) 2022; 12:2335. [PMID: 36292023 PMCID: PMC9600409 DOI: 10.3390/diagnostics12102335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 10/26/2023] Open
Abstract
Gallium-68 (68Ga) is characterized by relatively high positron energy compared to Fluorine-18 (18F), causing substantial image quality degradation. Furthermore, the presence of statistical noise can further degrade image quality. The aim of this literature review is to identify the recently developed positron range correction techniques for 68Ga, as well as noise reduction methods to enhance the image quality of low count 68Ga PET imaging. The search engines PubMed and Scopus were employed, and we limited our research to published results from January 2010 until 1 August 2022. Positron range correction was achieved by using either deblurring or deep learning approaches. The proposed techniques improved the image quality and, in some cases, achieved an image quality comparable to 18F PET. However, none of these techniques was validated in clinical studies. PET denoising for 68Ga-labeled radiotracers was reported using either reconstruction-based techniques or deep learning approaches. It was demonstrated that both approaches can substantially enhance the image quality by reducing the noise levels of low count 68Ga PET imaging. The combination of 68Ga-specific positron range correction techniques and image denoising approaches may enable the application of low-count, high-quality 68Ga PET imaging in a clinical setting.
Collapse
Affiliation(s)
- Prodromos Gavriilidis
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Oncology and Reproduction (GROW), Maastricht University, 6200 MD Maastricht, The Netherlands
- Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Salvatore Annunziata
- Unit of Nuclear Medicine, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Oncology and Reproduction (GROW), Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Nuclear Medicine, RWTH University Hospital, D-52074 Aachen, Germany
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Oncology and Reproduction (GROW), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
40
|
Near-Infrared Photoimmunotherapy for Thoracic Cancers: A Translational Perspective. Biomedicines 2022; 10:biomedicines10071662. [PMID: 35884975 PMCID: PMC9312913 DOI: 10.3390/biomedicines10071662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
The conventional treatment of thoracic tumors includes surgery, anticancer drugs, radiation, and cancer immunotherapy. Light therapy for thoracic tumors has long been used as an alternative; conventional light therapy also called photodynamic therapy (PDT) has been used mainly for early-stage lung cancer. Recently, near-infrared photoimmunotherapy (NIR-PIT), which is a completely different concept from conventional PDT, has been developed and approved in Japan for the treatment of recurrent and previously treated head and neck cancer because of its specificity and effectiveness. NIR-PIT can apply to any target by changing to different antigens. In recent years, it has become clear that various specific and promising targets are highly expressed in thoracic tumors. In combination with these various specific targets, NIR-PIT is expected to be an ideal therapeutic approach for thoracic tumors. Additionally, techniques are being developed to further develop NIR-PIT for clinical practice. In this review, NIR-PIT is introduced, and its potential therapeutic applications for thoracic cancers are described.
Collapse
|
41
|
Santoro M, Della Gala G, Paolani G, Zagni F, Strolin S, Civollani S, Calderoni L, Cappelli A, Mosconi C, Lodi Rizzini E, Tabacchi E, Morganti AG, Fanti S, Golfieri R, Strigari L. A novel tool for motion-related dose inaccuracies reduction in 99mTc-MAA SPECT/CT images for SIRT planning. Phys Med 2022; 98:98-112. [PMID: 35526374 DOI: 10.1016/j.ejmp.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION In Selective Internal Radiation Therapy (SIRT), 90Y is administered to primary/secondary hepatic lesions. An accurate pre-treatment planning using 99mTc-MAA SPECT/CT allows the assessment of its feasibility and of the activity to be injected. Unfortunately, SPECT/CT suffers from patient-specific respiratory motion which causes artifacts and absorbed dose inaccuracies. In this study, a data-driven solution was developed to correct the respiratory motion. METHODS The tool realigns the barycenter of SPECT projection images and shifts them to obtain a fine registration with the attenuation map. The tool was validated using a modified dynamic phantom with several breathing patterns. We compared the absorbed dose distributions derived from uncorrected(Dm)/corrected(Dc) images with static ones(Ds) in terms of γ-passing rates, 210 Gy isodose volumes, dose-volume histograms and percentage differences of mean doses (i.e., ΔD¯m and ΔD¯c, respectively). The tool was applied to twelve SIRT patients and the Bland-Altman analysis was performed on mean doses. RESULTS In the phantom study, the agreement between Dc and Ds was higher (γ-passing rates generally > 90%) than Dm and Ds. The isodose volumes in Dc were closer than Dm to Ds, with differences up to 10% and 30% respectively. A reduction from a median ΔD¯m = -19.3% to ΔD¯c = -0.9%, from ΔD¯m = -42.8% to ΔD¯c = -7.0% and from ΔD¯m = 1586% to ΔD¯c = 47.2% was observed in liver-, tumor- and lungs-like structures. The Bland-Altman analysis on patients showed variations (±50 Gy) and (±4 Gy) between D¯c and D¯m of tumor and lungs, respectively. CONCLUSION The proposed tool allowed the correction of 99mTc-MAA SPECT/CT images, improving the accuracy of the absorbed dose distribution.
Collapse
Affiliation(s)
- Miriam Santoro
- Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giuseppe Della Gala
- Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giulia Paolani
- Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Federico Zagni
- Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Strolin
- Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Simona Civollani
- Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Letizia Calderoni
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero, University of Bologna, 40138 Bologna, Italy
| | - Alberta Cappelli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Cristina Mosconi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elisa Lodi Rizzini
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Tabacchi
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero, University of Bologna, 40138 Bologna, Italy
| | | | - Stefano Fanti
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero, University of Bologna, 40138 Bologna, Italy
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Lidia Strigari
- Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| |
Collapse
|
42
|
Image reconstruction using small-voxel size improves small lesion detection for positron emission tomography. Radiol Oncol 2022; 56:142-149. [PMID: 35417108 PMCID: PMC9122293 DOI: 10.2478/raon-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND PET/CT imaging is widely used in oncology and provides both metabolic and anatomic information. Because of the relatively poor spatial resolution of PET, the detection of small lesions is limited. The low spatial resolution introduces the partial-volume effect (PVE) which negatively affects images both qualitatively and quantitatively. The aim of the study was to investigate the effect of small-voxel (2 mm in-line pixel size) vs. standard-voxel (4 mm in-line pixel size) reconstruction on lesion detection and image quality in a range of activity ratios. MATERIALS AND METHODS The National Electrical Manufacturers Association (NEMA) body phantom and the Micro Hollow-Sphere phantom spheres were filled with a solution of [18F]fluorodeoxyglucose ([18F]FDG) in sphere-to-background ratios of 2:1, 3:1, 4:1 and 8:1. In all images reconstructed with 2 mm and 4 mm in-line pixel size the visual lesion delineation, contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR) were evaluated. RESULTS For smaller (≤ 13 mm) phantom spheres, significantly higher CRC and CNR using small-voxel reconstructions were found, also improving visual lesion delineation. CRC did not differ significantly for larger (≥ 17 mm) spheres using 2 mm and 4 mm in-line pixel size, but CNR was significantly lower; however, lower CNR did not affect visual lesion delineation. CONCLUSIONS Small-voxel reconstruction consistently improves precise small lesion delineation, lesion contrast and image quality.
Collapse
|
43
|
Jiménez-Ortega E, Agüera R, Ureba A, Balcerzyk M, Wals-Zurita A, García-Gómez FJ, Leal A. Implications of the Harmonization of [ 18F]FDG-PET/CT Imaging for Response Assessment of Treatment in Radiotherapy Planning. Tomography 2022; 8:1097-1112. [PMID: 35448724 PMCID: PMC9031488 DOI: 10.3390/tomography8020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work is to present useful recommendations for the use of [18F]FDG-PET/CT imaging in radiotherapy planning and monitoring under different versions of EARL accreditation for harmonization of PET devices. A proof-of-concept experiment designed on an anthropomorphic phantom was carried out to establish the most suitable interpolation methods of the PET images in the different steps of the planning procedure. Based on PET/CT images obtained by using these optimal interpolations for the old EARL accreditation (EARL1) and for the new one (EARL2), the treatment plannings of representative actual clinical cases were calculated, and the clinical implications of the resulting differences were analyzed. As expected, EARL2 provided smaller volumes with higher resolution than EARL1. The increase in the size of the reconstructed volumes with EARL1 accreditation caused high doses in the organs at risk and in the regions adjacent to the target volumes. EARL2 accreditation allowed an improvement in the accuracy of the PET imaging precision, allowing more personalized radiotherapy. This work provides recommendations for those centers that intend to benefit from the new accreditation, EARL2, and can help build confidence of those that must continue working under the EARL1 accreditation.
Collapse
Affiliation(s)
- Elisa Jiménez-Ortega
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain; (E.J.-O.); (R.A.); (M.B.)
- Instituto de Biomedicina de Sevilla, IBiS, 41013 Seville, Spain;
| | - Raquel Agüera
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain; (E.J.-O.); (R.A.); (M.B.)
| | - Ana Ureba
- Instituto de Biomedicina de Sevilla, IBiS, 41013 Seville, Spain;
- Medical Radiation Physics, Department of Physics, Stockholm University, 114 21 Stockholm, Sweden
| | - Marcin Balcerzyk
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain; (E.J.-O.); (R.A.); (M.B.)
- Centro Nacional de Aceleradores (CNA), Universidad de Sevilla, Junta de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain
| | - Amadeo Wals-Zurita
- Hospital Universitario Virgen Macarena, Servicio de Radioterapia, 41009 Seville, Spain;
| | | | - Antonio Leal
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain; (E.J.-O.); (R.A.); (M.B.)
- Instituto de Biomedicina de Sevilla, IBiS, 41013 Seville, Spain;
| |
Collapse
|
44
|
Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction. EJNMMI Phys 2022; 9:23. [PMID: 35348926 PMCID: PMC8964871 DOI: 10.1186/s40658-022-00451-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 mm3. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The SUVmax, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the SUVmax, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00451-5.
Collapse
|
45
|
Zeimpekis KG, Kotasidis FA, Huellner M, Nemirovsky A, Kaufmann PA, Treyer V. NEMA NU 2–2018 performance evaluation of a new generation 30-cm axial field-of-view Discovery MI PET/CT. Eur J Nucl Med Mol Imaging 2022; 49:3023-3032. [PMID: 35284970 PMCID: PMC9250480 DOI: 10.1007/s00259-022-05751-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 11/26/2022]
Abstract
Purpose The DMI PET/CT is a modular silicon photomultiplier–based scanner with an axial field-of-view (FOV) between 15 and 25 cm depending on ring configuration (3, 4, or 5 rings). A new generation of the system includes a reengineered detector module, featuring improved electronics and an additional 6th ring, extending the axial FOV to 30 cm. We report on the performance evaluation of the 6-ring upgraded Generation 2 (Gen2) system while values are also reported for the 5-ring configuration of the very same system prior to the upgrade. Methods PET performance was evaluated using the NEMA NU 2–2018 standard for spatial resolution, sensitivity, image quality, count rate performance, timing resolution, and image co-registration accuracy. Patient images were used to assess image quality. Results The average system sensitivity was measured at 32.76 cps/kBq (~ 47% increase to 5 rings at 22.29 cps/kBq) while noise equivalent count rate peaked at 434.3 kcps corresponding to 23.6 kBq/mL (~ 60% increase to Generation 1 (Gen1) and 39% to Gen2 5 rings). Contrast recovery ranged between 54.5 and 85.8% similar to 5 rings, while the 6 rings provided lower background variability (2.3–8.5% for 5 rings vs 1.9–6.8% for 6 rings) and lower lung error (4.0% for the 5 rings and 3.16% for the 6 rings). Transverse/axial full width at half-maximum (FWHM) at 1 cm (3.79/4.26 mm) and 10 cm (4.29/4.55 mm), scatter fraction (40.2%), energy resolution (9.63%), and time-of-flight (TOF) resolution (389.6 ps at 0 kBq/mL) were in line to previously reported values measured across different system configurations. Improved patient image quality is obtained with the 6 rings compared to the 5 rings, while image quality is retained even at reduced scan times, enabling WB dynamic acquisitions. Conclusions The higher sensitivity of the 6-ring DMI compared to the 5-ring configuration may lead to improved image quality of clinical images at reduced scan time. Additionally, it could equally be used to allow improved temporal sampling and/or reduced overall scan time in dynamic acquisitions. Conversely, temporal sampling and scan time could be traded per application to further drive injected dose at lower levels.
Collapse
Affiliation(s)
- Konstantinos G Zeimpekis
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
| | | | - Martin Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | | | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
46
|
Wimalarathne D, Ruan W, Sun X, Liu F, Gai Y, Liu Q, Hu F, Lan X. Impact of TOF on Brain PET With Short-Lived 11C-Labeled Tracers Among Suspected Patients With AD/PD: Using Hybrid PET/MRI. Front Med (Lausanne) 2022; 9:823292. [PMID: 35308534 PMCID: PMC8926006 DOI: 10.3389/fmed.2022.823292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the impact of the time-of-flight (TOF) reconstruction on brain PET with short-lived 11C-labeled tracers in PET magnetic resonance (PET/MR) brain images among suspected patients with Alzheimer's and Parkinson's disease (AD/PD). Methods Patients who underwent 11C-2-ß-carbomethoxy-3-b-(4-fluorophenyl) tropane (11C-CFT) and 2-(4-N-[11C] methylaminophenyl)-6-hydroxybenzothiazole (11C-PiB) PET/MRI were retrospectively included in the study. Each PET LIST mode data were reconstructed with and without the TOF reconstruction algorithm. Standard uptake values (SUVs) of Caudate Nucleus (CN), Putamen (PU), and Whole-brain (WB) were measured. TOF and non-TOF SUVs were assessed by using paired t-test. Standard formulas were applied to measure contrast, signal-to-noise ratio (SNR), and percentage relative average difference of SUVs (%RAD-SUVs). Results Total 75 patients were included with the median age (years) and body mass index (BMI-kg/m2) of 60.2 ± 10.9 years and 23.9 ± 3.7 kg/m2 in 11C-CFT (n = 41) and 62.2 ± 6.8 years and 24.7 ± 2.9 kg/m2 in 11C-PiB (n = 34), respectively. Higher average SUVs and positive %RAD-SUVs were observed in CN and PU in TOF compared with non-TOF reconstructions for the two 11C-labeled radiotracers. Differences of SUVmean were significant (p < 0.05) in CN and PU for both 11C-labeled radiotracers. SUVmax was enhanced significantly in CN and PU for 11C-CFT and CN for 11C-PiB, but not in PU. Significant contrast enhancement was observed in PU for both 11C-labeled radiotracers, whereas SNR gain was significant in PU, only for 11C-PiB in TOF reconstruction. Conclusion Time-of-flight leads to a better signal vs. noise trade-off than non-TOF in 11C-labeled tracers between CN and PU, improving the SUVs, contrast, and SNR, which were valuable for reducing injected radiation dose. Improved timing resolution aided the rapid decay rate of short-lived 11C-labeled tracers, and it shortened the scan time, increasing the patient comfort, and reducing the motion artifact among patients with AD/PD. However, one should adopt the combined TOF algorithm with caution for the quantitative analysis because it has different effects on the SUVmax, contrast, and SNR of different brain regions.
Collapse
Affiliation(s)
- D.D.N Wimalarathne
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiography and Radiotherapy, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
den Boer JA, de Vries EJ, Borra RJ, Waarde AV, Lammertsma AA, Dierckx RA. Role of Brain Imaging in Drug Development for Psychiatry. Curr Rev Clin Exp Pharmacol 2022; 17:46-71. [DOI: 10.2174/1574884716666210322143458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
Background:
Over the last decades, many brain imaging studies have contributed to
new insights in the pathogenesis of psychiatric disease. However, in spite of these developments,
progress in the development of novel therapeutic drugs for prevalent psychiatric health conditions
has been limited.
Objective:
In this review, we discuss translational, diagnostic and methodological issues that have
hampered drug development in CNS disorders with a particular focus on psychiatry. The role of
preclinical models is critically reviewed and opportunities for brain imaging in early stages of drug
development using PET and fMRI are discussed. The role of PET and fMRI in drug development
is reviewed emphasizing the need to engage in collaborations between industry, academia and
phase I units.
Conclusion:
Brain imaging technology has revolutionized the study of psychiatric illnesses, and
during the last decade, neuroimaging has provided valuable insights at different levels of analysis
and brain organization, such as effective connectivity (anatomical), functional connectivity patterns
and neurochemical information that may support both preclinical and clinical drug development.
Since there is no unifying pathophysiological theory of individual psychiatric syndromes and since
many symptoms cut across diagnostic boundaries, a new theoretical framework has been proposed
that may help in defining new targets for treatment and thus enhance drug development in CNS diseases.
In addition, it is argued that new proposals for data-mining and mathematical modelling as
well as freely available databanks for neural network and neurochemical models of rodents combined
with revised psychiatric classification will lead to new validated targets for drug development.
Collapse
Affiliation(s)
| | - Erik J.F. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald J.H. Borra
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rudi A. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
48
|
Wang Y, Lin L, Quan W, Li J, Li W. Effect of Bayesian penalty likelihood algorithm on 18F-FDG PET/CT image of lymphoma. Nucl Med Commun 2022; 43:284-291. [PMID: 34864809 PMCID: PMC8826614 DOI: 10.1097/mnm.0000000000001516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Recently, a new Bayesian penalty likelihood (BPL) reconstruction algorithm has been applied in PET, which is expected to provide better image resolution than the widely used ordered subset expectation maximization (OSEM). The purpose of this study is to compare the differences between these two algorithms in terms of image quality and effects on clinical diagnostics and quantification of lymphoma. METHODS A total of 246 FDG-positive lesions in 70 patients with lymphoma were retrospectively analyzed by using BPL and OSEM + time-of-flight + point spread function algorithms. Visual analysis was used to evaluate the effects of different reconstruction algorithms on clinical image quality and diagnostic certainty. Quantitative analysis was used to compare the differences between pathology and lesion size. RESULTS There were significant differences in lesion-related SUVmax, total-lesion-glycolysis (TLG), and signal-to-background ratio (SBR) (P < 0.01). The variation Δ SUVmax% and Δ SBR% caused by the two reconstruction algorithms were negatively correlated with tumor diameter, while Δ MTV% and Δ TLG% were positively correlated with tumor diameter. In the grouped analysis based on pathology, there were significant differences in lesion SUVmax, lesion SUVmean, and SBR. In non-Hodgkin's lymphoma (diffuse large B cells and follicular lymphoma), diversities were significantly found in SUVmax, SUVmean, SBR, and TLG of the lesions (P < 0.05). According to the grouped analysis based on lesion size, for lesions smaller than 1 cm and 2 cm, there was a significant difference in SUVmean, SUVmax, SBR, and MTV, but not in lesions larger than or equal to 2 cm (P > 0.05), and the liver background SUVmean (P > 0.05) remained unchanged. CONCLUSION BPL reconstruction algorithm could effectively improve clinical image quality and diagnostic certainty. In quantitative analysis, there were no significant differences among different pathological groups, but there were significant diversities in lesion sizes. Especially for small lesions, lesion SUVmax increased and SBR was significantly improved, which may better assist in the diagnosis of small lesions of lymphoma.
Collapse
Affiliation(s)
| | | | - Wei Quan
- Medical Imaging, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Zhifu District, Yantai, Shangdong Province, People’s Republic of China
| | | | | |
Collapse
|
49
|
Koenders SS, van Dalen JA, Jager PL, Knollema S, Timmer JR, Mouden M, Slump CH, van Dijk JD. Value of SiPM PET in myocardial perfusion imaging using Rubidium-82. J Nucl Cardiol 2022; 29:204-212. [PMID: 32410059 PMCID: PMC8873116 DOI: 10.1007/s12350-020-02141-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/03/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND PET scanners using silicon photomultipliers with digital readout (SiPM PET) have an improved temporal and spatial resolution compared to PET scanners using conventional photomultiplier tubes (PMT PET). However, the effect on image quality and visibility of perfusion defects in myocardial perfusion imaging (MPI) is unknown. Our aim was to determine the value of a SiPM PET scanner in MPI. METHODS We prospectively included 30 patients who underwent rest and regadenoson-induced stress Rubidium-82 (Rb-82) MPI on the D690 PMT PET (GE Healthcare) and within three weeks on the Vereos SiPM PET (Philips Healthcare). Two expert readers scored the image quality and assessed the existence of possible defects. In addition, interpreter's confidence, myocardial blood flow (MBF), and myocardial flow reserve (MFR) values were compared. RESULTS Image quality improved (P = 0.03) using the Vereos as compared to the D690. Image quality of the Vereos and the D690 was graded fair in 20% and 10%, good in 60% and 50%, and excellent in 20% and 40%, respectively. Defect interpretation and interpreter's confidence did not differ between the D690 and the Vereos (P > 0.50). There were no significant differences in rest MBF (P ≥ 0.29), stress MBF (P ≥ 0.11), and MFR (P ≥ 0.51). CONCLUSION SiPM PET provides an improved image quality in comparison with PMT PET. Defect interpretation, interpreter's confidence, and absolute blood flow measurements were comparable between both systems. SiPM PET is therefore a reliable technique for MPI using Rb-82. TRIAL REGISTRATION ToetsingOnline NL63853.075.17. Registered 13 November, 2017.
Collapse
Affiliation(s)
- S S Koenders
- Department of Nuclear Medicine, Isala Hospital, Zwolle, The Netherlands.
- Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| | - J A van Dalen
- Department of Medical Physics, Isala Hospital, Zwolle, The Netherlands
| | - P L Jager
- Department of Nuclear Medicine, Isala Hospital, Zwolle, The Netherlands
| | - S Knollema
- Department of Nuclear Medicine, Isala Hospital, Zwolle, The Netherlands
| | - J R Timmer
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | - M Mouden
- Department of Cardiology, Isala Hospital, Zwolle, The Netherlands
| | - C H Slump
- Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - J D van Dijk
- Department of Nuclear Medicine, Isala Hospital, Zwolle, The Netherlands
| |
Collapse
|
50
|
Pouw JEE, Vriens D, van Velden FHP, de Geus-Oei LF. Use of [18F]FDG PET/CT for Target Volume Definition in Radiotherapy. IMAGE-GUIDED HIGH-PRECISION RADIOTHERAPY 2022:3-30. [DOI: 10.1007/978-3-031-08601-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|