1
|
Zeng Y, Liu Y, Li J, Feng B, Lu J. Value of Computed Tomography Scan for Detecting Lymph Node Metastasis in Early Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2025; 32:1635-1650. [PMID: 39586955 DOI: 10.1245/s10434-024-16568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The necessity of computed tomography (CT) scan for detecting potential lymph node metastasis (LNM) in early esophageal squamous cell carcinoma (ESCC) before endoscopic and surgical treatments is under debate. METHODS Patients with histologically proven ESCC limited to the mucosa or submucosa were examined retrospectively. Diagnostic performance of CT for detecting LNM was analyzed by comparing original CT reports with pathology reports. The sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) were calculated. RESULTS A total of 625 patients from three tertiary referral hospitals were included. The rate of pathologically confirmed LNM was 12.5%. Based on original CT reports, the sensitivity, specificity, accuracy, PPV, and NPV of CT to determine LNM in T1 ESCC were 41.0%, 83.2%, 77.9%, 25.8%, and 90.8% respectively. For mucosal cancers (T1a), these parameters were 50.0%, 81.7%, 80.9%, 6.8%, and 98.4%, respectively. For submucosal cancers (T1b), they were 40.0%, 85.0%, 75.0%, 43.0%, and 83.3%, respectively. Additionally, the diagnostic performance of CT for LNM was relatively better for ESCC in the lower esophagus. Pathologically, 69.2% of patients with LNM did not exhibit lymphovascular invasion (LVI), and the sensitivity of CT for recognizing LNM in these patients (33.3%) was lower than those with LVI (58.3%). CONCLUSIONS Computed tomography can detect nearly half of the LNM cases in early ESCC with high specificity. The performance of CT further improved in LNM cases with LVI. Therefore, we conclude that routine preoperative CT for the assessment of potential LNM risk in patients with early ESCC is necessary.
Collapse
Affiliation(s)
- Yunqing Zeng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yaping Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jinhou Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, Taian City Central Hospital, Taian, Shandong, China
| | - Bingcheng Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jiaoyang Lu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Medical Integration and Practice Center, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Reshtebar N, Hosseini SA, Zhuang M, Sheikhzadeh P. Estimation of kinetic parameters in dynamic FDG PET imaging based on shortened protocols: a virtual clinical study. Phys Eng Sci Med 2024; 47:199-213. [PMID: 38078995 DOI: 10.1007/s13246-023-01356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/12/2023] [Indexed: 03/26/2024]
Abstract
This study investigated the estimation of kinetic parameters and production of related parametric Ki images in FDG PET imaging using the proposed shortened protocol (three 3-min/bed routine static images) by means of the simulated annealing (SA) algorithm. Six realistic heterogeneous tumors and various levels of [18F] FDG uptake were simulated by the XCAT phantom. An irreversible two-tissue compartment model (2TCM) using population-based input function was employed. By keeping two routine clinical scans fixed (60-min and 90-min post injection), the effect of the early scan time on optimizing the estimation of the pharmacokinetic parameters was investigated. The SA optimization algorithm was applied to estimate micro- and macro-parameters (K1, k2, k3, Ki). The minimum bias for most parameters was observed at a scan time of 20-min, which was < 10%. A highly significant correlation (> 0.9) as well as limited bias (< 10%) were observed between kinetic parameters generated from two methods [two-tissue compartment full dynamic scan (2TCM-full) and two-tissue compartment by SA algorithm (2TCM-SA)]. The analysis showed a strong correlation (> 0.8) between (2TCM-SA) Ki and SUV images. In addition, the tumor-to-background ratio (TBR) metric in the parametric (2TCM-SA) Ki images was significantly higher than SUV, although the SUV images provide better Contrast-to-noise ratio relative to parametric (2TCM-SA) Ki images. The proposed shortened protocol by the SA algorithm can estimate the kinetic parameters in FDG PET scan with high accuracy and robustness. It was also concluded that the parametric Ki images obtained from the 2TCM-SA as a complementary image of the SUV possess more quantification information than SUV images and can be used by the nuclear medicine specialist. This method has the potential to be an alternative to a full dynamic PET scan.
Collapse
Affiliation(s)
- Niloufar Reshtebar
- Department of Energy Engineering, Sharif University of Technology, Tehran, 8639-11365, Iran
| | - Seyed Abolfazl Hosseini
- Department of Energy Engineering, Sharif University of Technology, Tehran, 8639-11365, Iran.
| | - Mingzan Zhuang
- Department of Nuclear Medicine, Meizhou People's Hospital, Meizhou, 514011, China
| | - Peyman Sheikhzadeh
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Nuclear Medicine Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kouzu K, Tsujimoto H, Tamura K, Einama T, Kishi Y, Ishida J, Ueno H. Impact of retention index on the neoadjuvant chemotherapy effect and the prognosis in oesophageal cancer. Jpn J Clin Oncol 2023; 53:1130-1137. [PMID: 37626445 DOI: 10.1093/jjco/hyad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE The relationship between retention index calculated from dual-time point 18F-fluorodeoxyglucose positron emission tomography-computed tomography and oesophageal cancer prognosis remains unknown. This study aimed to determine usefulness of retention index as a predictor of long-term prognosis of oesophageal cancer and neoadjuvant chemotherapy efficacy. METHODS A total of 151 patients with oesophageal cancer who underwent esophagectomy were evaluated retrospectively in this study. We acquired positron emission tomography scans 60 and 120 min (SUVmax1 and SUVmax2, respectively) after the intravenous administration of 3.7 Mbq/kg 18F-fluorodeoxyglucose. The patients were divided into two groups: high-retention index (retention index ≥29%, 107 patients) and low-retention index (retention index <29%, 44 patients). Retention index was calculated as follows: retention index (%) = [(SUVmax2 - SUVmax1)/SUVmax1] × 100. RESULTS The overall survival and relapse-free survival rates in the high-retention index group were significantly lower than those in the low-retention index group (P < 0.001). Our multivariate analysis identified that the high-retention index group contained independent risk factors for overall survival (hazard ratio: 2.44, P = 0.009) and relapse-free survival (hazard ratio: 2.61, P = 0.002). The high-retention index group exhibited a lower partial response rate to neoadjuvant chemotherapy evaluated by computed tomography (P < 0.001) and a lower pathological therapeutic effect in the resected specimen (P = 0.019) than the low-retention index group. CONCLUSIONS The retention index was associated with neoadjuvant chemotherapy responses and long-term prognosis for oesophageal cancer.
Collapse
Affiliation(s)
- Keita Kouzu
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | - Takahiro Einama
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoji Kishi
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Jiro Ishida
- Eijinkai Seeds Clinic, Tokorozawa, Saitama, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
4
|
Wang F, Guo R, Zhang Y, Yu B, Meng X, Kong H, Yang Y, Yang Z, Li N. Value of 18F-FDG PET/MRI in the Preoperative Assessment of Resectable Esophageal Squamous Cell Carcinoma: A Comparison With 18F-FDG PET/CT, MRI, and Contrast-Enhanced CT. Front Oncol 2022; 12:844702. [PMID: 35296000 PMCID: PMC8919030 DOI: 10.3389/fonc.2022.844702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the value of 18F-FDG PET/MRI in the preoperative assessment of esophageal squamous cell carcinoma (ESCC) and compare it with 18F-FDG PET/CT, MRI, and CECT. Methods Thirty-five patients with resectable ESCC were prospectively enrolled and underwent PET/MRI, PET/CT, and CECT before surgery. The primary tumor and regional lymph nodes were assessed by PET/MRI, PET/CT, MRI, and CECT, respectively, and the diagnostic efficiencies were determined with postoperative pathology as a reference standard. The predictive role of imaging and clinical parameters on pathological staging was analyzed. Results For primary tumor staging, the accuracy of PET/MRI, MRI, and CECT was 85.7%, 77.1%, and 51.4%, respectively. For lymph node assessment, the accuracy of PET/MRI, PET/CT, MRI, and CECT was 96.2%, 92.0%, 86.8%, and 86.3%, respectively, and the AUCs were 0.883, 0.745, 0.697, and 0.580, respectively. PET/MRI diagnosed 13, 7, and 6 more stations of lymph node metastases than CECT, MRI, and PET/CT, respectively. There was a significant difference in SUVmax, TLG, and tumor wall thickness between T1-2 and T3 tumors (p = 0.004, 0.024, and < 0.001, respectively). Multivariate analysis showed that thicker tumor wall thickness was a predictor of a higher T stage (p = 0.040, OR = 1.6). Conclusions 18F-FDG PET/MRI has advantages over 18F-FDG PET/CT, MRI, and CECT in the preoperative assessment of primary tumors and regional lymph nodes of ESCC. 18F-FDG PET/MRI may be a potential supplement or alternative imaging method for preoperative staging of ESCC.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Boqi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Nan Li, ; Zhi Yang,
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Nan Li, ; Zhi Yang,
| |
Collapse
|
5
|
Dynamic whole-body FDG-PET imaging for oncology studies. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Introduction
Recent PET/CT systems have improved sensitivity and spatial resolution by smaller PET detectors and improved reconstruction software. In addition, continuous-bed-motion mode is now available in some PET systems for whole-body PET imaging. In this review, we describe the advantages of dynamic whole-body FDG-PET in oncology studies.
Methods
PET–CT imaging was obtained at 60 min after FDG administration. Dynamic whole-body imaging with continuous bed motion in 3 min each with flow motion was obtained over 400 oncology cases. For routine image analysis, these dynamic phases (usually four phases) were summed as early FDG imaging. The image quality of each serial dynamic imaging was visually evaluated. In addition, changes in FDG uptake were analyzed in consecutive dynamic imaging and also in early delayed (90 min after FDG administration) time point imaging (dual-time-point imaging; DTPI). Image interpretation was performed by consensus of two nuclear medicine physicians.
Result
All consecutive dynamic whole-body PET images of 3 min duration had acceptable image quality. Many of the areas with physiologically high FDG uptake had altered uptake on serial images. On the other hand, most of the benign and malignant lesions did not show visual changes on serial images. In the study of 60 patients with suspected colorectal cancer, unchanged uptake was noted in almost all regions with pathologically proved FDG uptake, indicating high sensitivity with high negative predictive value on both serial dynamic imaging and on DTPI. We proposed another application of serial dynamic imaging for minimizing motion artifacts for patients who may be likely to move during PET studies.
Discussion
Dynamic whole-body imaging has several advantages over the static imaging. Serial assessment of changes in FDG uptake over a short period of time is useful for distinguishing pathological from physiological uptake, especially in the abdominal regions. These dynamic PET studies may minimize the need for DPTI. In addition, continuous dynamic imaging has the potential to reduce motion artifacts in patients who are likely to move during PET imaging. Furthermore, kinetic analysis of the FDG distribution in tumor areas has a potential for precise tissue characterization.
Conclusion
Dynamic whole-body FDG-PET imaging permits assessment of serial FDG uptake change which is particularly useful for differentiation of pathological uptake from physiological uptake with high diagnostic accuracy. This imaging can be applied for minimizing motion artifacts. Wide clinical applications of such serial, dynamic whole-body PET imaging is expected in oncological studies in the near future.
Collapse
|
6
|
Wu J, Liu H, Ye Q, Gallezot JD, Naganawa M, Miao T, Lu Y, Chen MK, Esserman DA, Kyriakides TC, Carson RE, Liu C. Generation of parametric K i images for FDG PET using two 5-min scans. Med Phys 2021; 48:5219-5231. [PMID: 34287939 DOI: 10.1002/mp.15113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The net uptake rate constant (Ki ) derived from dynamic imaging is considered the gold standard quantification index for FDG PET. In this study, we investigated the feasibility and assessed the clinical usefulness of generating Ki images for FDG PET using only two 5-min scans with population-based input function (PBIF). METHODS Using a Siemens Biograph mCT, 10 subjects with solid lung nodules underwent a single-bed dynamic FDG PET scan and 13 subjects (five healthy and eight cancer patients) underwent a whole-body dynamic FDG PET scan in continuous-bed-motion mode. For each subject, a standard Ki image was generated using the complete 0-90 min dynamic data with Patlak analysis (t* = 20 min) and individual patient's input function, while a dual-time-point Ki image was generated from two 5-min scans based on the Patlak equations at early and late scans with the PBIF. Different start times for the early (ranging from 20 to 55 min with an increment of 5 min) and late (ranging from 50 to 85 min with an increment of 5 min) scans were investigated with the interval between scans being at least 30 min (36 protocols in total). The optimal dual-time-point protocols were then identified. Regions of interest (ROI) were drawn on nodules for the lung nodule subjects, and on tumors, cerebellum, and bone marrow for the whole-body-imaging subjects. Quantification accuracy was compared using the mean value of each ROI between standard Ki (gold standard) and dual-time-point Ki , as well as between standard Ki and relative standardized uptake value (SUV) change that is currently used in clinical practice. Correlation coefficients and least squares fits were calculated for each dual-time-point protocol and for each ROI. Then, the predefined criteria for identifying a reliable dual-time-point Ki estimation for each ROI were empirically determined as: (1) the squared correlation coefficient (R2 ) between standard Ki and dual-time-point Ki is larger than 0.9; (2) the absolute difference between the slope of the equality line (1.0) and that of the fitted line when plotting standard Ki versus dual-time-point Ki is smaller than 0.1; (3) the absolute value of the intercept of the fitted line when plotting standard Ki versus dual-time-point Ki normalized by the mean of the standard Ki across all subjects for each ROI is smaller than 10%. Using Williams' one-tailed t test, the correlation coefficient (R) between standard Ki and dual-time-point Ki was further compared with that between standard Ki and relative SUV change, for each dual-time-point protocol and for each ROI. RESULTS Reliable dual-time-point Ki images were obtained for all the subjects using our proposed method. The percentage error introduced by the PBIF on the dual-time-point Ki estimation was smaller than 1% for all 36 protocols. Using the predefined criteria, reliable dual-time-point Ki estimation could be obtained in 25 of 36 protocols for nodules and in 34 of 36 protocols for tumors. A longer time interval between scans provided a more accurate Ki estimation in general. Using the protocol of 20-25 min plus 80-85 or 85-90 min, very high correlations were obtained between standard Ki and dual-time-point Ki (R2 = 0.994, 0.980, 0.971 and 0.925 for nodule, tumor, cerebellum, and bone marrow), with all the slope values with differences ≤0.033 from 1 and all the intercept values with differences ≤0.0006 mL/min/cm3 from 0. The corresponding correlations were much lower between standard Ki and relative SUV change (R2 = 0.673, 0.684, 0.065, 0.246). Dual-time-point Ki showed a significantly higher quantification accuracy with respect to standard Ki than relative SUV change for all the 36 protocols (p < 0.05 using Williams' one-tailed t test). CONCLUSIONS Our proposed approach can obtain reliable Ki images and accurate Ki quantification from dual-time-point scans (5-min per scan), and provide significantly higher quantification accuracy than relative SUV change that is currently used in clinical practice.
Collapse
Affiliation(s)
- Jing Wu
- Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing, China.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Hui Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.,Department of Engineering Physics, Tsinghua University, Beijing, China.,Key Laboratory of Particle & Radiation Imaging, Ministry of Education (Tsinghua University), Beijing, China
| | - Qing Ye
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.,Department of Engineering Physics, Tsinghua University, Beijing, China.,Key Laboratory of Particle & Radiation Imaging, Ministry of Education (Tsinghua University), Beijing, China
| | | | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Tianshun Miao
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Denise A Esserman
- School of Public Health: Biostatistics, Yale University, New Haven, CT, USA
| | | | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Hwang JP, Moon JH, Kim HK, Lee MH, Lim CH, Park SB, Yoon JK, Park JM. Prognostic value of metabolic parameters measured by pretreatment dual-time-point 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with intrahepatic or perihilar cholangiocarcinoma: A STROBE study. Medicine (Baltimore) 2021; 100:e26015. [PMID: 34032720 PMCID: PMC8154415 DOI: 10.1097/md.0000000000026015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/30/2021] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study was to determine the glucose metabolism at delay phase measured by pretreatment dual-time-point 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/ computed tomography (CT) provides prognostic information independent of well-known prognostic factors in patients with intrahepatic or perihilar cholangiocarcinoma (ICC or PCC).From July 2012 to December 2017, 55 patients (men 27, women 28, mean age 68 ± 11 years) with pathologically proven ICC or PCC were enrolled in this retrospective study. The dual-time-point 18F-FDG PET/CT as part of a staging workup was performed in all patients. The patient's data includes age, sex, serum CA19-9, presence of LN or distant metastasis, early SUVmax (early maximum standardized uptake value [eSUV]), delay SUVmax (delay maximum standardized uptake value [dSUV]), retention index of SUVmax (percent change of maximum standardized uptake values [ΔSUV]), neutrophil to lymphocyte ratio (NLR) and histopathology including pCEA, p53, Ki-67 index. The analysis of the relationship between metabolic parameters and survival was done using the Kaplan-Meier curve and Cox proportional hazards regression model.Median survival for all patients was 357 days. Median early and delay SUVmax was 5.2 (range: 2.0-21.4) and 6.5 (range 2.7-24.5), respectively. The overall survival was found to be significantly related to eSUV, dSUV, ΔSUV, age, serum CA19-9 and NLR in univariate analysis. In multivariate analysis, dSUV (P = .014, 95%CI; 1.30-10.7, HR 3.74) and ΔSUVmax (P = .037, 95%CI; 1.05-6.12, HR 2.5) were independent factors of overall survival. Kaplan-Meier curve analysis clearly showed the significant difference of overall survival between 2 groups (high eSUV, low eSUV + high ΔSUV vs low eSUV and ΔSUV, P < .001) among the comparisons of the SUV parameters on FDG PET. In the receiver operating characteristic analysis using combinations of the SUV parameters, the 2 groups [eSUV + ΔSUV (P = .0001, area under the curve [AUC] 0.68) and dSUV + ΔSUV (P = .0002, AUC 0.71)] showed significantly larger AUC than the other groups applying eSUV or dSUV alone (AUC 0.61 and AUC 0.68).dSUV and ΔSUV on pretreatment dual-time-point 18F-FDG PET/CT can be useful parameters in the prediction of survival in patients with ICC or PCC.
Collapse
Affiliation(s)
| | | | | | - Min Hee Lee
- Departments of Radiology, Soonchunhyang University Hospital Bucheon, Bucheon
| | - Chae Hong Lim
- Departments of Nuclear Medicine, Soonchunhyang University Hospital Seoul, Seoul
| | - Soo Bin Park
- Departments of Nuclear Medicine, Soonchunhyang University Hospital Seoul, Seoul
| | - Joon-Kee Yoon
- Department of Nuclear Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | | |
Collapse
|
8
|
Mortensen MA, Vilstrup MH, Poulsen MH, Gerke O, Høilund-Carlsen PF, Lund L. A prospective study on dual time 18F-FDG-PET/CT in high-risk prostate cancer patients. BMC Res Notes 2018; 11:871. [PMID: 30526642 PMCID: PMC6286604 DOI: 10.1186/s13104-018-3985-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/04/2018] [Indexed: 11/26/2022] Open
Abstract
Objective This proof of concept study investigated whether dual time point FDG-PET/CT with image acquisition after 1 and 3 h could be useful in preoperative staging of patients undergoing robot-assisted radical prostatectomy and extended pelvic lymph node dissection for high-risk prostate cancer. Results Twenty patients with high-risk prostate cancer underwent dual time point FDG-PET/CT before undergoing surgery. Histologically confirmed lymph node metastases were found in 9/20 (45%). A median of 19 (range 10–41; n = 434) lymph nodes were removed per patient. Pelvic lymph nodes with detectable FDG uptake were seen in two patients only, but the FDG-avid lesion on PET did not correspond with pathological findings in either patient. We found a significant increase in maximal standardized uptake value of the prostate of around 30% between early and late imaging. We found no correlation between clinical findings after radical prostatectomy and PET measurements.
Collapse
Affiliation(s)
- Mike Allan Mortensen
- Department of Urology, Odense University Hospital, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mie Holm Vilstrup
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Mads Hvid Poulsen
- Department of Urology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Poul Flemming Høilund-Carlsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Ma CL, Li XD, Sun XR, Zhao DB, Yuan YP, Yu YH. Using 18F-fluorodeoxyglucose positron emission tomography/computed tomography to estimate the length of gross tumor and involvement of lymph nodes in esophagogastric junction carcinoma. J Cancer Res Ther 2018; 14:896-901. [PMID: 29970673 DOI: 10.4103/jcrt.jcrt_1049_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective To determine the optimal approach for estimating the length of gross tumor and involvement of the lymph nodes with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in esophagogastric junction carcinoma (EGJC). The result was verified with pathologic examination. Materials and Methods Twenty patients with diagnosed and untreated EGJC were enrolled. The length of the gross tumor was measured using different approaches with PET/CT: Standardized uptake value (SUV) 1.5-5.5 in intervals of 1.0 and 10%-50% of maximum SUV (SUVmax) on 18F-FDG PET/CT in intervals of 10%. The results were expressed as L1.0-L5.0, and L10%-L50%, respectively. The pathological length of gross tumor (Lpath) was calculated based on the shrinkage ratio of primary tumor. The measurable lymph nodes were measured on PET/CT preoperatively, labeled during operation, and examined for pathology. Results Lpath was 6.87 ± 2.25 cm, L30% and L2.5 were 6.61 ± 1.76 cm and 7.56 ± 1.89 cm, respectively. L30% was closer to Lpath than other % SUVmax, L2.5 was closer to Lpath than other absolute SUV thresholds. The diagnostic performance of 18F-FDG PET/CT for lymph nodes was best at the cutoff SUV of 2.7, providing sensitivity of 70% and a specificity of 83.7% for detecting lymph node metastases. Conclusions The tumor length with 30% SUVmax as the threshold was closest to the actual pathological length of EGJC. The diagnostic efficiency of 18F-FDG PET/CT was best at the cutoff SUVmax of 2.7 for detecting lymph node metastases in EGJC.
Collapse
Affiliation(s)
- Chi-Luan Ma
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences; Department of Radiation Oncology ward 2, Shandong Cancer Hospital Affiliated to Shandong University, 440 Ji Yan Road; Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Xiao-Dong Li
- Department of Radiation Oncology ward 2, Shandong Cancer Hospital Affiliated to Shandong University, 440 Ji Yan Road, Jinan, China
| | - Xiao-Rong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Dong-Bo Zhao
- Department of Thoracic Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yin-Ping Yuan
- Department of Pathology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yong-Hua Yu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences; Department of Radiation Oncology ward 2, Shandong Cancer Hospital Affiliated to Shandong University, 440 Ji Yan Road; Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| |
Collapse
|