1
|
Richlitzki C, Manapov F, Holzgreve A, Rabe M, Werner RA, Belka C, Unterrainer M, Eze C. Advances of PET/CT in Target Delineation of Lung Cancer Before Radiation Therapy. Semin Nucl Med 2025; 55:190-201. [PMID: 40064578 DOI: 10.1053/j.semnuclmed.2025.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
In the clinical management of lung cancer, radiotherapy remains a cornerstone of multimodal treatment strategies, often used alongside surgery or in combination with systemic therapies such as chemotherapy, tyrosine kinase inhibitors, and immune checkpoint inhibitors. While conventional imaging modalities like computed tomography (CT) and magnetic resonance imaging (MRI) continue to play a central role in staging, response assessment, and radiotherapy planning, advanced imaging techniques, particularly [18F]FDG PET/CT, are being increasingly integrated into routine clinical practice. These advanced techniques address the limitations of standard imaging by providing insight into molecular and metabolic tumor characteristics, enabling precise tumor visualization, accurate target volume delineation, and early treatment response assessment. This review examines the role of radiotherapy in the multidisciplinary management of lung cancer, detailing current concepts of morphological and functional imaging for staging and treatment planning. It also highlights the growing importance of PET-based radiotherapy planning, emphasizing its contributions to target volume definition and predictive value for treatment outcomes. Recent methodological advances, including the integration of artificial intelligence (AI), radiomics, technical innovations, and novel PET ligands, are discussed, highlighting their potential to improve the precision, efficacy, and personalization of lung cancer radiotherapy planning.
Collapse
Affiliation(s)
- Cedric Richlitzki
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Ahmanson Translational Theranostics Division, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Rudolf Alexander Werner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany; Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany; Bavarian Cancer Research Center, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Die Radiologie, Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
2
|
Yu D, Chen C. [ 18F]FDG PET/CT versus [ 18F]FDG PET/MRI in staging of non-small cell lung cancer: a head-to-head comparative meta-analysis. Front Med (Lausanne) 2025; 11:1517805. [PMID: 39871837 PMCID: PMC11769939 DOI: 10.3389/fmed.2024.1517805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025] Open
Abstract
Purpose This meta-analysis aims to compare the diagnostic efficacy of [18F]FDG PET/CT and [18F]FDG PET/MRI in patients with non-small cell lung cancer (NSCLC). Methods An extensive literature search was conducted throughout the PubMed, Embase, and Web of Science databases for works accessible through September 2024. We included studies assessed the diagnostic efficacy of [18F]FDG PET/CT and [18F]FDG PET/MRI in NSCLC. Results The meta-analysis includes six studies with a total of 437 patients. The sensitivity and specificity of [18F]FDG PET/CT and [18F]FDG PET/MRI for detecting lymph node metastasis were similar, at 0.82 (0.68-0.94) vs. 0.86 (0.70-0.97) and 0.88 (0.76-0.96) vs. 0.90 (0.85-0.94), respectively, with no significant differences (p = 0.70 for sensitivity, p = 0.75 for specificity). For distant metastasis, the sensitivity of [18F]FDG PET/CT and [18F]FDG PET/MRI was 0.86 (0.60-1.00) and 0.93 (0.63-1.00), and specificity was 0.89 (0.65-1.00) vs. 0.90 (0.64-1.00), respectively, also showing no significant differences (p = 0.66 for sensitivity, p = 0.97 for specificity). Conclusion Our meta-analysis shows that [18F]FDG PET/MRI has similar sensitivity and specificity to [18F]FDG PET/CT in identifying lymph node and distant metastases in patients with NSCLC. Additional larger sample prospective studies are needed to confirm these findings. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023479817, CRD42023479817.
Collapse
Affiliation(s)
| | - Chaolin Chen
- Department of Clinical Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Shaoxing, China
| |
Collapse
|
3
|
Jannusch K, Umutlu L, Kirchner J, Bruckmann NM, Morawitz J, Herrmann K, Fendler WP, Bittner AK, Hoffmann O, Mohrmann S, Ruckhäberle E, Stuschke M, Schmid W, Giesel F, Häberle L, Esposito I, Budach W, Grueneisen J, Matuschek C, Kowall B, Stang A, Antoch G, Buchbender C. Impact of 18F-FDG PET/MRI on Therapeutic Management of Women with Newly Diagnosed Breast Cancer: Results from a Prospective Double-Center Trial. J Nucl Med 2024; 65:1855-1861. [PMID: 39389629 DOI: 10.2967/jnumed.124.268065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 10/12/2024] Open
Abstract
Our rationale was to investigate whether 18F-FDG PET/MRI in addition to (guideline-recommended) conventional staging leads to changes in therapeutic management in patients with newly diagnosed breast cancer and compare the diagnostic accuracy of 18F-FDG PET/MRI with that of conventional staging for determining the Union for International Cancer Control (UICC) stage. Methods: In this prospective, double-center study, 208 women with newly diagnosed, therapy-naïve invasive breast cancer were enrolled in accordance with the inclusion criteria. All patients underwent guideline-recommended conventional staging and whole-body 18F-FDG PET/MRI with a dedicated breast examination. A multidisciplinary tumor board served to determine 2 different therapy recommendations for each patient, one based on conventional staging alone and another based on combined assessment of conventional staging and 18F-FDG PET/MRI examinations. Major changes in therapy recommendations and differences between the conventional staging algorithm and 18F-FDG PET/MRI for determining the correct UICC stage were reported and evaluated. Results: Major changes in therapeutic management based on combined assessment of conventional staging and 18F-FDG PET/MRI were detected in 5 of 208 patients, amounting to changes in therapeutic management in 2.4% (95% CI, 0.78%-5.2%) of the study population. In determining the UICC stage, the guideline-based staging algorithm and 18F-FDG PET/MRI were concordant in 135 of 208 (64.9%; 95% CI, 58%-71.4%) patients. The conventional guideline algorithm correctly determined the UICC stage in 130 of 208 (62.5%; 95% CI, 55.5%-69.1%) patients, and 18F-FDG PET/MRI correctly determined the UICC stage in 170 of 208 (81.9%; 95% CI, 75.8%-86.7%) patients. Conclusion: Despite the diagnostic superiority of 18F-FDG PET/MRI over conventional staging in determining the correct UICC stage, the current (guideline-recommended) conventional staging algorithm is sufficient for adequate therapeutic management of patients with newly diagnosed breast cancer, and 18F-FDG PET/MRI does not have an impact on patient management.
Collapse
Affiliation(s)
- Kai Jannusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany;
| | - Nils-Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Wolfgang Peter Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Obstetrics and Gynecology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Eugen Ruckhäberle
- Department of Obstetrics and Gynecology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Martin Stuschke
- Department of Radiation Oncology, West German Cancer Center, University of Duisburg-Essen Medical School, Essen, Germany
| | - Werner Schmid
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University of Duisburg-Essen and German Cancer Consortium, Essen, Germany
| | - Frederik Giesel
- Department of Nuclear Medicine, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Lena Häberle
- Institute of Pathology, Medical Faculty, Heinrich Heine University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty, Heinrich Heine University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wilfried Budach
- Department of Radiation Oncology, Heinrich Heine University, Dusseldorf, Germany; and
| | - Johannes Grueneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christiane Matuschek
- Department of Radiation Oncology, Heinrich Heine University, Dusseldorf, Germany; and
| | - Bernd Kowall
- Institute of Medical Informatics, Biometry, and Epidemiology, Medical Faculty, University of Duisburg-Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry, and Epidemiology, Medical Faculty, University of Duisburg-Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
4
|
Kohan A, Hanneman K, Mirshahvalad SA, Afaq A, Mallak N, Metser U, Veit-Haibach P. Current Applications of PET/MR: Part II: Clinical Applications II. Can Assoc Radiol J 2024; 75:826-837. [PMID: 38836428 DOI: 10.1177/08465371241255904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Due to the major improvements in the hardware and image reconstruction algorithms, positron emission tomography/magnetic resonance imaging (PET/MR) is now a reliable state-of-the-art hybrid modality in medical practice. Currently, it can provide a broad range of advantages in preclinical and clinical imaging compared to single-modality imaging. In the second part of this review, we discussed the further clinical applications of PET/MR. In the chest, PET/MR has particular potential in the oncology setting, especially when utilizing ultrashort/zero echo time MR sequences. Furthermore, cardiac PET/MR can provide reliable information in evaluating myocardial inflammation, cardiac amyloidosis, myocardial perfusion, myocardial viability, atherosclerotic plaque, and cardiac masses. In gastrointestinal and hepato-pancreato-biliary malignancies, PET/MR is able to precisely detect metastases to the liver, being superior over the other imaging modalities. In genitourinary and gynaecology applications, PET/MR is a comprehensive diagnostic method, especially in prostate, endometrial, and cervical cancers. Its simultaneous acquisition has been shown to outperform other imaging techniques for the detection of pelvic nodal metastases and is also a reliable modality in radiation planning. Lastly, in haematologic malignancies, PET/MR can significantly enhance lymphoma diagnosis, particularly in detecting extra-nodal involvement. It can also comprehensively assess treatment-induced changes. Furthermore, PET/MR may soon become a routine in multiple myeloma management, being a one-stop shop for evaluating bone, bone marrow, and soft tissues.
Collapse
Affiliation(s)
- Andres Kohan
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Kate Hanneman
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Seyed Ali Mirshahvalad
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Asim Afaq
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Ur Metser
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Lei J, Li X, Xue W, Qian X, Wang T, Xiang Y, Zhang Y, Chen M, Liu Z. [ 18F]FDG PET/CT versus [ 18F]FDG PET/MRI in the diagnosis of lymph node metastasis in nasopharyngeal carcinoma: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1450526. [PMID: 39478819 PMCID: PMC11521955 DOI: 10.3389/fmed.2024.1450526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Purpose This meta-analysis aimed to evaluate the comparative diagnostic accuracy of [18F]FDG PET/CT versus [18F]FDG PET/MRI in identifying lymph node metastases in individuals with nasopharyngeal carcinoma. Methods A comprehensive search was executed across PubMed, Embase, and Web of Science through September 2023 to identify studies evaluating the diagnostic precision of [18F]FDG PET/CT and [18F]FDG PET/MRI in detecting lymph node metastasis in nasopharyngeal carcinoma. Sensitivity and specificity were assessed through the DerSimonian-Laird method, incorporating the Freeman-Tukey transformation. Results The meta-analysis encompassed nine articles, involving a total of 916 patients. The overall sensitivity and specificity of [18F]FDG PET were 0.95 (95%CI: 0.88-1.00) and 0.95 (95%CI: 0.84-1.00). The overall sensitivity of [18F]FDG PET/CT was 0.94 (95%CI, 0.85-0.99), whereas [18F]FDG PET/MRI achieved a sensitivity of 1.00 (95%CI, 0.94-1.00). The findings reveal that [18F]FDG PET/CT demonstrates comparable sensitivity to [18F]FDG PET/MRI (p = 0.20). The overall specificity of [18F]FDG PET/CT was 0.94 (95%CI, 0.82-1.00), whereas [18F]FDG PET/MRI exhibited a specificity of 0.98 (95%CI, 0.93-1.00). Additionally, the results suggest that [18F]FDG PET/CT offers similar specificity to [18F]FDG PET/MRI (p = 0.11). Conclusion [18F]FDG PET demonstrates high sensitivity and specificity in identifying lymph node metastasis in nasopharyngeal carcinoma. Furthermore, [18F]FDG PET/CT exhibits comparable sensitivity and specificity to [18F]FDG PET/MRI. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=496006, PROSPERO (CRD42024496006).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhaohui Liu
- Department of Otorhinolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Singnurkar A, Poon R, Metser U. Head-to-Head Comparison of the Diagnostic Performance of FDG PET/CT and FDG PET/MRI in Patients With Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2024; 223:e2431519. [PMID: 39016450 DOI: 10.2214/ajr.24.31519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BACKGROUND. The available evidence on the use of FDG PET/MRI performed using an integrated system in patients with cancer has grown substantially. OBJECTIVE. The purpose of this study was to perform a systematic review and meta-analysis comparing the diagnostic performance of FDG PET/CT and FDG PET/MRI in patients with cancer. EVIDENCE ACQUISITION. MEDLINE, Embase, and the Cochrane Database of Systematic Reviews were searched for studies reporting a head-to-head comparison of the diagnostic performance of FDG PET/CT and FDG PET/MRI in patients with cancer from July 1, 2015, to January 25, 2023. The two modalities' diagnostic performance was summarized, stratified by performance end point. For end points with sufficient data, a meta-analysis was performed using bivariate modeling to produce summary estimates of pooled sensitivity and specificity. For the remaining end points, reported performance in individual studies was recorded. EVIDENCE SYNTHESIS. The systematic review included 29 studies with a total of 1656 patients. For patient-level detection of regional nodal metastases (five studies), pooled sensitivity and specificity for PET/MRI were 88% (95% CI, 74-95%) and 92% (95% CI, 71-98%), respectively, and for PET/CT were 86% (95% CI, 70-94%) and 86% (95% CI, 68-95%). For lesion-level detection of recurrence and/or metastases (five studies), pooled sensitivity and specificity for PET/MRI were 94% (95% CI, 78-99%) and 83% (95% CI, 76-88%), respectively, and for PET/CT were 91% (95% CI, 77-96%) and 81% (95% CI, 72-88%). In individual studies not included in the meta-analysis, PET/MRI in comparison with PET/CT showed staging accuracy in breast cancer of 98.0% versus 74.5% and in colorectal cancer of 96.2% versus 69.2%; sensitivity for primary tumor detection in cervical cancer of 93.2% versus 66.2%; and sensitivity, specificity, and accuracy for lesion-level liver metastasis detection of 91.1-98.0% versus 42.3-71.1%, 100.0% versus 83.3-98.6%, and 96.5-98.2% versus 44.7-86.7%, respectively. In three studies, management was more commonly impacted by information from PET/MRI (5.2-11.1%) than PET/CT (0.0-2.6%). CONCLUSION. PET/MRI showed comparable or superior diagnostic performance versus PET/CT across a range of cancers and end points. CLINICAL IMPACT. The findings help to identify clinical settings where PET/MRI may provide clinical benefit for oncologic evaluation. TRIAL REGISTRATION. Prospective Register of Systematic Reviews CRD42023433857.
Collapse
Affiliation(s)
- Amit Singnurkar
- Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Raymond Poon
- Department of Oncology, Program in Evidence-Based Care, Ontario Health, Cancer Care Ontario, McMaster University, Juravinski Hospital and Cancer Centre, 711 Concession St, G Wing, 2nd Fl, Hamilton, ON L8V 1C3, Canada
| | - Ur Metser
- Department of Medical Imaging, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
7
|
Tang X, Wu F, Chen X, Ye S, Ding Z. Current status and prospect of PET-related imaging radiomics in lung cancer. Front Oncol 2023; 13:1297674. [PMID: 38164195 PMCID: PMC10757959 DOI: 10.3389/fonc.2023.1297674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Lung cancer is highly aggressive, which has a high mortality rate. Major types encompass lung adenocarcinoma, lung squamous cell carcinoma, lung adenosquamous carcinoma, small cell carcinoma, and large cell carcinoma. Lung adenocarcinoma and lung squamous cell carcinoma together account for more than 80% of cases. Diverse subtypes demand distinct treatment approaches. The application of precision medicine necessitates prompt and accurate evaluation of treatment effectiveness, contributing to the improvement of treatment strategies and outcomes. Medical imaging is crucial in the diagnosis and management of lung cancer, with techniques such as fluoroscopy, computed radiography (CR), digital radiography (DR), computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)/CT, and PET/MRI being essential tools. The surge of radiomics in recent times offers fresh promise for cancer diagnosis and treatment. In particular, PET/CT and PET/MRI radiomics, extensively studied in lung cancer research, have made advancements in diagnosing the disease, evaluating metastasis, predicting molecular subtypes, and forecasting patient prognosis. While conventional imaging methods continue to play a primary role in diagnosis and assessment, PET/CT and PET/MRI radiomics simultaneously provide detailed morphological and functional information. This has significant clinical potential value, offering advantages for lung cancer diagnosis and treatment. Hence, this manuscript provides a review of the latest developments in PET-related radiomics for lung cancer.
Collapse
Affiliation(s)
- Xin Tang
- Department of Radiology, Hangzhou Wuyunshan Hospital (Hangzhou Health Promotion Research Institute), Hangzhou, China
| | - Fan Wu
- Department of Nuclear Medicine and Radiology, Shulan Hangzhou Hospital affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Xiaofen Chen
- Department of Radiology, Hangzhou Wuyunshan Hospital (Hangzhou Health Promotion Research Institute), Hangzhou, China
| | - Shengli Ye
- Department of Nuclear Medicine and Radiology, Shulan Hangzhou Hospital affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People’s Hospital, Hangzhou, China
| |
Collapse
|
8
|
Zhang L, E H, Huang J, Wu J, Li Q, Hou L, Li C, Dai C, Deng J, Yang M, Ma M, Ren Y, Luo Q, Zhao D, Chen C. Clinical utility of [ 18F]FDG PET/CT in the assessment of mediastinal lymph node disease after neoadjuvant chemoimmunotherapy for non-small cell lung cancer. Eur Radiol 2023; 33:8564-8572. [PMID: 37464112 DOI: 10.1007/s00330-023-09910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVES The performance of positron emission tomography/computed tomography (PET/CT) for the prediction of ypN2 disease in non-small cell lung cancer (NSCLC) after neoadjuvant chemoimmunotherapy has not been reported. This multicenter study investigated the utility of PET/CT to assess ypN2 disease in these patients. METHODS A total of 181 consecutive patients (chemoimmunotherapy = 86, chemotherapy = 95) at four institutions were enrolled in this study. Every patient received a PET/CT scan prior to surgery and complete resection with systematic nodal dissection. The diagnostic performance was evaluated through area under the curve (AUC). Kaplan-Meier method and Cox analysis were performed to identify the risk factors affecting recurrences. RESULTS The sensitivity, specificity, and accuracy of PET/CT for ypN2 diseases were 0.667, 0.835, and 0.779, respectively. Therefore, the AUC was 0.751. Compared with the false positive cases, the mean value of max standardized uptake value (SUVmax) (6.024 vs. 2.672, p < 0.001) of N2 nodes was significantly higher in true positive patients. Moreover, the SUVmax of true positive (7.671 vs. 5.976, p = 0.365) and false (2.433 vs. 2.339, p = 0.990) positive cases were similar between chemoimmunotherapy and chemotherapy, respectively. Survival analysis proved that pathologic N (ypN) 2 patients could be stratified by PET/CT-N2(+ vs. -) for both chemoimmunotherapy (p = 0.023) and chemotherapy (p = 0.010). CONCLUSIONS PET/CT is an accurate and non-invasive test for mediastinal restaging of NSCLC patients who receive neoadjuvant chemoimmunotherapy. The ypN2 patients with PET/CT-N2( +) are identified as an independent prognostic factor compared with PET/CT-N2(-). CLINICAL RELEVANCE STATEMENT Imaging with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) plays an integral role during disease diagnosis, staging, and therapeutic response assessments in patients with NSCLC. PET/CT could be an effective non-invasive tool for predicting ypN2 diseases after neoadjuvant chemoimmunotherapy. KEY POINTS • PET/CT could serve as an effective non-invasive tool for predicting ypN2 diseases. • The ypN2 patients with PET/CT-N2( +) were a strong and independent prognostic factor. • The application of PET/CT for restaging should be encouraged in clinical practice.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No. 507 Zhengmin Road, Shanghai, 200443, China
| | - Haoran E
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No. 507 Zhengmin Road, Shanghai, 200443, China
| | - Jia Huang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No. 507 Zhengmin Road, Shanghai, 200443, China
| | - Qiang Li
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chongwu Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No. 507 Zhengmin Road, Shanghai, 200443, China
| | - Chenyang Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No. 507 Zhengmin Road, Shanghai, 200443, China
| | - Jiajun Deng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No. 507 Zhengmin Road, Shanghai, 200443, China
| | - Minglei Yang
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Chinese Academy of Sciences, Zhejiang, People's Republic of China
| | - Minjie Ma
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Gansu, People's Republic of China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No. 507 Zhengmin Road, Shanghai, 200443, China
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No. 507 Zhengmin Road, Shanghai, 200443, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, No. 507 Zhengmin Road, Shanghai, 200443, China.
| |
Collapse
|
9
|
Sabeghi P, Katal S, Chen M, Taravat F, Werner TJ, Saboury B, Gholamrezanezhad A, Alavi A. Update on Positron Emission Tomography/Magnetic Resonance Imaging: Cancer and Inflammation Imaging in the Clinic. Magn Reson Imaging Clin N Am 2023; 31:517-538. [PMID: 37741639 DOI: 10.1016/j.mric.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid PET/MRI is highly valuable, having made significant strides in overcoming technical challenges and offering unique advantages such as reduced radiation, precise data coregistration, and motion correction. Growing evidence highlights the value of PET/MRI in broad clinical aspects, including inflammatory and oncological imaging in adults, pregnant women, and pediatrics, potentially surpassing PET/CT. This newly integrated solution may be preferred over PET/CT in many clinical conditions. However, further technological advancements are required to facilitate its broader adoption as a routine diagnostic modality.
Collapse
Affiliation(s)
- Paniz Sabeghi
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Sanaz Katal
- Medical Imaging Department of St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Michelle Chen
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Farzaneh Taravat
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Babak Saboury
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Pini C, Bottoni E, Fiz F, Giudici VM, Alloisio M, Testori A, Rodari M, Sollini M, Chiti A, Cariboni U, Antunovic L. Radioisotope-Guided Excision of Mediastinal Lymph Nodes in Patients with Non-Small Cell Lung Carcinoma: Feasibility and Clinical Impact. Cancers (Basel) 2023; 15:3320. [PMID: 37444438 DOI: 10.3390/cancers15133320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Intraoperative localisation of nodal disease in non-small cell lung cancer (NSCLC) can be challenging. Lymph node localisation via radiopharmaceuticals is used in many conditions; we tested the feasibility of this approach in NSCLC. METHODS NSCLC patients were prospectively recruited. Intraoperative peri-tumoral injections of [99mTc]Tc-albumin nanocolloids were performed, followed by removing the tumour and locoregional lymph nodes. These were examined ex vivo with a gamma probe and labelled sentinel lymph nodes (SLNs) if they showed any activity or non-sentinel lymph nodes (nSLNs) if they did not. Thereafter, the surgical field was scanned with the probe; any further radioactive lymph node was removed and labelled as "extra" SLNs (eSLNs). All specimens were sent to histology, and metastatic status was recorded. RESULTS 48 patients were enrolled, and 290 nodal stations were identified: 179 SLNs, 87 nSLNs, and 24 eSLNs. A total of 44 nodal metastases were identified in 22 patients, with 36 of them (82%) located within SLNs. Patients with nSLNs metastases had at least a co-existing positive SLN. No metastases were found in eSLNs. CONCLUSIONS The technique shows high sensitivity for intraoperative nodal metastases identification. This information could allow selective lymphadenectomies in low-risk patients or more aggressive approaches in high-risk patients.
Collapse
Affiliation(s)
- Cristiano Pini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Edoardo Bottoni
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Francesco Fiz
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Ente Ospedaliero "Ospedali Galliera", 16128 Genoa, Italy
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Veronica Maria Giudici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Marco Alloisio
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Alberto Testori
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Marcello Rodari
- Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Umberto Cariboni
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Lidija Antunovic
- Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
11
|
Jiang M, Chen P, Guo X, Zhang X, Gao Q, Zhang J, Zhao G, Zheng J. Identification of EGFR mutation status in male patients with non-small-cell lung cancer: role of 18F-FDG PET/CT and serum tumor markers CYFRA21-1 and SCC-Ag. EJNMMI Res 2023; 13:27. [PMID: 37014455 PMCID: PMC10073355 DOI: 10.1186/s13550-023-00976-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The high incidence of epidermal growth factor receptor (EGFR) mutations is usually found in female patients with lung adenocarcinoma who have never-smoked. However, reports concerning male patients are scarce. Thus, this study aimed to explore a novel approach based on 18F-fluoro-2-deoxy-2-deoxyglucose (18F-FDG) PET/CT and serum tumor markers (STMs) to determine EGFR mutation status in male patients with non-small-cell lung cancer (NSCLC). METHODS A total of 121 male patients with NSCLC were analyzed between October 2019 and March 2022. All patients underwent 18F-FDG PET/CT scan before treatment and monitored 8 STMs (cytokeratin 19 fragment [CYFRA21-1], squamous cell carcinoma-related antigen [SCC-Ag], carcinoembryonic antigen [CEA], neuron-specific enolase [NSE], carbohydrate antigen [CA] 50, CA125, CA72-4, and ferritin). A comparison was done between EGFR mutant and wild-type patients in terms of the maximum standardized uptake value of primary tumors (pSUVmax) and 8 STMs. We performed receiver operating characteristic (ROC) curve and multiple logistic regression analyses to determine predictors for EGFR mutation status. RESULTS EGFR mutations were detected in 39 patients (32.2%). Compared with patients with EGFR wild-type, EGFR-mutant patients had lower concentrations of serum CYRFA21-1 (2.65 vs. 4.01, P = 0.002) and SCC-Ag (0.67 vs. 1.05, P = 0.006). No significant differences of CEA, NSE, CA 50, CA125, CA72-4 and ferritin were found between the two groups. The presence of EGFR mutations was significantly associated with low pSUVmax (< 8.75), low serum SCC-Ag (< 0.79 ng/mL) and CYFRA21-1 (< 2.91 ng/mL) concentrations. The area under ROC curve values were 0.679, 0.655, 0.685 and 0.754, respectively, for low CYFRA21-1, SCC-Ag, pSUVmax and the combination of these three factors. CONCLUSIONS We demonstrated that low concentrations of CYFRA21-1 and SCC-Ag, as well as low pSUVmax, were associated with EGFR mutations, and that the combination of these factors resulted in a higher differentiation of EGFR mutation status in male patients with NSCLC.
Collapse
Affiliation(s)
- Maoqing Jiang
- Department of Radiology, Ningbo No. 2 Hospital, No. 41 Xibei Street, Haishu District, Ningbo, Zhejiang, China
- Department of Nuclear Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Ping Chen
- Department of Nephrology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Xiuyu Guo
- Department of Radiology, Ningbo No. 2 Hospital, No. 41 Xibei Street, Haishu District, Ningbo, Zhejiang, China
| | - Xiaohui Zhang
- Department of Radiology, Ningbo No. 2 Hospital, No. 41 Xibei Street, Haishu District, Ningbo, Zhejiang, China
| | - Qiaoling Gao
- Department of Radiology, Ningbo No. 2 Hospital, No. 41 Xibei Street, Haishu District, Ningbo, Zhejiang, China
| | - Jingfeng Zhang
- Department of Radiology, Ningbo No. 2 Hospital, No. 41 Xibei Street, Haishu District, Ningbo, Zhejiang, China
| | - Guofang Zhao
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, No. 41 Xibei Street, Haishu District, Ningbo, Zhejiang, China.
| | - Jianjun Zheng
- Department of Radiology, Ningbo No. 2 Hospital, No. 41 Xibei Street, Haishu District, Ningbo, Zhejiang, China.
| |
Collapse
|
12
|
Ruan D, Sun L. Diagnostic Performance of PET/MRI in Breast Cancer: A Systematic Review and Bayesian Bivariate Meta-analysis. Clin Breast Cancer 2023; 23:108-124. [PMID: 36549970 DOI: 10.1016/j.clbc.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/07/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION By performing a systematic review and meta-analysis, the diagnostic value of 18F-FDG PET/MRI in breast lesions, lymph nodes, and distant metastases was assessed, and the merits and demerits of PET/MRI in the application of breast cancer were comprehensively reviewed. METHODS Breast cancer-related studies using 18F-FDG PET/MRI as a diagnostic tool published before September 12, 2022 were included. The pooled sensitivity, specificity, log diagnostic odds ratio (LDOR), and area under the curve (AUC) were calculated using Bayesian bivariate meta-analysis in a lesion-based and patient-based manner. RESULTS We ultimately included 24 studies (including 1723 patients). Whether on a lesion-based or patient-based analysis, PET/MRI showed superior overall pooled sensitivity (0.95 [95% CI: 0.92-0.98] & 0.93 [95% CI: 0.88-0.98]), specificity (0.94 [95% CI: 0.90-0.97] & 0.94 [95% CI: 0.92-0.97]), LDOR (5.79 [95% CI: 4.95-6.86] & 5.64 [95% CI: 4.58-7.03]) and AUC (0.98 [95% CI: 0.94-0.99] & 0.98[95% CI: 0.92-0.99]) for diagnostic applications in breast cancer. In the specific subgroup analysis, PET/MRI had high pooled sensitivity and specificity for the diagnosis of breast lesions and distant metastatic lesions and was especially excellent for bone lesions. PET/MRI performed poorly for diagnosing axillary lymph nodes but was better than for lymph nodes at other sites (pooled sensitivity, specificity, LDOR, AUC: 0.86 vs. 0.58, 0.90 vs. 0.82, 4.09 vs. 1.98, 0.89 vs. 0.84). CONCLUSION 18F-FDG PET/MRI performed excellently in diagnosing breast lesions and distant metastases. It can be applied to the initial diagnosis of suspicious breast lesions, accurate staging of breast cancer patients, and accurate restaging of patients with suspected recurrence.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
13
|
Mirshahvalad SA, Metser U, Basso Dias A, Ortega C, Yeung J, Veit-Haibach P. 18F-FDG PET/MRI in Detection of Pulmonary Malignancies: A Systematic Review and Meta-Analysis. Radiology 2023; 307:e221598. [PMID: 36692397 DOI: 10.1148/radiol.221598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background There have been conflicting results regarding fluorine 18-labeled fluorodeoxyglucose (18F-FDG) PET/MRI diagnostic performance in lung malignant neoplasms. Purpose To evaluate the diagnostic performance of 18F-FDG PET/MRI for the detection of pulmonary malignant neoplasms. Materials and Methods A systematic search was conducted within the Scopus, Web of Science, and PubMed databases until December 31, 2021. Published original articles that met the following criteria were considered eligible for meta-analysis: (a) detecting malignant lesions in the lung, (b) comparing 18F-FDG PET/MRI with a valid reference standard, and (c) providing data for the meta-analytic calculations. A hierarchical method was used to pool the performances. The bivariate model was used to find the summary points and 95% CIs. The hierarchical summary receiver operating characteristic model was used to draw the summary receiver operating characteristic curve and calculate the area under the curve. The Higgins I2 statistic and Cochran Q test were used for heterogeneity assessment. Results A total of 43 studies involving 1278 patients met the inclusion criteria and were included in the meta-analysis. 18F-FDG PET/MRI had a pooled sensitivity and specificity of 96% (95% CI: 84, 99) and 100% (95% CI: 98, 100), respectively. 18F-FDG PET/CT had a pooled sensitivity and specificity of 99% (95% CI: 61, 100) and 99% (95% CI: 94, 100), respectively, which were comparable with those of 18F-FDG PET/MRI. At meta-regression, studies in which contrast media (P = .03) and diffusion-weighted imaging (P = .04) were used as a part of a pulmonary 18F-FDG PET/MRI protocol showed significantly higher sensitivities. Conclusion Fluorine 18-labeled fluorodeoxyglucose (18F-FDG) PET/MRI was found to be accurate and comparable with 18F-FDG PET/CT in the detection of malignant pulmonary lesions, with significantly improved sensitivity when advanced acquisition protocols were used. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Seyed Ali Mirshahvalad
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Ur Metser
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Adriano Basso Dias
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Claudia Ortega
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Jonathan Yeung
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Patrick Veit-Haibach
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| |
Collapse
|
14
|
Wang ML, Zhang H, Yu HJ, Tan H, Hu LZ, Kong HJ, Mao WJ, Xiao J, Shi HC. An initial study on the comparison of diagnostic performance of 18F-FDG PET/MR and 18F-FDG PET/CT for thoracic staging of non-small cell lung cancer: Focus on pleural invasion. Rev Esp Med Nucl Imagen Mol 2023; 42:16-23. [PMID: 36243657 DOI: 10.1016/j.remnie.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To compare the diagnostic performance of 18F-FDG PET/MR and PET/CT preliminarily for the thoracic staging of non-small cell lung cancer (NSCLC) with a special focus on pleural invasion evaluation. METHODS 52 patients with pathologically confirmed NSCLC were included and followed for another year. Whole-body 18F-FDG PET/CT and subsequent thoracic PET/MR were performed for initial thoracic staging. Thoracic (simultaneous) PET/MR acquired PET images and MRI sequences including T2 weighted imaging, with and without fat saturation, T1 weighted imaging, and diffusion weighted imaging (DWI). Two radiologists independently assessed the thoracic T, N staging and pleural involvement. The McNemar Chi-square test was used to compare the differences between PET/CT and PET/MR in the criteria. The area under the receiver-operating-characteristic curves (AUC) was calculated. RESULTS Compared to PET/CT, PET/MR exhibited higher sensitivity, specificity in the detection of pleural invasion; 82 % vs. 64% (p = 0.625), 98 % vs. 95% (p = 1.000), PET/MR to PET/CT respectively. The receiver-operating-characteristic analysis results of PET/CT vs PET/MR for the pleural invasion were as follow: AUCPET/CT = 0.79, AUCPET/MR = 0.90, p = 0.21. Both T staging results and N staging results were approximately identical in PET/CT and PET/MR. Differences between PET/CT and PET/MR in T staging, N staging as well as pleural invasion accuracy were not statistically significant (p > 0.05, each). CONCLUSION PET/MR and PET/CT demonstrated equivalent performance about the evaluation of preoperative thoracic staging of NSCLC patients. PET/MR may have greater potential in pleural invasion evaluation for NSCLC, especially for solid nodules, crucial to clinical decision-making, though our results did not demonstrate statistical significance.
Collapse
Affiliation(s)
- Ma-Li Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Nuclear Medicine Institute of Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Nuclear Medicine Institute of Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao-Jun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Nuclear Medicine Institute of Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Nuclear Medicine Institute of Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Han-Jing Kong
- Central Research Institute, UIH Group, Beijing, China
| | - Wu-Jian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Nuclear Medicine Institute of Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Xiao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Nuclear Medicine Institute of Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong-Cheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Nuclear Medicine Institute of Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Estudio inicial sobre la comparación del rendimiento diagnóstico de la PET/RM con [18F]FDG y la PET/TC con [18F]FDG para la estadificación torácica del cáncer de pulmón de células no pequeñas: enfoque en la invasión pleural. Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Manapov F, Eze C, Holzgreve A, Käsmann L, Nieto A, Taugner J, Unterrainer M. PET/CT for Target Delineation of Lung Cancer Before Radiation Therapy. Semin Nucl Med 2022; 52:673-680. [PMID: 35781392 DOI: 10.1053/j.semnuclmed.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022]
Abstract
In clinical routine of patients suffering from lung cancer, radiotherapy/radiation oncology represents one of the therapeutic hallmarks in the multimodal treatment besides or in combination with other local treatments such as surgery, but also systemic treatments such as chemotherapy, tyrosine kinase, and immune check-point inhibitors. Conventional morphological imagings such as CT or MR are commonly used for staging, response assessment, but also for radiotherapy planning. However, advanced imaging techniques such as PET do continuously get increasing access to clinical routine overcoming limitations of standard imaging techniques by visualizing and quantifying molecular processes such as glucose metabolism, which is also of relevance for radiotherapy planning. This review article summarizes the current place of radiotherapy within the treatment regimens of patients with lung cancer and elucidates current concepts of standard morphological imaging for staging and radiotherapy planning. Moreover, the place of PET-based radiotherapy planning in a clinical context is presented and current methodological/technical advances that do comprise a potential role for radiotherapy planning in lung cancer patients are discussed.
Collapse
Affiliation(s)
- Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Nieto
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Julian Taugner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
17
|
Zhang Y, Liu Z, Wang H, Liang F, Zhu L, Liu H. Association of metastatic nodal size with survival in non-surgical non-small cell lung cancer patients: Recommendations for clinical N staging. Front Oncol 2022; 12:990540. [PMID: 36338722 PMCID: PMC9633939 DOI: 10.3389/fonc.2022.990540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background This study aims to analyze the prognostic significance of the metastatic lymph node (mLN) size in non-small cell lung cancer (NSCLC) patients receiving chemoradiotherapy (CRT) to provide some information for the optimization of clinical nodal (cN) staging. Methods A retrospective study with 325 NSCLC patients was conducted between January 2011 and December 2018 at two participating institutes. We evaluated the potential relationship between the mLN size and the survival to propose a potential revised nodal (rN) staging. Results Kaplan–Meier analyses showed significant differences in the overall survival (OS) based on the cN staging and the size of mLNs (N0, ≤2 cm, and >2 cm). We found that the nodal size correlated statistically with the response to CRT. The HRs of OS for patients with bulky mLNs increase significantly compared with patients in the non-bulky mLNs group in the cN2-3 group. Interestingly, the HRs of patients with bulky cN2 disease and non-bulky cN3 disease were similar to each other. We classified the patients into five subsets: N0, rN1(cN1), rN2(non-bulky cN2), rN3a(bulky cN2, and non-bulky cN3), and rN3b(bulky cN3). In our study, the rN stage showed better prognostic discrimination than the 8th IASLC cN staging and was an independent prognostic factor for survival. Conclusions In addition to the anatomic location, the size of mLNs correlated statistically with the response to CRT and should be incorporated into the cN staging system to predict survival more accurately.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Geriatrics, Liaocheng People’s Hospital, Shandong First Medical University, Liaocheng, Shandong, China
| | - Zhehui Liu
- Department of Geriatrics, Liaocheng People’s Hospital, Shandong First Medical University, Liaocheng, Shandong, China
| | - Hongmin Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Shandong First Medical University, Liaocheng, Shandong, China
| | - Fengfan Liang
- Department of Radiation Oncology, Liaocheng People’s Hospital, Shandong First Medical University, Liaocheng, Shandong, China
| | - Liqiong Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Haifeng Liu
- Department of Geriatrics, Liaocheng People’s Hospital, Shandong First Medical University, Liaocheng, Shandong, China
- *Correspondence: Haifeng Liu,
| |
Collapse
|
18
|
Consistency and prognostic value of preoperative staging and postoperative pathological staging using 18F-FDG PET/MRI in patients with non-small cell lung cancer. Ann Nucl Med 2022; 36:1059-1072. [PMID: 36264439 DOI: 10.1007/s12149-022-01795-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/05/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE In recent years, positron emission tomography/magnetic resonance imaging (PET/MRI) has been clinically used as a method to diagnose non-small cell lung cancer (NSCLC). This study aimed to evaluate the concordance of staging and prognostic ability of NSCLC patients using thin-slice computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) PET/MRI. METHODS This retrospective study was performed on consecutive NSCLC patients who underwent both diagnostic CT and 18F-FDG PET/MRI before surgery between November 2015 and May 2019. The cTNM staging yielded from PET/MRI was compared with CT and pathological staging, and concordance was investigated, defining pathological findings as reference. To assess the prognostic value of disease-free survival (DFS) and overall survival (OS), we dichotomized the typical prognostic factors and TNM classification staging (Stage I vs. Stage II or higher). Kaplan-Meier curves derived by the log-rank test were generated, and univariate and multivariate analyses were performed to identify the factors associated with DFS and OS. RESULTS A total of 82 subjects were included; PET/MRI staging was more consistent (59 of 82) with pathological staging than with CT staging. There was a total of 21 cases of CT and 11 cases of PET/MRI that were judged as cStage I, but were actually pStage II or pStage III. CT tended to judge pN1 or pN2 as cN0 compared to PET/MRI. There was a significant difference between NSCLC patients with Stage I and Stage II or higher by PET/MRI staging as well as prognosis prediction of DFS by pathological staging (P < 0.001). In univariate analysis, PET/MRI, CT, and pathological staging (Stage I or lower vs. Stage II or higher) all showed significant differences as prognostic factors of recurrence or metastases. In multivariate analysis, pathological staging was the only independent factor for recurrence (P = 0.009), and preoperative PET/MRI staging was a predictor of patient survival (P = 0.013). CONCLUSIONS In NSCLC, pathologic staging was better at predicting recurrence, and preoperative PET/MRI staging was better at predicting survival. Preoperative staging by PET/MRI was superior to CT in diagnosing hilar and mediastinal lymph-node metastases, which contributed to the high concordance with pathologic staging.
Collapse
|
19
|
Zhang A, Meng X, Yao Y, Zhou X, Yan S, Fei W, Zhou N, Zhang Y, Kong H, Li N. Predictive Value of 18 F-FDG PET/MRI for Pleural Invasion in Solid and Subsolid Lung Adenocarcinomas Smaller Than 3 cm. J Magn Reson Imaging 2022; 57:1367-1375. [PMID: 36066210 DOI: 10.1002/jmri.28422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Positron emission tomography (PET)/MRI combines the characteristics of metabolism imaging and high soft tissue resolution, and could provide high diagnostic efficacy for assessment of pleural invasion (PI) of lung cancer. PURPOSE To investigate the application of 18 F-fluorodeoxyglucose (FDG) PET/MRI for predicting PI of lung cancer with the maximum diameter ≤3 cm. STUDY TYPE Prospective. POPULATION A total of 44 patients with non-small cell lung cancer (NSCLC), age from 39 to 79 years old, including 19 (56.82%) females. FIELD STRENGTH/SEQUENCE A 3-T, hybrid PET/MRI including axial fast spin echo respiratory-triggered T2 fat-suppressed imaging (T2FS) and echo planar imaging diffusion-weighted imaging (DWI). ASSESSMENT The maximum standardized uptake value (SUVmax) of all lesions was measured on PET images. Localized effusion outside the contact between the nodules and the pleura on T2FS and signal at the contact between the nodules and the pleura on DWI were evaluated by experienced physicians through visual assessment of the MRI sequences. STATISTICAL TESTS Three models (models 1-3) were developed, incorporating CT, CT and PET, PET and MRI features, and Lasso regression was used in feature selection. The receiver operating characteristic (ROC) curve for PI diagnosis was visualized for each model, and the area under the curve (AUC) was calculated. The DeLong test was used to compare the different AUCs. A P value < 0.05 was considered statistically significant. RESULTS The AUC of models 1-3 was 0.762, 0.829, and 0.915, respectively. The DeLong test showed a statistically significant difference between the AUCs of model 1 vs. model 3, while the differences between the AUCs of model 1 vs. model 2 (P = 0.253) and model 2 vs. model 3 (P = 0.075) were not statistically significant. DATA CONCLUSION 18 F-FDG PET/MRI might show high predictive value for lung adenocarcinoma smaller than 3 cm with PI. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Annan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Xin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Shuo Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Wang Fei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| |
Collapse
|
20
|
Jiang M, Zhang X, Chen Y, Chen P, Guo X, Ma L, Gao Q, Mei W, Zhang J, Zheng J. A Review of the Correlation Between Epidermal Growth Factor Receptor Mutation Status and 18F-FDG Metabolic Activity in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:780186. [PMID: 35515138 PMCID: PMC9065410 DOI: 10.3389/fonc.2022.780186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/25/2022] [Indexed: 11/15/2022] Open
Abstract
PET/CT with 18F-2-fluoro-2-deoxyglucose (18F-FDG) has been proposed as a promising modality for diagnosing and monitoring treatment response and evaluating prognosis for patients with non-small cell lung cancer (NSCLC). The status of epidermal growth factor receptor (EGFR) mutation is a critical signal for the treatment strategies of patients with NSCLC. Higher response rates and prolonged progression-free survival could be obtained in patients with NSCLC harboring EGFR mutations treated with tyrosine kinase inhibitors (TKIs) when compared with traditional cytotoxic chemotherapy. However, patients with EGFR mutation treated with TKIs inevitably develop drug resistance, so predicting the duration of resistance is of great importance for selecting individual treatment strategies. Several semiquantitative metabolic parameters, e.g., maximum standard uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG), measured by PET/CT to reflect 18F-FDG metabolic activity, have been demonstrated to be powerful in predicting the status of EGFR mutation, monitoring treatment response of TKIs, and assessing the outcome of patients with NSCLC. In this review, we summarize the biological and clinical correlations between EGFR mutation status and 18F-FDG metabolic activity in NSCLC. The metabolic activity of 18F-FDG, as an extrinsic manifestation of NSCLC, could reflect the mutation status of intrinsic factor EGFR. Both of them play a critical role in guiding the implementation of treatment modalities and evaluating therapy efficacy and outcome for patients with NSCLC.
Collapse
Affiliation(s)
- Maoqing Jiang
- Department of PET/CT Center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Department of Nuclear Medicine, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaohui Zhang
- Department of PET/CT Center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Yan Chen
- Department of Physical Examination Center, Ningbo First Hospital, Ningbo, China
| | - Ping Chen
- Department of Nephrology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiuyu Guo
- Department of PET/CT Center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Lijuan Ma
- Department of PET/CT Center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Qiaoling Gao
- Department of PET/CT Center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Weiqi Mei
- Department of Nuclear Medicine, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jingfeng Zhang
- Department of Education, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jianjun Zheng
- Department of PET/CT Center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
21
|
Li Y, Lin X, Li Y, Lv J, Hou P, Liu S, Chen P, Wang M, Zhou C, Wang X. Clinical Utility of F-18 Labeled Fibroblast Activation Protein Inhibitor (FAPI) for Primary Staging in Lung Adenocarcinoma: a Prospective Study. Mol Imaging Biol 2022; 24:309-320. [PMID: 34816283 DOI: 10.1007/s11307-021-01679-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose of this study was to compare the primary staging of F-18 labeled fibroblast activation protein inhibitor ([18F]F-FAPI) with that of F-18 labeled fluordesoxyglucose positron emission tomography/computed tomography ([18F]F-FDG PET/CT) in patients with lung adenocarcinoma (LAD). PROCEDURES We prospectively analyzed the images of LAD patients who underwent [18F]F-FAPI and [18F]F-FDG PET/CT between May 2020 and August 2021. [18F]F-FAPI and [18F]F-FDG uptakes were compared using the paired samples t test, and lesion numbers were compared using the Wilcoxon signed-rank test. RESULTS Thirty-four LAD patients were evaluated. Patients showed high [18F]F-FAPI uptake in primary lesions (SUVmax 12.54 ± 3.77). Both [18F]F-FAPI and [18F]F-FDG had 100% detection rates for primary tumors. However, [18F]F-FAPI showed higher SUVmax than [18F]F-FDG in lesions of the lymph nodes, pleura, bones, and other tissues (all P ≤ 0.05). Although the absolute uptake values of [18F]F-FAPI in brain lesions were lower than those of [18F]F-FDG (1.56 ± 2.19 vs.7.34 ± 3.54, P < 0.0001), the tumor-to-background (T/B) ratios were significantly higher than those of [18F]F-FDG (9.53 ± 12.07 vs.1.01 ± 0.49, P < 0.0001). Generally, [18F]F-FAPI PET/CT could visualize more total lesions than [18F]F-FDG (554 vs.464, P = 0.003), especially in lymph nodes (258 vs.229, P = 0.039), the brain (34 vs.9, P = 0.002), and pleura (56 vs.30, P = 0.041). However, contrast-enhanced brain magnetic-resonance imaging (MRI) showed more brain lesions than [18F]F-FAPI PET/CT (56 vs.34, P = 0.002). Compared with the [18F]F-FDG-based TNM stage, the [18F]F-FAPI-based TNM stage was upgraded in six patients (17.6%). CONCLUSIONS [18F]F-FAPI PET/CT showed a very high detection rate for primary LAD. In addition, 18F-FAPI PET/CT demonstrated clearer tumor delineation and more lesions than [18F]F-FDG PET/CT, especially in lymph nodes, the brain, and pleura. Therefore, [18F]F-FAPI had an advantage over [18F]F-FDG for primary staging of LAD. However, brain MRI could identify more and smaller lesions than [18F]F-FAPI PET/CT.
Collapse
Affiliation(s)
- Youcai Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinqing Lin
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Li
- Fox Chase Cancer Center, Department of Radiology, Division of Nuclear Medicine, Temple University, Philadelphia, PA, 19111, USA
| | - Jie Lv
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Hou
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Penghao Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengzhi Zhou
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Vaz SC, Adam JA, Delgado Bolton RC, Vera P, van Elmpt W, Herrmann K, Hicks RJ, Lievens Y, Santos A, Schöder H, Dubray B, Visvikis D, Troost EGC, de Geus-Oei LF. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[ 18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. Eur J Nucl Med Mol Imaging 2022; 49:1386-1406. [PMID: 35022844 PMCID: PMC8921015 DOI: 10.1007/s00259-021-05624-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE 2-[18F]FDG PET/CT is of utmost importance for radiation treatment (RT) planning and response monitoring in lung cancer patients, in both non-small and small cell lung cancer (NSCLC and SCLC). This topic has been addressed in guidelines composed by experts within the field of radiation oncology. However, up to present, there is no procedural guideline on this subject, with involvement of the nuclear medicine societies. METHODS A literature review was performed, followed by a discussion between a multidisciplinary team of experts in the different fields involved in the RT planning of lung cancer, in order to guide clinical management. The project was led by experts of the two nuclear medicine societies (EANM and SNMMI) and radiation oncology (ESTRO). RESULTS AND CONCLUSION This guideline results from a joint and dynamic collaboration between the relevant disciplines for this topic. It provides a worldwide, state of the art, and multidisciplinary guide to 2-[18F]FDG PET/CT RT planning in NSCLC and SCLC. These practical recommendations describe applicable updates for existing clinical practices, highlight potential flaws, and provide solutions to overcome these as well. Finally, the recent developments considered for future application are also reviewed.
Collapse
Affiliation(s)
- Sofia C. Vaz
- Nuclear Medicine Radiopharmacology, Champalimaud Centre for the Unkown, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit A. Adam
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Pierre Vera
- Henri Becquerel Cancer Center, QuantIF-LITIS EA 4108, Université de Rouen, Rouen, France
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Rodney J. Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Yolande Lievens
- Radiation Oncology Department, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bernard Dubray
- Department of Radiotherapy and Medical Physics, Centre Henri Becquerel, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Esther G. C. Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Bruckmann NM, Kirchner J, Morawitz J, Umutlu L, Herrmann K, Bittner AK, Hoffmann O, Mohrmann S, Ingenwerth M, Schaarschmidt BM, Li Y, Stang A, Antoch G, Sawicki LM, Buchbender C. Prospective comparison of CT and 18F-FDG PET/MRI in N and M staging of primary breast cancer patients: Initial results. PLoS One 2021; 16:e0260804. [PMID: 34855886 PMCID: PMC8638872 DOI: 10.1371/journal.pone.0260804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
Objectives To compare the diagnostic accuracy of contrast-enhanced thoraco-abdominal computed tomography and whole-body 18F-FDG PET/MRI in N and M staging in newly diagnosed, histopathological proven breast cancer. Material and methods A total of 80 consecutive women with newly diagnosed and histopathologically confirmed breast cancer were enrolled in this prospective study. Following inclusion criteria had to be fulfilled: (1) newly diagnosed, treatment-naive T2-tumor or higher T-stage or (2) newly diagnosed, treatment-naive triple-negative tumor of every size or (3) newly diagnosed, treatment-naive tumor with molecular high risk (T1c, Ki67 >14%, HER2neu over-expression, G3). All patients underwent a thoraco-abdominal ceCT and a whole-body 18F-FDG PET/MRI. All datasets were evaluated by two experienced radiologists in hybrid imaging regarding suspect lesion count, localization, categorization and diagnostic confidence. Images were interpreted in random order with a reading gap of at least 4 weeks to avoid recognition bias. Histopathological results as well as follow-up imaging served as reference standard. Differences in staging accuracy were assessed using Mc Nemars chi2 test. Results CT rated the N stage correctly in 64 of 80 (80%, 95% CI:70.0–87.3) patients with a sensitivity of 61.5% (CI:45.9–75.1), a specificity of 97.6% (CI:87.4–99.6), a PPV of 96% (CI:80.5–99.3), and a NPV of 72.7% (CI:59.8–82.7). Compared to this, 18F-FDG PET/MRI determined the N stage correctly in 71 of 80 (88.75%, CI:80.0–94.0) patients with a sensitivity of 82.1% (CI:67.3–91.0), a specificity of 95.1% (CI:83.9–98.7), a PPV of 94.1% (CI:80.9–98.4) and a NPV of 84.8% (CI:71.8–92.4). Differences in sensitivities were statistically significant (difference 20.6%, CI:-0.02–40.9; p = 0.008). Distant metastases were present in 7/80 patients (8.75%). 18 F-FDG PET/MRI detected all of the histopathological proven metastases without any false-positive findings, while 3 patients with bone metastases were missed in CT (sensitivity 57.1%, specificity 95.9%). Additionally, CT presented false-positive findings in 3 patients. Conclusion 18F-FDG PET/MRI has a high diagnostic potential and outperforms CT in assessing the N and M stage in patients with primary breast cancer.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
- * E-mail:
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Marc Ingenwerth
- Institute of Pathology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Benedikt M. Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yan Li
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Lino M. Sawicki
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
24
|
Fang T, Meng N, Feng P, Huang Z, Li Z, Fu F, Yuan J, Yang Y, Liu H, Roberts N, Wang M. A Comparative Study of Amide Proton Transfer Weighted Imaging and Intravoxel Incoherent Motion MRI Techniques Versus (18) F-FDG PET to Distinguish Solitary Pulmonary Lesions and Their Subtypes. J Magn Reson Imaging 2021; 55:1376-1390. [PMID: 34723413 DOI: 10.1002/jmri.27977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Amide proton transfer weighted imaging (APTw), intravoxel incoherent motion (IVIM), and positron emission tomography (PET) imaging all have the potential to characterize solitary pulmonary lesions (SPLs). PURPOSE To compare APTw and IVIM with PET imaging for distinguishing between benign and malignant SPLs and their subtypes. STUDY TYPE Prospective. POPULATION Ninety-five patients, 78 with malignant SPLs (including 48 with adenocarcinoma [AC] and 17 with squamous cell carcinoma [SCC]), and 17 with benign SPLs. FIELD STRENGTH/SEQUENCE Fast spin-echo (FSE) T2WI, FSE APTw and echo-planar imaging IVIM, MR-base attenuation correction (MRAC), and PET imaging on a 3-T whole-body PET/MR system. ASSESSMENT The magnetization transfer ratio asymmetry (MTRasym) at 3.5 ppm, diffusion coefficient (D), pseudo diffusion coefficient (D*), perfusion fraction (f), and the maximum standardized uptake value (SUVmax) were analyzed. STATISTICAL TESTS Individual sample t-test, Delong test, Pearson's correlation analysis, and area under the receiver operating characteristic curve (AUC). P < 0.05 indicated statistical significance. RESULTS The MTRasym and SUVmax were significantly higher, and D was significantly lower in the malignant group (3.3 ± 2.6 [%], 7.8 ± 5, and 1.2 ± 0.3 [×10-3 mm2 /second]) compared to the benign group (-0.3 ± 1.6 [%], 3.1 ± 3.8, and 1.6 ± 0.3 [×10-3 mm2 /second]). The MTRasym and D were significantly lower, and SUVmax was significantly higher in the SCC group (0.8 ± 1.0 [%], 1.0 ± 0.2 [×10-3 mm2 /second] than in the AC group (4.1 ± 2.6 [%], 1.3 ± 0.3 [×10-3 mm2 /second], 6.7 ± 4.6). Besides, the combination (AUC = 0.964) of these three methods showed higher diagnostic efficacy than any individual method (AUC = 0.917, 0.851, 0.82, respectively) in identifying malignant and benign SPLs. However, APTw showed better diagnostic efficacy than the combination of three methods or PET imaging alone in distinguishing SCC and AC groups (AUC = 0.934, 0.781, 0.725, respectively). DATA CONCLUSION APTw, IVIM, and PET imaging are all effective methods to distinguish benign and malignant SPLs and their subtypes. APTw is potentially more capable than PET imaging of distinguishing lung SCC from AC. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ting Fang
- Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou, China.,Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Nan Meng
- Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou, China.,Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Pengyang Feng
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Medical Imaging, Henan University People's Hospital, Zhengzhou, China
| | - Zhun Huang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Medical Imaging, Henan University People's Hospital, Zhengzhou, China
| | - Ziqiang Li
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Medical Imaging, Xinxiang Medical University, Xinxiang, China
| | - Fangfang Fu
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jianmin Yuan
- Central Research Institute, UIH Group, Shanghai, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Hui Liu
- UIH America, Inc, Houston, Texas, USA
| | - Neil Roberts
- Clinical Research Imaging Centre, School of Clinical Sciences and Community Health, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou, China.,Department of Medical Imaging, Henan University People's Hospital, Zhengzhou, China.,Department of Medical Imaging, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
25
|
Voss M, Wenger KJ, von Mettenheim N, Bojunga J, Vetter M, Diehl B, Franz K, Gerlach R, Ronellenfitsch MW, Harter PN, Hattingen E, Steinbach JP, Rödel C, Rieger J. Short-term fasting in glioma patients: analysis of diet diaries and metabolic parameters of the ERGO2 trial. Eur J Nutr 2021; 61:477-487. [PMID: 34487222 PMCID: PMC8783850 DOI: 10.1007/s00394-021-02666-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022]
Abstract
Purpose The prospective, randomized ERGO2 trial investigated the effect of calorie-restricted ketogenic diet and intermittent fasting (KD-IF) on re-irradiation for recurrent brain tumors. The study did not meet its primary endpoint of improved progression-free survival in comparison to standard diet (SD). We here report the results of the quality of life/neurocognition and a detailed analysis of the diet diaries. Methods 50 patients were randomized 1:1 to re-irradiation combined with either SD or KD-IF. The KD-IF schedule included 3 days of ketogenic diet (KD: 21–23 kcal/kg/d, carbohydrate intake limited to 50 g/d), followed by 3 days of fasting and again 3 days of KD. Follow-up included examination of cognition, quality of life and serum samples. Results The 20 patients who completed KD-IF met the prespecified goals for calorie and carbohydrate restriction. Substantial decreases in leptin and insulin and an increase in uric acid were observed. The SD group, of note, had a lower calorie intake than expected (21 kcal/kg/d instead of 30 kcal/kg/d). Neither quality of life nor cognition were affected by the diet. Low glucose emerged as a significant prognostic parameter in a best responder analysis. Conclusion The strict caloric goals of the ERGO2 trial were tolerated well by patients with recurrent brain cancer. The short diet schedule led to significant metabolic changes with low glucose emerging as a candidate marker of better prognosis. The unexpected lower calorie intake of the control group complicates the interpretation of the results. Clinicaltrials.gov number: NCT01754350; Registration: 21.12.2012. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02666-1.
Collapse
Affiliation(s)
- Martin Voss
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany. .,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany. .,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.
| | - Katharina J Wenger
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
| | - Nina von Mettenheim
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Jörg Bojunga
- Department of Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Manuela Vetter
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Bianca Diehl
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Kea Franz
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Department of Neurosurgery, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
| | - Ruediger Gerlach
- Department of Neurosurgery, HELIOS Hospital Erfurt, Nordhäuser Straße 74, 99089, Erfurt, Germany
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Patrick N Harter
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann Strasse 7, 60528, Frankfurt/Main, Germany
| | - Elke Hattingen
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Claus Rödel
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| |
Collapse
|
26
|
Besson FL, Fernandez B, Faure S, Mercier O, Seferian A, Mussot S, Levy A, Parent F, Bulifon S, Jais X, Montani D, Mitilian D, Fadel E, Planchard D, Ghigna-Bellinzoni MR, Comtat C, Lebon V, Durand E. Fully Integrated Quantitative Multiparametric Analysis of Non-Small Cell Lung Cancer at 3-T PET/MRI: Toward One-Stop-Shop Tumor Biological Characterization at the Supervoxel Level. Clin Nucl Med 2021; 46:e440-e447. [PMID: 34374682 DOI: 10.1097/rlu.0000000000003680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The aim of this study was to study the feasibility of a fully integrated multiparametric imaging framework to characterize non-small cell lung cancer (NSCLC) at 3-T PET/MRI. PATIENTS AND METHODS An 18F-FDG PET/MRI multiparametric imaging framework was developed and prospectively applied to 11 biopsy-proven NSCLC patients. For each tumor, 12 parametric maps were generated, including PET full kinetic modeling, apparent diffusion coefficient, T1/T2 relaxation times, and DCE full kinetic modeling. Gaussian mixture model-based clustering was applied at the whole data set level to define supervoxels of similar multidimensional PET/MRI behaviors. Taking the multidimensional voxel behaviors as input and the supervoxel class as output, machine learning procedure was finally trained and validated voxelwise to reveal the dominant PET/MRI characteristics of these supervoxels at the whole data set and individual tumor levels. RESULTS The Gaussian mixture model-based clustering clustering applied at the whole data set level (17,316 voxels) found 3 main multidimensional behaviors underpinned by the 12 PET/MRI quantitative parameters. Four dominant PET/MRI parameters of clinical relevance (PET: k2, k3 and DCE: ve, vp) predicted the overall supervoxel behavior with 97% of accuracy (SD, 0.7; 10-fold cross-validation). At the individual tumor level, these dimensionality-reduced supervoxel maps showed mean discrepancy of 16.7% compared with the original ones. CONCLUSIONS One-stop-shop PET/MRI multiparametric quantitative analysis of NSCLC is clinically feasible. Both PET and MRI parameters are useful to characterize the behavior of tumors at the supervoxel level. In the era of precision medicine, the full capabilities of PET/MRI would give further insight of the characterization of NSCLC behavior, opening new avenues toward image-based personalized medicine in this field.
Collapse
Affiliation(s)
| | | | - Sylvain Faure
- Laboratoire de Mathématiques d'Orsay, CNRS, Université Paris-Saclay, Orsay
| | - Olaf Mercier
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital
| | | | - Sacha Mussot
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital
| | | | | | | | | | | | - Delphine Mitilian
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital
| | - Elie Fadel
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital
| | - David Planchard
- Oncology, Institut d'Oncologie Thoracique, Gustave Roussy, Université Paris Saclay, Villejuif
| | | | | | | | | |
Collapse
|
27
|
Hosono M, Takenaka M, Monzen H, Tamura M, Kudo M, Nishimura Y. Cumulative radiation doses from recurrent PET/CT examinations. Br J Radiol 2021; 94:20210388. [PMID: 34111964 PMCID: PMC9328066 DOI: 10.1259/bjr.20210388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Positron emission tomography (PET–CT) is an essential imaging modality for the management of various diseases. Increasing numbers of PET–CT examinations are carried out across the world and deliver benefits to patients; however, there are concerns about the cumulative radiation doses from these examinations in patients. Compared to the radiation exposure delivered by CT, there have been few reports on the frequency of patients with a cumulative effective radiation dose of ≥100 mSv from repeated PET–CT examinations. The emerging dose tracking system facilitates surveys on patient cumulative doses by PET–CT because it can easily wrap up exposure doses of PET radiopharmaceuticals and CT. Regardless of the use of a dose tracking system, implementation of justification for PET–CT examinations and utilisation of dose reduction measures are key issues in coping with the cumulative dose in patients. Despite all the advantages of PET/MRI such as eliminating radiation exposure from CT and providing good tissue contrast in MRI, it is expensive and cannot be introduced at every facility; thus, it is still necessary to utilise PET–CT with radiation reduction measures in most clinical situations.
Collapse
Affiliation(s)
- Makoto Hosono
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Mamoru Takenaka
- Department of Gastroenterology, Faculty of Medicine, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Hajime Monzen
- . Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Mikoto Tamura
- . Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology, Faculty of Medicine, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
28
|
Mathew B, Purandare NC, Pramesh CS, Karimundackal G, Jiwnani S, Agrawal A, Shah S, Puranik A, Kumar R, Prakash Agarwal J, Prabhash K, Tandon S, Rangarajan V. Improving accuracy of 18F-fluorodeoxyglucose PET computed tomography to diagnose nodal involvement in non-small cell lung cancer: utility of using various predictive models. Nucl Med Commun 2021; 42:535-544. [PMID: 33560716 DOI: 10.1097/mnm.0000000000001367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To determine predictive models (PM) that could improve the accuracy for identifying metastatic regional nodes in non-small cell lung cancer based on both PET and CT findings seen on 18F-FDG PET CT. METHODS Three hundred thirty-nine biopsy-proven NSCLC patients who underwent surgical resection and had a staging 18F-FDG PET CT were enrolled. PET parameters obtained were (1) presence of visual PET positive nodes, (2) SUVmax of nodes (NSUV), (3) ratio of node to aorta SUVmax (N/A ratio) and (4) ratio of node to primary tumour SUVmax (N/T ratio). CT parameters obtained were (1) short-axis diameter and (2) Hounsfield units (HU) of PET-positive nodes. PET and CT parameters were correlated with nodal histopathology to find out the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and overall accuracy. Different PM combining these parameters were devised and the incremental improvement in accuracy was determined. RESULTS Visual PET positivity showed sensitivity, specificity, PPV, NPV and accuracy of 72.4, 76.1, 30.1, 95.1 and 75.6, respectively. PM2 which combined visual PET positivity, NSUV and HU appears more clinically relevant and showed sensitivity, specificity, PPV, NPV and accuracy of 53.5, 96.5, 68.9, 93.6 and 91.2, respectively. PM6 which combined visual PET positivity, NSUV, N/A ratio and HU showed the maximum PPV (80.0%), specificity (98.3%) and accuracy of (91.9%). CONCLUSION PM combining parameters like nodal SUVmax, N/A ratio, N/T ratio and HU values have shown to improve the PPV, specificity and overall accuracy of 18FDG PET CT in the preoperative diagnosis of nodal metastases.
Collapse
Affiliation(s)
- Boon Mathew
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute
| | - Nilendu C Purandare
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute
| | - C S Pramesh
- Thoracic Surgery, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute
| | - George Karimundackal
- Thoracic Surgery, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute
| | - Sabita Jiwnani
- Thoracic Surgery, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute
| | - Sneha Shah
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute
| | - Ameya Puranik
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute
| | | | | | | | - Sandeep Tandon
- Chest Medicine, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute
| |
Collapse
|
29
|
Man S, Yan J, Li J, Cao Y, Hu J, Ma W, Liu J, Zhao Q. Value of pretreatment 18F-FDG PET/CT in prognosis and the reflection of tumor burden: a study in pediatric patients with newly diagnosed neuroblastoma. Int J Med Sci 2021; 18:1857-1865. [PMID: 33746603 PMCID: PMC7976578 DOI: 10.7150/ijms.58263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 11/30/2022] Open
Abstract
Fluorine-18 fluorodeoxyglucose (18F-FDG) PET/CT has been commonly used in pediatric patients with newly diagnosed neuroblastoma (NB) for diagnosis. We retrospectively reviewed 40 pediatric patients with newly diagnosed NB who underwent 18F-FDG PET/CT. Clinicopathological factors and metabolic parameters including maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) on PET/CT were evaluated as predictive factors for progression-free survival (PFS) and overall survival (OS) by univariate and multivariate analysis. Spearman rank correlation analyses were used to estimate the correlations between clinical factors and PET findings. The mean follow-up after 18F-FDG-PET/CT was 32.9 months. During the follow-up period 15 (37.5%) patients experienced progression, and 9 (22.5%) died. MTV (P=0.001) and TLG (p=0.004) remained significant predictive factors for tumor progression, along with lactate dehydrogenase (LDH), neuron-specific enolase (NSE) and bone metastasis. Univariate analysis showed that bone metastasis, LDH (>1064 IU/L), NSE (>364.4 ug/L), MTV (>191 cm3) and TLG (>341.41 g) correlated with PFS, and LDH (>1064 IU/L), NSE (>364.4 ug/L) and MTV (>191 cm3) correlated with OS (p<0.05). In multivariate analysis, MTV and bone metastasis were independent prognostic factors for PFS (p=0.001 and 0.023, respectively), and MTV remained the only independent prognostic factor for OS (p= 0.004). We also found that there were correlations between semiquantitative PET/CT parameters and clinical features in NB. Our results suggested that 18F-FDG PET/CT was a useful tool to predictive progression and to reflect tumor burden for patients with NB.
Collapse
Affiliation(s)
- Shuai Man
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanna Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiajian Hu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenchao Ma
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
30
|
Bruckmann NM, Kirchner J, Grueneisen J, Li Y, McCutcheon A, Aigner C, Rischpler C, Sawicki LM, Herrmann K, Umutlu L, Schaarschmidt BM. Correlation of the apparent diffusion coefficient (ADC) and standardized uptake values (SUV) with overall survival in patients with primary non-small cell lung cancer (NSCLC) using 18F-FDG PET/MRI. Eur J Radiol 2020; 134:109422. [PMID: 33271432 DOI: 10.1016/j.ejrad.2020.109422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/18/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To investigate if the combined analysis of the apparent diffusion coefficient (ADC) and standardized uptake values (SUV) measured in 18F-fluoro-deoxy-glucose-positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) examinations correlates with overall survival in non-small cell lung cancer (NSCLC). MATERIAL AND METHODS A total of 92 patients with newly diagnosed, histopathologically proven NSCLC (44 women and 48 men, mean age 63.1 ± 9.9y) underwent a dedicated thoracic 18F-FDG PET/MRI examination. A manually drawn polygonal region of interest (ROI), encompassing the entire primary tumor mass, was placed over the primary tumor on fused PET/MR images to determine the maximum and mean standardized uptake values (SUVmax; SUVmean) as well as on the ADC maps to quantify the mean and minimum ADC values (ADCmean, ADCmin). The impact of these parameters to predict patient's overall survival was tested using hazard ratios (HR). Pearson's correlation coefficients were calculated to assess dependencies between the different values. A p-value < 0.05 indicated statistical significance. RESULTS In all 92 patients (n = 59 dead at time of retrospective data collection, mean time till death: 19 ± 16 month, n = 33 alive, mean time to last follow-up: 56 ± 22 month) the Hazard ratios (HR) as independent predictors for overall survival (OS) of SUVmax were 2.37 (95 % CI: 1.23-4.59, p = 0.008) and for SUVmean 1.85 (95 % CI: 1.05-3.26, p = 0.03) while ADCmin showed a HR of 0.95 (95 % CI: 0.57-1.59, p = 0.842) and ADCmean a HR of 2.01 (95 % CI: 1.2-3.38, p = 0.007). Furthermore, a combined analysis for SUVmax/ADCmean, SUVmax / ADCmin and SUVmean/ADCmean revealed a HR of 2.01 (95 % CI: 1.10-3.67, p = 0.02), 1.75 (95 % CI: 0.97-3.15, p = 0.058) and 1.78 (95 % CI: 1.02-3.10, p = 0.04). CONCLUSION SUVmax and SUVmean of the primary tumor are predictors for OS in therapy-naive NSCLC patients, whereas the combined analysis of SUV and ADC values does not improve these results. Therefore, ADC values do not further enhance the diagnostic value of SUV as a prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany; University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - Julian Kirchner
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany
| | - Johannes Grueneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Yan Li
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Angela McCutcheon
- Department of Medical Oncology, West German Cancer Center, University Hospital of Essen, D-45147 Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, D-45239 Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Lino M Sawicki
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Benedikt Michael Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| |
Collapse
|
31
|
Jaykel TJ, Clark MS, Adamo DA, Welch BT, Thompson SM, Young JR, Ehman EC. Thoracic positron emission tomography: 18F-fluorodeoxyglucose and beyond. J Thorac Dis 2020; 12:6978-6991. [PMID: 33282403 PMCID: PMC7711422 DOI: 10.21037/jtd-2019-cptn-09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ongoing technologic and therapeutic advancements in medicine are now testing the limits of conventional anatomic imaging techniques. The ability to image physiology, rather than simply anatomy, is critical in the management of multiple disease processes, especially in oncology. Nuclear medicine has assumed a leading role in detecting, diagnosing, staging and assessing treatment response of various pathologic entities, and appears well positioned to do so into the future. When combined with computed tomography (CT) or magnetic resonance imaging (MRI), positron emission tomography (PET) has become the sine quo non technique of evaluating most solid tumors especially in the thorax. PET/CT serves as a key imaging modality in the initial evaluation of pulmonary nodules, often obviating the need for more invasive testing. PET/CT is essential to staging and restaging in bronchogenic carcinoma and offers key physiologic information with regard to treatment response. A more recent development, PET/MRI, shows promise in several specific lung cancer applications as well. Additional recent advancements in the field have allowed PET to expand beyond imaging with 18F-flurodeoxyglucose (FDG) alone, now with the ability to specifically image certain types of cell surface receptors. In the thorax this predominantly includes 68Ga-DOTATATE which targets the somatostatin receptors abundantly expressed in neuroendocrine tumors, including bronchial carcinoid. This receptor targeted imaging technique permits targeting these tumors with therapeutic analogues such as 177Lu labeled DOTATATE. Overall, the proper utilization of PET in the thorax has the ability to directly impact and improve patient care.
Collapse
Affiliation(s)
| | - Michael S Clark
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel A Adamo
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brain T Welch
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Jason R Young
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric C Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
32
|
Bruckmann NM, Sawicki LM, Kirchner J, Martin O, Umutlu L, Herrmann K, Fendler W, Bittner AK, Hoffmann O, Mohrmann S, Dietzel F, Ingenwerth M, Schaarschmidt BM, Li Y, Kowall B, Stang A, Antoch G, Buchbender C. Prospective evaluation of whole-body MRI and 18F-FDG PET/MRI in N and M staging of primary breast cancer patients. Eur J Nucl Med Mol Imaging 2020; 47:2816-2825. [PMID: 32333068 PMCID: PMC7567721 DOI: 10.1007/s00259-020-04801-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate and compare the diagnostic potential of whole-body MRI and whole-body 18F-FDG PET/MRI for N and M staging in newly diagnosed, histopathologically proven breast cancer. MATERIAL AND METHODS A total of 104 patients (age 53.4 ± 12.5) with newly diagnosed, histopathologically proven breast cancer were enrolled in this study prospectively. All patients underwent a whole-body 18F-FDG PET/MRI. MRI and 18F-FDG PET/MRI datasets were evaluated separately regarding lesion count, lesion localization, and lesion characterization (malignant/benign) as well as the diagnostic confidence (5-point ordinal scale, 1-5). The N and M stages were assessed according to the eighth edition of the American Joint Committee on Cancer staging manual in MRI datasets alone and in 18F-FDG PET/MRI datasets, respectively. In the majority of lesions histopathology served as the reference standard. The remaining lesions were followed-up by imaging and clinical examination. Separately for nodal-positive and nodal-negative women, a McNemar chi2 test was performed to compare sensitivity and specificity of the N and M stages between 18F-FDG PET/MRI and MRI. Differences in diagnostic confidence scores were assessed by Wilcoxon signed rank test. RESULTS MRI determined the N stage correctly in 78 of 104 (75%) patients with a sensitivity of 62.3% (95% CI: 0.48-0.75), a specificity of 88.2% (95% CI: 0.76-0.96), a PPV (positive predictive value) of 84.6% % (95% CI: 69.5-0.94), and a NPV (negative predictive value) of 69.2% (95% CI: 0.57-0.8). Corresponding results for 18F-FDG PET/MRI were 87/104 (83.7%), 75.5% (95% CI: 0.62-0.86), 92.2% (0.81-0.98), 90% (0.78-0.97), and 78.3% (0.66-0.88), showing a significantly better sensitivity of 18F-FDG PET/MRI determining malignant lymph nodes (p = 0.008). The M stage was identified correctly in MRI and 18F-FDG PET/MRI in 100 of 104 patients (96.2%). Both modalities correctly staged all 7 patients with distant metastases, leading to false-positive findings in 4 patients in each modality (3.8%). In a lesion-based analysis, 18F-FDG PET/MRI showed a significantly better performance in correctly determining malignant lesions (85.8% vs. 67.1%, difference 18.7% (95% CI: 0.13-0.26), p < 0.0001) and offered a superior diagnostic confidence compared with MRI alone (4.1 ± 0.7 vs. 3.4 ± 0.7, p < 0.0001). CONCLUSION 18F-FDG PET/MRI has a better diagnostic accuracy for N staging in primary breast cancer patients and provides a significantly higher diagnostic confidence in lesion characterization than MRI alone. But both modalities bear the risk to overestimate the M stage.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Lino M Sawicki
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Julian Kirchner
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany.
| | - Ole Martin
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Frederic Dietzel
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Marc Ingenwerth
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Benedikt M Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yan Li
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Kowall
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Gerald Antoch
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Christian Buchbender
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
33
|
Sim AJ, Kaza E, Singer L, Rosenberg SA. A review of the role of MRI in diagnosis and treatment of early stage lung cancer. Clin Transl Radiat Oncol 2020; 24:16-22. [PMID: 32596518 PMCID: PMC7306507 DOI: 10.1016/j.ctro.2020.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Despite magnetic resonance imaging (MRI) being a mainstay in the oncologic care for many disease sites, it has not routinely been used in early lung cancer diagnosis, staging, and treatment. While MRI provides improved soft tissue contrast compared to computed tomography (CT), an advantage in multiple organs, the physical properties of the lungs and mediastinum create unique challenges for lung MRI. Although multi-detector CT remains the gold standard for lung imaging, advances in MRI technology have led to its increased clinical relevance in evaluating early stage lung cancer. Even though positron emission tomography is used more frequently in this context, functional MR imaging, including diffusion-weighted MRI and dynamic contrast-enhanced MRI, are emerging as useful modalities for both diagnosis and evaluation of treatment response for lung cancer. In parallel with these advances, the development of combined MRI and linear accelerator devices (MR-linacs), has spurred the integration of MRI into radiation treatment delivery in the form of MR-guided radiotherapy (MRgRT). Despite challenges for MRgRT in early stage lung cancer radiotherapy, early data utilizing MR-linacs shows potential for the treatment of early lung cancer. In both diagnosis and treatment, MRI is a promising modality for imaging early lung cancer.
Collapse
Affiliation(s)
- Austin J. Sim
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr., Tampa, FL, USA
| | - Evangelia Kaza
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham & Women’s Hospital & Harvard Medical School, 75 Francis St., Boston, MA, USA
| | - Lisa Singer
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham & Women’s Hospital & Harvard Medical School, 75 Francis St., Boston, MA, USA
| | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr., Tampa, FL, USA
- University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA
| |
Collapse
|
34
|
Recent and Current Advances in FDG-PET Imaging within the Field of Clinical Oncology in NSCLC: A Review of the Literature. Diagnostics (Basel) 2020; 10:diagnostics10080561. [PMID: 32764429 PMCID: PMC7459495 DOI: 10.3390/diagnostics10080561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths around the world, the most common type of which is non-small-cell lung cancer (NSCLC). Computed tomography (CT) is required for patients with NSCLC, but often involves diagnostic issues and large intra- and interobserver variability. The anatomic data obtained using CT can be supplemented by the metabolic data obtained using fluorodeoxyglucose F 18 (FDG) positron emission tomography (PET); therefore, the use of FDG-PET/CT for staging NSCLC is recommended, as it provides more accuracy than either modality alone. Furthermore, FDG-PET/magnetic resonance imaging (MRI) provides useful information on metabolic activity and tumor cellularity, and has become increasingly popular. A number of studies have described FDG-PET/MRI as having a high diagnostic performance in NSCLC staging. Therefore, multidimensional functional imaging using FDG-PET/MRI is promising for evaluating the activity of the intratumoral environment. Radiomics is the quantitative extraction of imaging features from medical scans. The chief advantages of FDG-PET/CT radiomics are the ability to capture information beyond the capabilities of the human eye, non-invasiveness, the (virtually) real-time response, and full-field analysis of the lesion. This review summarizes the recent advances in FDG-PET imaging within the field of clinical oncology in NSCLC, with a focus on surgery and prognostication, and investigates the site-specific strengths and limitations of FDG-PET/CT. Overall, the goal of treatment for NSCLC is to provide the best opportunity for long-term survival; therefore, FDG-PET/CT is expected to play an increasingly important role in deciding the appropriate treatment for such patients.
Collapse
|
35
|
Besson FL, Fernandez B, Faure S, Mercier O, Seferian A, Mignard X, Mussot S, le Pechoux C, Caramella C, Botticella A, Levy A, Parent F, Bulifon S, Montani D, Mitilian D, Fadel E, Planchard D, Besse B, Ghigna-Bellinzoni MR, Comtat C, Lebon V, Durand E. 18F-FDG PET and DCE kinetic modeling and their correlations in primary NSCLC: first voxel-wise correlative analysis of human simultaneous [18F]FDG PET-MRI data. EJNMMI Res 2020; 10:88. [PMID: 32734484 PMCID: PMC7392998 DOI: 10.1186/s13550-020-00671-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To decipher the correlations between PET and DCE kinetic parameters in non-small-cell lung cancer (NSCLC), by using voxel-wise analysis of dynamic simultaneous [18F]FDG PET-MRI. MATERIAL AND METHODS Fourteen treatment-naïve patients with biopsy-proven NSCLC prospectively underwent a 1-h dynamic [18F]FDG thoracic PET-MRI scan including DCE. The PET and DCE data were normalized to their corresponding T1-weighted MR morphological space, and tumors were masked semi-automatically. Voxel-wise parametric maps of PET and DCE kinetic parameters were computed by fitting the dynamic PET and DCE tumor data to the Sokoloff and Extended Tofts models respectively, by using in-house developed procedures. Curve-fitting errors were assessed by computing the relative root mean square error (rRMSE) of the estimated PET and DCE signals at the voxel level. For each tumor, Spearman correlation coefficients (rs) between all the pairs of PET and DCE kinetic parameters were estimated on a voxel-wise basis, along with their respective bootstrapped 95% confidence intervals (n = 1000 iterations). RESULTS Curve-fitting metrics provided fit errors under 20% for almost 90% of the PET voxels (median rRMSE = 10.3, interquartile ranges IQR = 8.1; 14.3), whereas 73.3% of the DCE voxels showed fit errors under 45% (median rRMSE = 31.8%, IQR = 22.4; 46.6). The PET-PET, DCE-DCE, and PET-DCE voxel-wise correlations varied according to individual tumor behaviors. Beyond this wide variability, the PET-PET and DCE-DCE correlations were mainly high (absolute rs values > 0.7), whereas the PET-DCE correlations were mainly low to moderate (absolute rs values < 0.7). Half the tumors showed a hypometabolism with low perfused/vascularized profile, a hallmark of hypoxia, and tumor aggressiveness. CONCLUSION A dynamic "one-stop shop" procedure applied to NSCLC is technically feasible in clinical practice. PET and DCE kinetic parameters assessed simultaneously are not highly correlated in NSCLC, and these correlations showed a wide variability among tumors and patients. These results tend to suggest that PET and DCE kinetic parameters might provide complementary information. In the future, this might make PET-MRI a unique tool to characterize the individual tumor biological behavior in NSCLC.
Collapse
Affiliation(s)
- Florent L Besson
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMAPs, 91401, Orsay, France.
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270, Le Kremlin-Bicêtre, France.
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| | | | - Sylvain Faure
- Laboratoire de Mathématiques d'Orsay, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Olaf Mercier
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, 92350, Le Plessis Robinson, France
| | - Andrei Seferian
- Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, 94270, Le Kremlin-Bicêtre, France
- Inserm UMR_S999, Marie Lannelongue Hospital, 92350, Le Plessis Robinson, France
| | - Xavier Mignard
- Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, 94270, Le Kremlin-Bicêtre, France
| | - Sacha Mussot
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, 92350, Le Plessis Robinson, France
| | - Cecile le Pechoux
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Caroline Caramella
- Department of Radiology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Angela Botticella
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Florence Parent
- Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, 94270, Le Kremlin-Bicêtre, France
- Inserm UMR_S999, Marie Lannelongue Hospital, 92350, Le Plessis Robinson, France
| | - Sophie Bulifon
- Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, 94270, Le Kremlin-Bicêtre, France
- Inserm UMR_S999, Marie Lannelongue Hospital, 92350, Le Plessis Robinson, France
| | - David Montani
- Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, 94270, Le Kremlin-Bicêtre, France
- Inserm UMR_S999, Marie Lannelongue Hospital, 92350, Le Plessis Robinson, France
| | - Delphine Mitilian
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, 92350, Le Plessis Robinson, France
| | - Elie Fadel
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, 92350, Le Plessis Robinson, France
| | - David Planchard
- Department of Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Benjamin Besse
- Department of Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Claude Comtat
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMAPs, 91401, Orsay, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Vincent Lebon
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMAPs, 91401, Orsay, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Emmanuel Durand
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMAPs, 91401, Orsay, France
- Department of Biophysics and Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94270, Le Kremlin-Bicêtre, France
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
36
|
Hybrid PET/MRI in non-small cell lung cancer (NSCLC) and lung nodules-a literature review. Eur J Nucl Med Mol Imaging 2020; 48:584-591. [PMID: 32719914 DOI: 10.1007/s00259-020-04955-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The use of hybrid PET/MRI for clinical staging is growing in several cancer forms and, consequently, PET/MRI has also gained interest in the assessment of non-small cell lung cancer (NSCLC) and lung lesions. However, lung evaluation with PET/MRI is associated with challenges related to technical issues and diagnostic image quality. We, therefore, investigated the published literature on PET/MRI for clinical staging in NSCLC or lung nodule detection specifically addressing diagnostic accuracy and technical issues. METHODS The data originates from a systematic search performed in PubMed/MEDLINE, Embase, and Cochrane Library on hybrid PET/MRI in patients with cancer for a scoping review published earlier ( https://doi.org/10.1007/s00259-019-04402-8 ). Studies in English and German evaluating the diagnostic performance of hybrid PET/MRI for NSCLC or lung nodule detection in cancer patients were selected. Data reported in peer-reviewed journals without restrictions to year of publication were included. RESULTS A total of 3138 publications were identified from which 116 published 2012-2018 were included. Of these, nine studies addressed PET/MRI in NSCLC (4) or lung nodule detection (5). Overall, PET/MRI did not provide advantages in preoperative T- and N-staging in NSCLC compared to PET/CT. The data on M-staging were too few for conclusions to be drawn. The lung nodule detection rate of PET/MRI was comparable to that of PET/CT for FDG-avid nodules larger than 10 mm, but the sensitivity of PET/MRI for detection of non-FDG-avid nodules smaller than 5 mm was low. CONCLUSION PET/MRI did not provide advantages in T- and N-staging of NSCLC compared to PET/CT. PET/MRI had a comparable sensitivity for detection of FDG-avid lung nodules and nodules over 10 mm, but PET/CT yielded a higher detection rate in non FDG-avid lung nodules under 5 mm. With PET/MRI, the overall detection rate for lung nodules in various cancer types remains inferior to that of PET/CT due to the lower diagnostic performance of MRI than CT in the lungs.
Collapse
|
37
|
Unterrainer M, Eze C, Ilhan H, Marschner S, Roengvoraphoj O, Schmidt-Hegemann NS, Walter F, Kunz WG, Rosenschöld PMA, Jeraj R, Albert NL, Grosu AL, Niyazi M, Bartenstein P, Belka C. Recent advances of PET imaging in clinical radiation oncology. Radiat Oncol 2020; 15:88. [PMID: 32317029 PMCID: PMC7171749 DOI: 10.1186/s13014-020-01519-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy and radiation oncology play a key role in the clinical management of patients suffering from oncological diseases. In clinical routine, anatomic imaging such as contrast-enhanced CT and MRI are widely available and are usually used to improve the target volume delineation for subsequent radiotherapy. Moreover, these modalities are also used for treatment monitoring after radiotherapy. However, some diagnostic questions cannot be sufficiently addressed by the mere use standard morphological imaging. Therefore, positron emission tomography (PET) imaging gains increasing clinical significance in the management of oncological patients undergoing radiotherapy, as PET allows the visualization and quantification of tumoral features on a molecular level beyond the mere morphological extent shown by conventional imaging, such as tumor metabolism or receptor expression. The tumor metabolism or receptor expression information derived from PET can be used as tool for visualization of tumor extent, for assessing response during and after therapy, for prediction of patterns of failure and for definition of the volume in need of dose-escalation. This review focuses on recent and current advances of PET imaging within the field of clinical radiotherapy / radiation oncology in several oncological entities (neuro-oncology, head & neck cancer, lung cancer, gastrointestinal tumors and prostate cancer) with particular emphasis on radiotherapy planning, response assessment after radiotherapy and prognostication.
Collapse
Affiliation(s)
- M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany. .,Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany. .,German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - C Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - H Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - S Marschner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - O Roengvoraphoj
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - N S Schmidt-Hegemann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - F Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - W G Kunz
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - P Munck Af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, and Lund University, Lund, Sweden
| | - R Jeraj
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - N L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), partner Site Freiburg, Freiburg, Germany
| | - M Niyazi
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Belka
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
38
|
Mayerhoefer ME, Prosch H, Beer L, Tamandl D, Beyer T, Hoeller C, Berzaczy D, Raderer M, Preusser M, Hochmair M, Kiesewetter B, Scheuba C, Ba-Ssalamah A, Karanikas G, Kesselbacher J, Prager G, Dieckmann K, Polterauer S, Weber M, Rausch I, Brauner B, Eidherr H, Wadsak W, Haug AR. PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. Eur J Nucl Med Mol Imaging 2019; 47:51-60. [PMID: 31410538 PMCID: PMC6885019 DOI: 10.1007/s00259-019-04452-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022]
Abstract
Purpose PET/MRI has recently been introduced into clinical practice. We prospectively investigated the clinical impact of PET/MRI compared with PET/CT, in a mixed population of cancer patients, and performed an economic evaluation of PET/MRI. Methods Cancer patients referred for routine staging or follow-up by PET/CT underwent consecutive PET/CT and PET/MRI, using single applications of [18F]FDG, [68Ga]Ga-DOTANOC, or [18F]FDOPA, depending on tumor histology. PET/MRI and PET/CT were rated separately, and lesions were assessed per anatomic region; based on regions, per-examination and per-patient accuracies were determined. A simulated, multidisciplinary team meeting served as reference standard and determined whether differences between PET/CT and PET/MRI affected patient management. The McNemar tests were used to compare accuracies, and incremental cost-effectiveness ratios (ICERs) for PET/MRI were calculated. Results Two hundred sixty-three patients (330 same-day PET/CT and PET/MRI examinations) were included. PET/MRI was accurate in 319/330 examinations and PET/CT in 277/330 examinations; the respective accuracies of 97.3% and 83.9% differed significantly (P < 0.001). The additional findings on PET/MRI—mainly liver and brain metastases—had implications for patient management in 21/263 patients (8.0%). The per-examination cost was 596.97 EUR for PET/MRI and 405.95 EUR for PET/CT. ICERs for PET/MRI were 14.26 EUR per percent of diagnostic accuracy and 23.88 EUR per percent of correctly managed patients. Conclusions PET/MRI enables more appropriate management than PET/CT in a nonnegligible fraction of cancer patients. Since the per-examination cost is about 50% higher for PET/MRI than for PET/CT, a histology-based triage of patients to either PET/MRI or PET/CT may be meaningful.
Collapse
Affiliation(s)
- Marius E Mayerhoefer
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York City, NY, USA.
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Dietmar Tamandl
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas Beyer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Christoph Hoeller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Dominik Berzaczy
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Markus Raderer
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Hochmair
- Department of Respiratory and Critical Care Medicine and Ludwig Boltzmann Institute for COPD and Respiratory Epidemiology, Otto Wagner Hospital, Vienna, Austria
| | - Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Christian Scheuba
- Department of Surgery, Division of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Georgios Karanikas
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Julia Kesselbacher
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gerald Prager
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Stephan Polterauer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Bernhard Brauner
- Siemens Healthineers, Siemens Healthcare Diagnostics GmbH, Vienna, Austria
| | - Harald Eidherr
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine-CBmed, Graz, Austria
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Liu B, Zhang H, Ding Y. Au-Fe3O4 heterostructures for catalytic, analytical, and biomedical applications. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Laffon E, Marthan R. Performance of 18F-FDG PET/MRI and 18F-FDG PET/CT for T and N staging in patients with non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 2018; 46:522-523. [PMID: 30377737 DOI: 10.1007/s00259-018-4201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Eric Laffon
- CHU de Bordeaux, F-33000, Bordeaux, France. .,Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, F-33000, Bordeaux, France. .,INSERM U-1045, Centre de Recherche Cardio-Thoracique de Bordeaux, F-33000, Bordeaux, France. .,Service de Médecine Nucléaire, Hôpital du Haut-Lévèque, Avenue de Magellan, 33604, Pessac, France.
| | - Roger Marthan
- CHU de Bordeaux, F-33000, Bordeaux, France.,Centre de Recherche Cardio-Thoracique de Bordeaux, University Bordeaux, F-33000, Bordeaux, France.,INSERM U-1045, Centre de Recherche Cardio-Thoracique de Bordeaux, F-33000, Bordeaux, France
| |
Collapse
|