1
|
Yang Y, Li X, Lu J, Ge J, Chen M, Yao R, Tian M, Wang J, Liu F, Zuo C. Recent progress in the applications of presynaptic dopaminergic positron emission tomography imaging in parkinsonism. Neural Regen Res 2025; 20:93-106. [PMID: 38767479 PMCID: PMC11246150 DOI: 10.4103/1673-5374.391180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 05/22/2024] Open
Abstract
Nowadays, presynaptic dopaminergic positron emission tomography, which assesses deficiencies in dopamine synthesis, storage, and transport, is widely utilized for early diagnosis and differential diagnosis of parkinsonism. This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism. We conducted a thorough literature search using reputable databases such as PubMed and Web of Science. Selection criteria involved identifying peer-reviewed articles published within the last 5 years, with emphasis on their relevance to clinical applications. The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis. Moreover, when employed in conjunction with other imaging modalities and advanced analytical methods, presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker. This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion. In summary, the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials, ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Arrhythmias, Ministry of Education, Department of Medical Genetics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyi Li
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Lu
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingjia Chen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruixin Yao
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Tian
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Miyajima I, Yoshikawa A, Sahashi K, Seki C, Nagai Y, Watabe H, Shidahara M. DOCK-PET: database of CNS kinetic parameters in the healthy human brain for existing PET tracers. Ann Nucl Med 2024; 38:666-672. [PMID: 38814564 DOI: 10.1007/s12149-024-01947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Information about developed positron emission tomography (PET) tracers and obtained clinical PET images is publicly available in a database. However, findings regarding the kinetic parameters of PET tracers are yet to be summarized. Therefore, in this study, we created an open-access database of central nervous system (CNS) kinetic parameters in the healthy human brain for existing PET tracers (DOCK-PET). METHODS Our database includes information on the kinetic parameters and compounds of existing CNS-PET tracers. The kinetic parameter dataset comprises the analysis methods, VT, BPND, K parameters, relevant literature, and study details. The list of PET tracers and kinetic parameter information was compiled through keyword-based searches of PubMed and the Molecular Imaging and Contrast Agent Database (MICAD). The kinetic parameters obtained, including VT, BPND, and K parameters, were reorganized based on the defined brain anatomical regions. All data were rigorously double-checked before being summarized in Microsoft Excel and JavaScript Object Notation (JSON) formats. RESULTS Of the 247 PET tracers identified through searches using the PubMed and MICAD websites, the kinetic parameters of 120 PET tracers were available. Among the 120 PET tracers, compound structures with chemical and physical properties were obtained from the PubChem website or the ChemDraw software. Furthermore, the affinity information of the 104 PET tracers was gathered from PubChem or extensive literature surveys of the 120 PET tracers. CONCLUSIONS We developed a comprehensive open-access database, DOCK-PET, that includes both kinetic parameters of healthy humans and compound information for existing CNS-PET tracers.
Collapse
Affiliation(s)
- Itsuki Miyajima
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ayano Yoshikawa
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Kyosei Sahashi
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Chie Seki
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuji Nagai
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroshi Watabe
- Division of Radiation Protection and Nuclear Safety, Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Japan
| | - Miho Shidahara
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
3
|
Wang RF, Li YP, Zhang HY, Xu SS, Wang Z, Han XM, Liu BP. Sleep benefit in patients with Parkinson's disease is associated with the dopamine transporter expression in putamen. Brain Res 2023; 1802:148173. [PMID: 36460060 DOI: 10.1016/j.brainres.2022.148173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Sleep benefit (SB) is a well-known phenomenon in patients with Parkinson's disease (PD); however, the mechanisms underlying this phenomenon remain unclear. This study aimed to evaluate whether the SB phenomenon in PD patients is associated with dopamine transporter (DAT) expression levels in the striatum. METHODS The data of 125 PD patients were collected and divided into SB (n = 61) and non-SB (nSB) groups (n = 54) depending on whether they had SB or not. DAT expression on both sides of the striatum in PD patients was measured using 2b-carbomethoxy-3b-(4-trimethylstannylphenyl) tropane (11C-CFT) positron emission tomography imaging. The clinical variables, sleep scores, and striatum 11C-CFT uptake index of PD patients between the SB and nSB groups were compared. The associations of clinical variables, sleep scores, and striatum 11C-CFT uptake index with the SB variable were analyzed using logistic regression analysis. A receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of the striatum 11C-CFT uptake index in distinguishing SB patients from nSB patients. RESULTS The tremor subtype ratio (P = 0.011), levodopa equivalent daily dose (LEDD) (P < 0.001), sleep efficiency score (P = 0.025), habitual sleep efficiency (P = 0.012), and night sleep duration (P = 0.005) in the SB group were significantly different from those in the nSB group. The 11C-CFT uptake index in both the contralateral and ipsilateral striata in the SB group was significantly higher than that in the nSB group (P < 0.05). The binary logistic regression showed that SB variables were significantly and independently associated with tremor subtype (P = 0.048), LEDD (P = 0.021), sleep duration at night (P = 0.035), 11C-CFT uptake index in the contralateral (P = 0.013) and ipsilateral (P = 0.019) putamen in PD patients after correction for important clinical confounders. ROC analysis showed that the 11C-CFT uptake index on the onset side of the putamen had a high capacity (AUC: 0.916) to distinguish SB patients from nSB patients with high sensitivity (83.33 %) and specificity (88.89 %). CONCLUSION DAT expression in the putamen was associated with the SB phenomenon in PD patients, and the putamen DAT expression level could predict the SB phenomenon in PD patients.
Collapse
Affiliation(s)
- Rui-Fang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, Henan 450052, China
| | - Yan-Peng Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, Henan 450052, China
| | - Han-Yue Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, Henan 450052, China
| | - Sha-Sha Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, Henan 450052, China
| | - Zhuo Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, Henan 450052, China
| | - Xing-Min Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, Henan 450052, China
| | - Bao-Ping Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Medical Key Laboratory of Molecular Imaging, Zhengzhou, Henan 450052, China.
| |
Collapse
|
4
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
5
|
Lehnert W, Riss PJ, Hurtado de Mendoza A, Lopez S, Fernandez G, Ilheu M, Amaral H, Kramer V. Whole-body biodistribution and radiation dosimetry of [ 18F]PR04.MZ: a new PET radiotracer for clinical management of patients with movement disorders. EJNMMI Res 2022; 12:1. [PMID: 35006412 PMCID: PMC8748605 DOI: 10.1186/s13550-021-00873-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE [18F]PR04.MZ is a new PET imaging agent for dopamine transporters, providing excellent image quality and allowing for the evaluation of patients with movement disorders such as Parkinson's disease. The objective of this study was to evaluate the biodistribution and radiation dosimetry of [18F]PR04.MZ by serial PET imaging. METHODS Six healthy subjects (n = 3 males, n = 3 females) were enrolled in this study. A series of 14 whole-body PET/CT scans were acquired until 5.5 h post-injection of 200 ± 11 MBq of [18F]PR04.MZ. After rigid co-registration, volumes of interest were outlined either on CT or PET images. Time-integrated activity coefficients were calculated for selected source organs. Organ absorbed doses, and the effective dose were calculated using IDAC-Dose 2.1. RESULTS Physiological uptake of [18F]PR04.MZ was mainly observed in the striatum, brain, liver, gall bladder, intestine, red marrow and cortical bone. [18F]PR04.MZ was primarily excreted via hepatobiliary clearance and, to a lower extent, via renal clearance. The normalized absorbed doses were highest in gall bladder wall (32.2 ± 6.4 µGy/MBq), urinary bladder wall (27.2 ± 4.5 µGy/MBq), red marrow (26.5 ± 1.4 µGy/MBq), cortical bone surface (26.3 ± 2.5 µGy/MBq), liver (22.5 ± 1.8 µGy/MBq) and kidneys (21.8 ± 1.1 µGy/MBq). The effective dose according to ICRP 60 and 103 was 16.3 ± 1.1 and 16.6 ± 1.5 µSv/MBq, respectively. CONCLUSION [18F]PR04.MZ has a favourable dosimetry profile, comparable to those of other 18F-labelled PET tracers, and is suitable for larger clinical applications. Trial registration CEC SSM Oriente, Santiago, Chile, permit 20140520.
Collapse
Affiliation(s)
- Wencke Lehnert
- Department of Nuclear Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Patrick J Riss
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Ana Hurtado de Mendoza
- Center for Nuclear Medicine and PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
| | - Sandra Lopez
- Center for Nuclear Medicine and PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
| | - Gonzalo Fernandez
- Center for Nuclear Medicine and PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
| | - Marcelo Ilheu
- Positronpharma SA, Rancagua 878, 7500921, Providencia, Santiago, Chile
| | - Horacio Amaral
- Center for Nuclear Medicine and PET/CT Positronmed, 7501068, Providencia, Santiago, Chile
- Positronpharma SA, Rancagua 878, 7500921, Providencia, Santiago, Chile
| | - Vasko Kramer
- Center for Nuclear Medicine and PET/CT Positronmed, 7501068, Providencia, Santiago, Chile.
- Positronpharma SA, Rancagua 878, 7500921, Providencia, Santiago, Chile.
| |
Collapse
|
6
|
Bidesi NSR, Vang Andersen I, Windhorst AD, Shalgunov V, Herth MM. The role of neuroimaging in Parkinson's disease. J Neurochem 2021; 159:660-689. [PMID: 34532856 PMCID: PMC9291628 DOI: 10.1111/jnc.15516] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Two hallmarks of PD are the accumulation of alpha-synuclein and the loss of dopaminergic neurons in the brain. There is no cure for PD, and all existing treatments focus on alleviating the symptoms. PD diagnosis is also based on the symptoms, such as abnormalities of movement, mood, and cognition observed in the patients. Molecular imaging methods such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) can detect objective alterations in the neurochemical machinery of the brain and help diagnose and study neurodegenerative diseases. This review addresses the application of functional MRI, PET, and SPECT in PD patients. We provide an overview of the imaging targets, discuss the rationale behind target selection, the agents (tracers) with which the imaging can be performed, and the main findings regarding each target's state in PD. Molecular imaging has proven itself effective in supporting clinical diagnosis of PD and has helped reveal that PD is a heterogeneous disorder, which has important implications for the development of future therapies. However, the application of molecular imaging for early diagnosis of PD or for differentiation between PD and atypical parkinsonisms has remained challenging. The final section of the review is dedicated to new imaging targets with which one can detect the PD-related pathological changes upstream from dopaminergic degeneration. The foremost of those targets is alpha-synuclein. We discuss the progress of tracer development achieved so far and challenges on the path toward alpha-synuclein imaging in humans.
Collapse
Affiliation(s)
- Natasha S R Bidesi
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Juri C, Kramer V, Riss PJ, Soza-Ried C, Haeger A, Pruzzo R, Rösch F, Amaral H, Chana-Cuevas P. [18F]PR04.MZ PET/CT Imaging for Evaluation of Nigrostriatal Neuron Integrity in Patients With Parkinson Disease. Clin Nucl Med 2021; 46:119-124. [PMID: 33323728 PMCID: PMC7774816 DOI: 10.1097/rlu.0000000000003430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/14/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Degeneration of dopaminergic, nigrostriatal neurons is the hallmark of Parkinson disease (PD), and PET quantification of dopamine transporters is a widely accepted method for differential diagnosis between idiopathic PD and essential tremor. [18F]PR04.MZ is a new PET tracer with excellent imaging properties allowing for precise quantification of striatal and extrastriatal dopamine transporter. Here we describe our initial experience with [18F]PR04.MZ PET/CT in a larger cohort of healthy controls and PD patients as a proof-of-concept study for this tracer. METHODS Eighteen healthy subjects, 19 early PD patients (Hoehn-Yahr I-II), and 13 moderate-advanced PD patients (Hoehn-Yahr III-IV) underwent static PET/CT scans 60 to 90 minutes after injection of 5.16 ± 1.03 mCi (191 ± 38 MBq) [18F]PR04.MZ. Specific binding ratios (SBRs) were calculated for caudate nucleus, anterior putamen, posterior putamen, substantia nigra (SNpc), compared between different groups and correlated with clinical ratings. RESULTS [18F]PR04.MZ showed very high and specific uptake in the putamen, caudate, and substantia nigra pars compacta and very low nonspecific binding in other brain regions, and SBR values for the control group were 22.3 ± 4.1, 19.1 ± 3.5, and 5.4 ± 1.2, respectively. A reduction of SBR values was observed in all regions and in both initial and moderate PD, ranging from 35% to 89% (P < 0.001). The observed pattern of reduction was posterior putamen > anterior putamen > substantia nigra pars compacta > caudate, with contralateral posterior putamen being the most affected region. Rostrocaudal depletion gradient was evident in all PD patients and progression correlated with motor manifestations. CONCLUSIONS [18F]PR04.MZ PET/CT is a highly sensitive imaging modality for the detection of dopaminergic deficit in nigrostriatal pathways in PD.
Collapse
Affiliation(s)
- Carlos Juri
- From the Department of Neurology, Facultad de Medicina, Pontificia Universidad Católica de Chile
- Department of Neurology, Hospital Sotero del Río
| | - Vasko Kramer
- Nuclear Medicine and PET/CT Center PositronMed
- Positronpharma SA, Santiago, Chile
| | | | | | | | | | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Horacio Amaral
- Nuclear Medicine and PET/CT Center PositronMed
- Positronpharma SA, Santiago, Chile
| | - Pedro Chana-Cuevas
- Centro de Trastornos del Movimiento
- Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
8
|
Merola A, Van Laar A, Lonser R, Bankiewicz K. Gene therapy for Parkinson’s disease: contemporary practice and emerging concepts. Expert Rev Neurother 2020; 20:577-590. [DOI: 10.1080/14737175.2020.1763794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Aristide Merola
- Department of Neurology, College of Medicine, the Ohio State University, Columbus, OH, USA
| | - Amber Van Laar
- Brain Neurotherapy Bio, Inc., Columbus, OH, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Russell Lonser
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Krzysztof Bankiewicz
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|