1
|
Juengling F, Wuest F, Schirrmacher R, Abele J, Thiel A, Soucy JP, Camicioli R, Garibotto V. PET Imaging in Dementia: Mini-Review and Canadian Perspective for Clinical Use. Can J Neurol Sci 2025; 52:26-38. [PMID: 38433571 DOI: 10.1017/cjn.2024.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
PET imaging is increasingly recognized as an important diagnostic tool to investigate patients with cognitive disturbances of possible neurodegenerative origin. PET with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), assessing glucose metabolism, provides a measure of neurodegeneration and allows a precise differential diagnosis among the most common neurodegenerative diseases, such as Alzheimer's disease, frontotemporal dementia or dementia with Lewy bodies. PET tracers specific for the pathological deposits characteristic of different neurodegenerative processes, namely amyloid and tau deposits typical of Alzheimer's Disease, allow the visualization of these aggregates in vivo. [18F]FDG and amyloid PET imaging have reached a high level of clinical validity and are since 2022 investigations that can be offered to patients in standard clinical care in most of Canada.This article will briefly review and summarize the current knowledge on these diagnostic tools, their integration into diagnostic algorithms as well as perspectives for future developments.
Collapse
Affiliation(s)
- Freimut Juengling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Faculty, University of Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
| | - Ralf Schirrmacher
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Abele
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Department of Neurology and Neurosurgery, Lady Davis Institute for Medical Research, McGill University, Montréal, QC, Canada
| | - Jean-Paul Soucy
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Valentina Garibotto
- Diagnostic Department, Nuclear Medicine and Molecular Imaging Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Gicas KM, Honer WG, Petyuk VA, Wilson RS, Boyle PA, Leurgans SE, Schneider JA, De Jager PL, Bennett DA. Primacy and recency effects in verbal memory are differentially associated with post-mortem frontal cortex p-tau 217 and 202 levels in a mixed sample of community-dwelling older adults. J Clin Exp Neuropsychol 2023; 45:770-785. [PMID: 37440260 PMCID: PMC10787031 DOI: 10.1080/13803395.2023.2232583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Serial position effects in verbal memory are associated with in vivo fluid biomarkers and neuropathological outcomes in Alzheimer's disease (AD). To extend the biomarker literature, associations between serial position scores and postmortem levels of brain phosphorylated tau (p-tau) were examined, in the context of Braak stage of neurofibrillary tangle progression. METHOD Participants were 1091 community-dwelling adults (Mage = 80.2, 68.9% female) from the Rush University Religious Orders Study and Memory and Aging Project who were non-demented at enrollment and followed for a mean of 9.2 years until death. The CERAD Word List Memory test administered at baseline and within 1 year of death was used to calculate serial position (primacy, recency) and total recall scores. Proteomic analyses quantified p-tau 217 and 202 from dorsolateral prefrontal cortex samples. Linear regressions assessed associations between cognitive scores and p-tau with Braak stage as a moderator. RESULTS Cognitive status proximal to death indicated 34.7% were unimpaired, 26.2% met criteria for MCI, and 39.0% for dementia. Better baseline primacy recall, but not recency recall, was associated with lower p-tau 217 levels across Braak stages. Delayed recall showed a similar pattern as primacy. There was no main effect of immediate recall, but an interaction with Braak stages indicated a negative association with p-tau 217 level only in Braak V-VI. Within 1 year of death, there were no main effects for cognitive scores; however, recency, immediate and delayed recall scores interacted with Braak stage showing better recall was associated with lower p-tau 217 only in Braak V-VI. No associations were observed with p-tau 202. CONCLUSIONS Primacy recall measured in non-demented adults may be sensitive to emergent tau phosphorylation that occurs in the earliest stages of AD. Serial position scores may complement the routinely used delayed recall score and p-tau biomarkers to detect preclinical AD.
Collapse
Affiliation(s)
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert S Wilson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Patricia A Boyle
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Sue E Leurgans
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Julie A Schneider
- Department of Pathology, Rush University Medical Center, Chicago, IL, United States
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
3
|
Altomare D, Stampacchia S, Ribaldi F, Tomczyk S, Chevalier C, Poulain G, Asadi S, Bancila B, Marizzoni M, Martins M, Lathuiliere A, Scheffler M, Ashton NJ, Zetterberg H, Blennow K, Kern I, Frias M, Garibotto V, Frisoni GB. Plasma biomarkers for Alzheimer's disease: a field-test in a memory clinic. J Neurol Neurosurg Psychiatry 2023; 94:420-427. [PMID: 37012066 DOI: 10.1136/jnnp-2022-330619] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/28/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND The key Alzheimer's disease (AD) biomarkers are traditionally measured with techniques/exams that are either expensive (amyloid-positron emission tomography (PET) and tau-PET), invasive (cerebrospinal fluid Aβ42 and p-tau181), or poorly specific (atrophy on MRI and hypometabolism on fluorodeoxyglucose-PET). Recently developed plasma biomarkers could significantly enhance the efficiency of the diagnostic pathway in memory clinics and improve patient care. This study aimed to: (1) confirm the correlations between plasma and traditional AD biomarkers, (2) assess the diagnostic accuracy of plasma biomarkers as compared with traditional biomarkers, and (3) estimate the proportion of traditional exams potentially saved thanks to the use of plasma biomarkers. METHODS Participants were 200 patients with plasma biomarkers and at least one traditional biomarker collected within 12 months. RESULTS Overall, plasma biomarkers significantly correlated with biomarkers assessed through traditional techniques: up to r=0.50 (p<0.001) among amyloid, r=0.43 (p=0.002) among tau, and r=-0.23 (p=0.001) among neurodegeneration biomarkers. Moreover, plasma biomarkers showed high accuracy in discriminating the biomarker status (normal or abnormal) determined by using traditional biomarkers: up to area under the curve (AUC)=0.87 for amyloid, AUC=0.82 for tau, and AUC=0.63 for neurodegeneration status. The use of plasma as a gateway to traditional biomarkers using cohort-specific thresholds (with 95% sensitivity and 95% specificity) could save up to 49% of amyloid, 38% of tau, and 16% of neurodegeneration biomarkers. CONCLUSION The implementation of plasma biomarkers could save a remarkable proportion of more expensive traditional exams, making the diagnostic workup more cost-effective and improving patient care.
Collapse
Affiliation(s)
- Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Sara Stampacchia
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Cognitive Neuroscience (LNCO), Center of Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| | - Szymon Tomczyk
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| | - Claire Chevalier
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| | - Géraldine Poulain
- Sérotheque Centrale / Biotheque SML, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Saina Asadi
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Bianca Bancila
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Moira Marizzoni
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marta Martins
- Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| | - Aurelien Lathuiliere
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research, Unit for Dementia, South London and Maudsley, NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, People's Republic of China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Ilse Kern
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Miguel Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
4
|
Michopoulou S, Prosser A, Dickson J, Guy M, Teeling JL, Kipps C. Perfusion Imaging and Inflammation Biomarkers Provide Complementary Information in Alzheimer's Disease. J Alzheimers Dis 2023; 96:1317-1327. [PMID: 38009439 PMCID: PMC10741328 DOI: 10.3233/jad-230726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Single photon emission tomography (SPECT) can detect early changes in brain perfusion to support the diagnosis of dementia. Inflammation is a driver for dementia progression and measures of inflammation may further support dementia diagnosis. OBJECTIVE In this study, we assessed whether combining imaging with markers of inflammation improves prediction of the likelihood of Alzheimer's disease (AD). METHODS We analyzed 91 participants datasets (Institutional Ethics Approval 20/NW/0222). AD biomarkers and markers of inflammation were measured in cerebrospinal fluid. Statistical parametric mapping was used to quantify brain perfusion differences in perfusion SPECT images. Logistic regression models were trained to evaluate the ability of imaging and inflammation markers, both individually and combined, to predict AD. RESULTS Regional perfusion reduction in the precuneus and medial temporal regions predicted Aβ42 status. Increase in inflammation markers predicted tau and neurodegeneration. Matrix metalloproteneinase-10, a marker of blood-brain barrier regulation, was associated with perfusion reduction in the right temporal lobe. Adenosine deaminase, an enzyme involved in sleep homeostasis and inflammation, was the strongest predictor of neurodegeneration with an odds ratio of 10.3. The area under the receiver operator characteristic curve for the logistic regression model was 0.76 for imaging and 0.76 for inflammation. Combining inflammation and imaging markers yielded an area under the curve of 0.85. CONCLUSIONS Study results showed that markers of brain perfusion imaging and markers of inflammation provide complementary information in AD evaluation. Inflammation markers better predict tau status while perfusion imaging measures represent amyloid status. Combining imaging and inflammation improves AD prediction.
Collapse
Affiliation(s)
- Sofia Michopoulou
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Angus Prosser
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - John Dickson
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Matthew Guy
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Christopher Kipps
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|