1
|
Oh M, Cho H, Yoon DH, Kim JS. Revisiting baseline 18F-FDG PET/CT parameters: Key considerations for prognostic evaluation in primary CNS lymphoma. Neuro Oncol 2025:noaf052. [PMID: 40249127 DOI: 10.1093/neuonc/noaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Affiliation(s)
- Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyungwoo Cho
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Song GY, Jang HC, Kim M, Ahn SY, Jung SH, Ahn JS, Lee JJ, Kim HJ, Moon JB, Yoo SW, Kwon SY, Min JJ, Bom HS, Kang SR, Yang DH. Prognostic Value of 18 F-FDG PET in Primary Central Nervous System Lymphoma : Assessing Interim Metabolic Response for Improving Patient Stratification. Clin Nucl Med 2025; 50:281-288. [PMID: 39957068 DOI: 10.1097/rlu.0000000000005703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
PURPOSE OF THE REPORT The usefulness of brain 18 F-FDG PET/CT in primary central nervous system lymphoma (PCNSL) remains underexplored. This study investigated whether early metabolic responses in interim brain FDG PET/CT serve as a prognostic indicator of PCNSL treatment outcomes. PATIENTS AND METHODS This prospective study included 53 patients with PCNSL who underwent a high-dose methotrexate-based treatment. Brain FDG PET was performed at diagnosis (baseline PET) and after induction chemotherapy (interim PET), assessing interim PET parameters such as the highest maximum standardized uptake value (hSUV max ), sum of SUV max (sumSUV max ), highest tumor-to-normal ratio (hTNR max ), sum of TNR max (sumTNR max ), highest metabolic tumor volume (MTV) (hMTV), and sum of MTV (sumMTV) across all PET-positive lesions. RESULTS High interim hTNR max (hazards ratio: 9.76, 95% confidence interval: 1.90-50.11, P = 0.01) was an independently significant predictor of poor progression-free survival in multivariate analysis. Patients with low interim hTNR max (≤1.0) had a significantly longer median progression-free survival than those with high interim hTNR max (>1.0) (25.0 vs 3.6 months, P < 0.001). Incorporating interim MRI-based clinical response assessments and hTNR max allowed the classification of partial response subgroups with markedly different prognoses ( P < 0.001). High interim hTNR max (hazards ratio: 2.76, 95% confidence interval: 1.39-5.48, P = 0.004) was an independently significant predictor of poor overall survival in multivariate analysis. CONCLUSIONS The hTNR max measurement from interim brain FDG PET scans emerges as an important prognostic marker in PCNSL. These findings underscore the potential of interim FDG PET evaluations to refine response assessments and inform tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Mihee Kim
- From the Departments of Hematology-Oncology
| | | | | | | | | | | | - Jang Bae Moon
- Nuclear Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Su Woong Yoo
- Nuclear Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Seong-Young Kwon
- Nuclear Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Jung-Joon Min
- Nuclear Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hee-Seung Bom
- Nuclear Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Sae-Ryung Kang
- Nuclear Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | | |
Collapse
|
3
|
Breen WG, Palmer JD, Johnson DR, Kim MM. The Role of PET/CT in Radiation Oncology for Central Nervous System Tumors. PET Clin 2025; 20:195-204. [PMID: 39915188 DOI: 10.1016/j.cpet.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The investigation and application of PET modalities for the evaluation and treatment of patients with central nervous system (CNS) tumors continues to evolve, with anticipated increased uptake in the United States for both benign and malignant CNS tumors in the decade to come.
Collapse
Affiliation(s)
- William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Oh M, Cho H, Park JE, Kim HS, Go H, Park CS, Lee SW, Song SW, Kim YH, Cho YH, Hong SH, Kim JH, Lee DY, Ryu JS, Yoon DH, Kim JS. Enhancing prognostication and treatment response evaluation in primary CNS lymphoma with 18F-FDG-PET/CT. Neuro Oncol 2024; 26:2377-2387. [PMID: 39097777 PMCID: PMC11630510 DOI: 10.1093/neuonc/noae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND The role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in the prognostication and response evaluation of primary central nervous system lymphoma (PCNSL) remains inadequately defined. METHODS We conducted a retrospective analysis of 268 consecutive newly diagnosed patients with PCNSL between 2006 and 2020. Of these patients, 105 and 110 patients were included to evaluate the prognostic value of baseline and post-treatment 18F-FDG-PET/CT scans, respectively. Tumor uptake was considered positive when it exceeded that of the contralateral brain upon visual assessment. Quantitative analysis of baseline 18F-FDG-PET/CT included measurement of the maximal standardized uptake value (SUVmax), total metabolic tumor volume (TMTV), and total lesion glycolysis (TLG). RESULTS The median age of the 268 patients was 62 years (range: 17-85), with 55% being male. The median progression-free survival (PFS) was 24.5 months (95% CI: 19.9-29.1), and the median overall survival (OS) was 34.5 months (95% CI: 22.9-46.1). The average SUVmax was 15.3 ± 5.7 and the mean TMTV and TLG were 12.6 ± 13.9 cm3 and 135.0 ± 152.7 g, respectively. Patients with a baseline TMTV ≥ 17.0 cm3 had significantly shorter OS (12.5 vs 74.0 months, P = .011). Post-treatment metabolic response by 18F-FDG-PET/CT significantly predicted PFS (median: 10.5 vs 46.0 months, P = .001) and OS (median: 21.0 vs 62.0 months, P = .002), whereas anatomic response by contrast-enhanced MRI showed no statistically significant differences in PFS (P = .130) or OS (P = .540). CONCLUSION Baseline TMTV and post-treatment metabolic response, as assessed by 18F-FDG-PET/CT, are significant prognostic factors in patients with PCNSL.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyungwoo Cho
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Park
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho Sung Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-wook Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Woo Song
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Hyun Cho
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seok Ho Hong
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Mo Y, Li Y, Huang Y, Chen M, Zhou C, Li X, Wei Y, Li R, Fan W, Zhang X. Assessing the intracranial metabolic score as a novel prognostic tool in primary CNS lymphoma with end of induction-chemotherapy 18F-FDG PET/CT and PET/MR. Cancer Imaging 2024; 24:152. [PMID: 39529203 PMCID: PMC11552111 DOI: 10.1186/s40644-024-00798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The metabolic response of primary central nervous system lymphoma (PCNSL) patients has yet to be evaluated. This study aimed to assess the prognostic value of a novel scoring scale, the intracranial metabolic score (IMS), in PCNSL patients receiving end-of-therapy 18F-FDG PET/CT (EOT-PCT) and PET/MR (EOT-PMR). METHODS The IMS was determined based on the metabolism of normal intracranial structures, including gray matter, white matter, and cerebrospinal fluid. The EOT-PCT cohort was evaluated using the IMS and commonly used Deauville score (DS). Another cohort of patients who underwent the EOT-PMR was used to validate the accuracy of the IMS. RESULTS In total, 83 patients were included in the study (38 in PET/CT cohort, and 45 in PET/MR cohort). The area under the curve (AUC) values of the IMS for predicting PFS and OS were superior to those of the DS. When patients in the PET/CT cohort were stratified into five groups (respectively labeled IMS 1-5), three groups (IMS1-2, IMS 3-4, and IMS 5), or two groups (IMS1-3 and IMS4-5; IMS 1-4 and IMS 5), a higher IMS score was significantly correlated with poorer PFS and OS (p < 0.001). Similar results were observed for PFS in the PET/MR cohort (p < 0.001). The IMS and DS scale were found to be independent prognostic indicators for PFS and OS in the PET/CT cohort, and the IMS was identified as the sole independent prognostic indicator for PFS in the PET/MR cohort. CONCLUSION The IMS as a novel and effective prognostic tool for PCNSL patients, showing superior predictive value for patients' outcomes compared to the DS when assessed with EOT-PET scans.
Collapse
Affiliation(s)
- Yiwen Mo
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yongjiang Li
- Department of Nuclear Medicine, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yuqian Huang
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Mingshi Chen
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location University of Amsterdam, L0‑112- 1 Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Chao Zhou
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xinling Li
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan Wei
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ruping Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Wei Fan
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xu Zhang
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Ko CC, Liu YL, Hung KC, Yang CC, Lim SW, Yeh LR, Chen JH, Su MY. MRI-Based Machine Learning for Prediction of Clinical Outcomes in Primary Central Nervous System Lymphoma. Life (Basel) 2024; 14:1290. [PMID: 39459590 PMCID: PMC11509076 DOI: 10.3390/life14101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
A portion of individuals diagnosed with primary central nervous system lymphomas (PCNSL) may experience early relapse or refractory (R/R) disease following treatment. This research explored the potential of MRI-based radiomics in forecasting R/R cases in PCNSL. Forty-six patients with pathologically confirmed PCNSL diagnosed between January 2008 and December 2020 were included in this study. Only patients who underwent pretreatment brain MRIs and complete postoperative follow-up MRIs were included. Pretreatment contrast-enhanced T1WI, T2WI, and T2 FLAIR imaging were analyzed. A total of 107 radiomic features, including 14 shape-based, 18 first-order statistical, and 75 texture features, were extracted from each sequence. Predictive models were then built using five different machine learning algorithms to predict R/R in PCNSL. Of the included 46 PCNSL patients, 20 (20/46, 43.5%) patients were found to have R/R. In the R/R group, the median scores in predictive models such as support vector machine, k-nearest neighbors, linear discriminant analysis, naïve Bayes, and decision trees were significantly higher, while the apparent diffusion coefficient values were notably lower compared to those without R/R (p < 0.05). The support vector machine model exhibited the highest performance, achieving an overall prediction accuracy of 83%, a precision rate of 80%, and an AUC of 0.78. Additionally, when analyzing tumor progression, patients with elevated support vector machine and naïve Bayes scores demonstrated a significantly reduced progression-free survival (p < 0.05). These findings suggest that preoperative MRI-based radiomics may provide critical insights for treatment strategies in PCNSL.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 71004, Taiwan;
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yan-Lin Liu
- Department of Radiological Sciences, University of California, Irvine, CA 92697, USA; (Y.-L.L.); (J.-H.C.); (M.-Y.S.)
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan;
- Department of Hospital and Health Care Administration, College of Recreation and Health Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Cheng-Chun Yang
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 71004, Taiwan;
| | - Sher-Wei Lim
- Department of Neurosurgery, Chi Mei Medical Center, Chiali, Tainan 722, Taiwan;
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan
| | - Lee-Ren Yeh
- Department of Radiology, E-DA Hospital, I-Shou University, Kaohsiung 824, Taiwan;
- Department of Medical Imaging and Radiological Sciences, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Jeon-Hor Chen
- Department of Radiological Sciences, University of California, Irvine, CA 92697, USA; (Y.-L.L.); (J.-H.C.); (M.-Y.S.)
- Department of Radiology, E-DA Hospital, I-Shou University, Kaohsiung 824, Taiwan;
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, CA 92697, USA; (Y.-L.L.); (J.-H.C.); (M.-Y.S.)
| |
Collapse
|
7
|
Li Y, Mo Y, Chen M, Zhang W, Li S, Zhang X. The Prognostic Significance of Pontine-White Matter Score in Primary Central Nervous System Lymphoma Patients. Cancers (Basel) 2024; 16:2708. [PMID: 39123436 PMCID: PMC11311936 DOI: 10.3390/cancers16152708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Limited data exist on the significance of PET imaging and quantitative PET parameters in primary central nervous system (CNS) lymphoma due to its relative rarity. This study was conducted to investigate the prognostic value of a novel internal standardization indicator, the pontine-white matter (PW) score, in primary CNS lymphoma patients undergoing post-treatment 18F-FDG PET/CT and PET/MR imaging. METHODS From January 2014 to December 2022, eligible patients with primary CNS lymphoma who underwent post-treatment PET imaging were enrolled. Using the FDG uptake of the pons and white matter as an internal reference, the PW score was graded based on the metabolism of the post-therapeutic lesion for each patient, and its associations with patients' prognosis were investigated. RESULTS In total, 41 patients with post-treatment PET/CT and 49 patients with post-treatment PET/MR imaging were enrolled. ROC curve analysis indicated that the PW score possessed robust discriminative ability in distinguishing patients with worse outcomes. Furthermore, a higher PW score was significantly correlated with and identified as an independent prognostic indicator for, worse prognosis in both the PET/CT and PET/MR cohorts. CONCLUSION The study demonstrated that the PW score was an effective prognostic indicator for identifying post-treatment primary CNS lymphoma patients with worse outcomes.
Collapse
Affiliation(s)
- Yongjiang Li
- Department of Nuclear Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yiwen Mo
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Mingshi Chen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Wenbiao Zhang
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuangjiang Li
- Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xu Zhang
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
8
|
Rozenblum L, Galanaud D, Houillier C, Soussain C, Baptiste A, Belin L, Edeline V, Naggara P, Soret M, Causse-Lemercier V, Willems L, Choquet S, Ursu R, Hoang-Xuan K, Kas A. [18F]FDG PET-MRI provides survival biomarkers in primary central nervous system lymphoma in the elderly: an ancillary study from the BLOCAGE trial of the LOC network. Eur J Nucl Med Mol Imaging 2023; 50:3684-3696. [PMID: 37462774 DOI: 10.1007/s00259-023-06334-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Primary central nervous system lymphoma (PCNSL) incidence is rising among elderly patients, presenting challenges due to poor prognosis and treatment-related toxicity risks. This study explores the potential of combining [18F]fluorodeoxyglucose ([18F]FDG) PET scans and multimodal MRI for improving management in elderly patients with de novo PCNSL. METHODS Immunocompetent patients over 60 years with de novo PCNSL were prospectively enrolled in a multicentric study between January 2016 and April 2021. Patients underwent brain [18F]FDG PET-MRI before receiving high-dose methotrexate-based chemotherapy. Relationships between extracted PET (metabolic tumor volume (MTV), sum of MTV for up to five lesions (sumMTV), metabolic imaging lymphoma aggressiveness score (MILAS)) and MRI parameters (tumor contrast-enhancement size, cerebral blood volume (CBV), cerebral blood flow (CBF), apparent diffusion coefficient (ADC)) and treatment response and outcomes were analyzed. RESULTS Of 54 newly diagnosed diffuse large B-cell PCNSL patients, 52 had positive PET and MRI with highly [18F]FDG-avid and contrast-enhanced disease (SUVmax: 27.7 [22.8-36]). High [18F]FDG uptake and metabolic volume were significantly associated with low ADCmean values and high CBF at baseline. Among patients, 69% achieved an objective response at the end of induction therapy, while 17 were progressive. Higher cerebellar SUVmean and lower sumMTV at diagnosis were significant predictors of complete response: 6.4 [5.7-7.7] vs 5.4 [4.5-6.6] (p = 0.04) and 5.5 [2.1-13.3] vs 15.9 [4.2-19.5] (p = 0.01), respectively. Two-year overall survival (OS) was 71%, with a median progression-free survival (PFS) of 29.6 months and a median follow-up of 37 months. Larger tumor volumes on PET or enhanced T1-weighted MRI were significant predictors of poorer OS, while a high MILAS score at diagnosis was associated with early death (< 1 year). CONCLUSION Baseline cerebellar metabolism and sumMTV may predict response to end of chemotherapy in PCNSL. Tumor volume and MILAS at baseline are strong prognostic factors.
Collapse
Affiliation(s)
- Laura Rozenblum
- Department of Nuclear Medicine, Groupe Hospitalier Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France.
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France.
| | - Damien Galanaud
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
- Department of Neuroradiology, Groupe Hospitalier Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
| | - Caroline Houillier
- Deparrment of Neurology 2 Mazarin, APHP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, Paris, France
| | - Carole Soussain
- Department of Hematology, Institut Curie, Site Saint-Cloud and INSERM U932 Institut Curie, Université PSL, 75005, Paris, France
| | - Amandine Baptiste
- Department of Public Health, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie Et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Paris, France
| | - Lisa Belin
- Department of Public Health, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie Et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Paris, France
| | | | - Philippe Naggara
- Department of Nuclear Medicine, Groupe Hospitalier Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
| | - Marine Soret
- Department of Nuclear Medicine, Groupe Hospitalier Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Valérie Causse-Lemercier
- Department of Nuclear Medicine, Groupe Hospitalier Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
| | - Lise Willems
- Department of Hematology, Cochin Hospital, APHP, Paris, France
| | - Sylvain Choquet
- Department of Hematology, Groupe Hospitalier Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
| | - Renata Ursu
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Service de Neurologie, Paris, France
| | - Khê Hoang-Xuan
- Deparrment of Neurology 2 Mazarin, APHP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, Paris, France
| | - Aurélie Kas
- Department of Nuclear Medicine, Groupe Hospitalier Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| |
Collapse
|
9
|
Urso L, Bonatto E, Nieri A, Castello A, Maffione AM, Marzola MC, Cittanti C, Bartolomei M, Panareo S, Mansi L, Lopci E, Florimonte L, Castellani M. The Role of Molecular Imaging in Patients with Brain Metastases: A Literature Review. Cancers (Basel) 2023; 15:cancers15072184. [PMID: 37046845 PMCID: PMC10093739 DOI: 10.3390/cancers15072184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Over the last several years, molecular imaging has gained a primary role in the evaluation of patients with brain metastases (BM). Therefore, the "Response Assessment in Neuro-Oncology" (RANO) group recommends amino acid radiotracers for the assessment of BM. Our review summarizes the current use of positron emission tomography (PET) radiotracers in patients with BM, ranging from present to future perspectives with new PET radiotracers, including the role of radiomics and potential theranostics approaches. A comprehensive search of PubMed results was conducted. All studies published in English up to and including December 2022 were reviewed. Current evidence confirms the important role of amino acid PET radiotracers for the delineation of BM extension, for the assessment of response to therapy, and particularly for the differentiation between tumor progression and radionecrosis. The newer radiotracers explore non-invasively different biological tumor processes, although more consistent findings in larger clinical trials are necessary to confirm preliminary results. Our review illustrates the role of molecular imaging in patients with BM. Along with magnetic resonance imaging (MRI), the gold standard for diagnosis of BM, PET is a useful complementary technique for processes that otherwise cannot be obtained from anatomical MRI alone.
Collapse
Affiliation(s)
- Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Elena Bonatto
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alberto Nieri
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Anna Margherita Maffione
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Maria Cristina Marzola
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Corrado Cittanti
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41125 Modena, Italy
| | - Luigi Mansi
- Interuniversity Research Center for the Sustainable Development (CIRPS), 00152 Rome, Italy
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigia Florimonte
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
10
|
Morales-Martinez A, Nichelli L, Hernandez-Verdin I, Houillier C, Alentorn A, Hoang-Xuan K. Prognostic factors in primary central nervous system lymphoma. Curr Opin Oncol 2022; 34:676-684. [PMID: 36093869 DOI: 10.1097/cco.0000000000000896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal diffuse large B cell lymphoma. Despite its apparent immunopathological homogeneity, PCNSL displays a wide variability in outcome. Identifying prognostic factors is of importance for patient stratification and clinical decision-making. The purpose of this review is to focus on the clinical, neuroradiological and biological variables correlated with the prognosis at the time of diagnosis in immunocompetent patients. RECENT FINDINGS Age and performance status remain the most consistent clinical prognostic factors. The current literature suggests that neurocognitive dysfunction is an independent predictor of poor outcome. Cumulating data support the prognostic value of increased interleukin-10 level in the cerebrospinal fluid (CSF), in addition to its interest as a diagnostic biomarker. Advances in neuroimaging and in omics have identified several semi-quantitative radiological features (apparent diffusion restriction measures, dynamic contrast-enhanced perfusion MRI (pMRI) pattern and 18F-fluorodeoxyglucose metabolism) and molecular genetic alterations with prognostic impact in PCNSL. SUMMARY Validation of new biologic and neuroimaging markers in prospective studies is required before integrating future prognostic scoring systems. In the era of radiomic, large clinicoradiological and molecular databases are needed to develop multimodal artificial intelligence algorithms for the prediction of accurate outcome.
Collapse
Affiliation(s)
| | - Lucia Nichelli
- APHP, Sorbonne Université, IHU, ICM, Service de Neuroradiologie, Groupe Hospitalier Salpêtrière
| | - Isaias Hernandez-Verdin
- Laboratoire de Génétique et developpement des tumeurs cérébrales, Inserm, CNRS, UMR S 1127, ICM Institut du cerveau, Paris, France
| | | | - Agustí Alentorn
- APHP, Sorbonne Université, IHU, Service de Neurologie 2-Mazarin
- Laboratoire de Génétique et developpement des tumeurs cérébrales, Inserm, CNRS, UMR S 1127, ICM Institut du cerveau, Paris, France
| | - Khê Hoang-Xuan
- APHP, Sorbonne Université, IHU, Service de Neurologie 2-Mazarin
- Laboratoire de Génétique et developpement des tumeurs cérébrales, Inserm, CNRS, UMR S 1127, ICM Institut du cerveau, Paris, France
| |
Collapse
|
11
|
Role of Positron Emission Tomography in Primary Central Nervous System Lymphoma. Cancers (Basel) 2022; 14:cancers14174071. [PMID: 36077613 PMCID: PMC9454946 DOI: 10.3390/cancers14174071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Primary central nervous system lymphoma (PCNSL) is a rare but highly aggressive lymphoma with increasing incidence in immunocompetent patients. To date, the only established biomarkers for survival are age and functional status. Currently, the magnetic resonance imaging (MRI) criteria of the International Collaborative Group on Primary Central Nervous System Lymphoma are the only ones recommended for follow-up. However, early occurrence of recurrence after treatment in patients with a complete response on MRI raises the question of its performance in assessing residual disease. While the use of 18F-fluorodeoxyglucose body positron emission tomography for identification of systemic disease has been established and can be pivotal in patient treatment decisions, the role of brain PET scan is less clear. Here we review the potential role of PET in the management of patients with PCNSL, both at diagnosis and for follow-up under treatment. Abstract The incidence of primary central nervous system lymphoma has increased over the past two decades in immunocompetent patients and the prognosis remains poor. A diagnosis and complete evaluation of the patient is needed without delay, but histologic evaluation is not always available and PCNSL can mimic a variety of brain lesions on MRI. In this article, we review the potential role of 18F-FDG PET for the diagnosis of PCNSL in immunocompetent and immunocompromised patients. Its contribution to systemic assessment at the time of diagnosis has been well established by expert societies over the past decade. In addition, 18F-FDG provides valuable information for differential diagnosis and outcome prediction. The literature also shows the potential role of 18F-FDG as a therapeutic evaluation tool during the treatment and the end of the treatment. Finally, we present several new radiotracers that may have a potential role in the management of PCNSL in the future.
Collapse
|
12
|
Withofs N, Kumar R, Alavi A, Hustinx R. Facts and Fictions About [ 18F]FDG versus Other Tracers in Managing Patients with Brain Tumors: It Is Time to Rectify the Ongoing Misconceptions. PET Clin 2022; 17:327-342. [PMID: 35717096 DOI: 10.1016/j.cpet.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MRI is the first-choice imaging technique for brain tumors. Positron emission tomography can be combined together with multiparametric MRI to increase diagnostic confidence. Radiolabeled amino acids have gained wide clinical acceptance. The reported pooled specificity of [18F]FDG positron emission tomography is high and [18F]FDG might still be the first-choice positron emission tomography tracer in cases of World Health Organization grade 3 to 4 gliomas or [18F]FDG-avid tumors, avoiding the use of more expensive and less available radiolabeled amino acids. The present review discusses the additional value of positron emission tomography with a focus on [18F]FDG and radiolabeled amino acids.
Collapse
Affiliation(s)
- Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hopital, Avenue de l'hopital, 1, Liege 1 4000, Belgium; GIGA-CRC in vivo imaging, University of Liege, GIGA CHU - B34 Quartier Hôpital Avenue de l'Hôpital,11, 4000 Liège, Belgium.
| | - Rakesh Kumar
- Diagnostic Nuclear Medicine Division, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hopital, Avenue de l'hopital, 1, Liege 1 4000, Belgium; GIGA-CRC in vivo imaging, University of Liege, GIGA CHU - B34 Quartier Hôpital Avenue de l'Hôpital,11, 4000 Liège, Belgium
| |
Collapse
|
13
|
PET Imaging in Neuro-Oncology: An Update and Overview of a Rapidly Growing Area. Cancers (Basel) 2022; 14:cancers14051103. [PMID: 35267411 PMCID: PMC8909369 DOI: 10.3390/cancers14051103] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Positron emission tomography (PET) is a functional imaging technique which plays an increasingly important role in the management of brain tumors. Owing different radiotracers, PET allows to image different metabolic aspects of the brain tumors. This review outlines currently available PET radiotracers and their respective indications in neuro-oncology. It specifically focuses on the investigation of gliomas, meningiomas, primary central nervous system lymphomas as well as brain metastases. Recent advances in the production of PET radiotracers, image analyses and translational applications to peptide radionuclide receptor therapy, which allow to treat brain tumors with radiotracers, are also discussed. The objective of this review is to provide a comprehensive overview of PET imaging’s potential in neuro-oncology as an adjunct to brain magnetic resonance imaging (MRI). Abstract PET plays an increasingly important role in the management of brain tumors. This review outlines currently available PET radiotracers and their respective indications. It specifically focuses on 18F-FDG, amino acid and somatostatin receptor radiotracers, for imaging gliomas, meningiomas, primary central nervous system lymphomas as well as brain metastases. Recent advances in radiopharmaceuticals, image analyses and translational applications to therapy are also discussed. The objective of this review is to provide a comprehensive overview of PET imaging’s potential in neuro-oncology as an adjunct to brain MRI for all medical professionals implicated in brain tumor diagnosis and care.
Collapse
|
14
|
Barajas RF, Politi LS, Anzalone N, Schöder H, Fox CP, Boxerman JL, Kaufmann TJ, Quarles CC, Ellingson BM, Auer D, Andronesi OC, Ferreri AJM, Mrugala MM, Grommes C, Neuwelt EA, Ambady P, Rubenstein JL, Illerhaus G, Nagane M, Batchelor TT, Hu LS. Consensus recommendations for MRI and PET imaging of primary central nervous system lymphoma: guideline statement from the International Primary CNS Lymphoma Collaborative Group (IPCG). Neuro Oncol 2021; 23:1056-1071. [PMID: 33560416 PMCID: PMC8248856 DOI: 10.1093/neuonc/noab020] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advanced molecular and pathophysiologic characterization of primary central nervous system lymphoma (PCNSL) has revealed insights into promising targeted therapeutic approaches. Medical imaging plays a fundamental role in PCNSL diagnosis, staging, and response assessment. Institutional imaging variation and inconsistent clinical trial reporting diminishes the reliability and reproducibility of clinical response assessment. In this context, we aimed to: (1) critically review the use of advanced positron emission tomography (PET) and magnetic resonance imaging (MRI) in the setting of PCNSL; (2) provide results from an international survey of clinical sites describing the current practices for routine and advanced imaging, and (3) provide biologically based recommendations from the International PCNSL Collaborative Group (IPCG) on adaptation of standardized imaging practices. The IPCG provides PET and MRI consensus recommendations built upon previous recommendations for standardized brain tumor imaging protocols (BTIP) in primary and metastatic disease. A biologically integrated approach is provided to addresses the unique challenges associated with the imaging assessment of PCNSL. Detailed imaging parameters facilitate the adoption of these recommendations by researchers and clinicians. To enhance clinical feasibility, we have developed both “ideal” and “minimum standard” protocols at 3T and 1.5T MR systems that will facilitate widespread adoption.
Collapse
Affiliation(s)
- Ramon F Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Science University, Portland Oregon, USA.,Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute Translational Oncology Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Letterio S Politi
- Humanitas University and Humanitas Research and Clinical Center - IRCCS, Milan, Italy.,Boston Children's Hospital, Boston, Massachusetts, USA
| | - Nicoletta Anzalone
- Neuroradiology Unit, IRCCS San Raffaele Hospital and Vita-Salute University, Milan, Italy
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christopher P Fox
- Department of Clinical Haematology, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jerrold L Boxerman
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | | | - C Chad Quarles
- Department of Neuroimaging Research & Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, California, USA.,Departments of Radiological Sciences, Psychiatry, and Biobehavioral Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, California, USA
| | - Dorothee Auer
- Versus Arthritis Pain Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ovidiu C Andronesi
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Andres J M Ferreri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maciej M Mrugala
- Department of Medicine, Division of Hematology and Oncology, Mayo Clinic Cancer Center, Phoenix, Arizona, USA.,Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Neurology, Weill Cornell Medical School, New York, New York, USA
| | - Edward A Neuwelt
- Blood-Brain Barrier Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA.,Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA.,Portland Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Prakash Ambady
- Blood-Brain Barrier Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - James L Rubenstein
- Division of Hematology/Oncology, University of California, San Francisco, California, USA.,Department of Medicine, University of California, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Gerald Illerhaus
- Clinic of Hematology, Oncology and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
15
|
Krebs S, Barasch JG, Young RJ, Grommes C, Schöder H. Positron emission tomography and magnetic resonance imaging in primary central nervous system lymphoma-a narrative review. ANNALS OF LYMPHOMA 2021; 5. [PMID: 34223561 PMCID: PMC8248935 DOI: 10.21037/aol-20-52] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review addresses the challenges of primary central nervous system (CNS) lymphoma diagnosis, assessment of treatment response, and detection of recurrence. Primary CNS lymphoma is a rare form of extra-nodal non-Hodgkin lymphoma that can involve brain, spinal cord, leptomeninges, and eyes. Primary CNS lymphoma lesions are most commonly confined to the white matter or deep cerebral structures such as basal ganglia and deep periventricular regions. Contrast-enhanced magnetic resonance imaging (MRI) is the standard diagnostic modality employed by neuro-oncologists. MRI often shows common morphological features such as a single or multiple uniformly well-enhancing lesions without necrosis but with moderate surrounding edema. Other brain tumors or inflammatory processes can show similar radiological patterns, making differential diagnosis difficult. [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) has selected utility in cerebral lymphoma, especially in diagnosis. Primary CNS lymphoma can sometimes present with atypical findings on MRI and FDG PET, such as disseminated disease, non-enhancing or ring-like enhancing lesions. The complementary strengths of PET and MRI have led to the development of combined PET-MR systems, which in some cases may improve lesion characterization and detection. By highlighting active developments in this field, including advanced MRI sequences, novel radiotracers, and potential imaging biomarkers, we aim to spur interest in sophisticated imaging approaches.
Collapse
Affiliation(s)
- Simone Krebs
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia G Barasch
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christian Grommes
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|