1
|
Canosa A, Manera U, Vasta R, Zocco G, Di Pede F, Cabras S, De Mattei F, Palumbo F, Iazzolino B, Minerva E, Sbaiz L, Brunetti M, Gallone S, Grassano M, Matteoni E, Polverari G, Fuda G, Casale F, Salamone P, De Marco G, Marchese G, Moglia C, Calvo A, Pagani M, Chiò A. Brain Metabolic Features of FUS-ALS: A 2-[ 18F]FDG-PET Study. Ann Neurol 2025. [PMID: 39976178 DOI: 10.1002/ana.27201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE We aimed at evaluating the brain metabolic features of fused in sarcoma amyotrophic lateral sclerosis (FUS-ALS) compared with sporadic ALS (sALS), using 2-[fluorine-18] fluoro-2-deoxy-D-glucose positron emission tomography (2-[18F]FDG-PET). METHODS We employed the 2-sample t-test model of SPM12, implemented in MATLAB, to compare 12 FUS-ALS cases with 40 healthy controls (HC) and 48 sALS, randomly collected from the series of patients who underwent brain 2-[18F]FDG-PET at the ALS Center of Turin (Italy) at diagnosis from 2009 to 2019. In the comparisons between cases and HC, we included age at PET and sex as covariates. Because FUS-ALS usually shows early onset in spinal regions, in the comparison between FUS-ALS and sALS, we included singularly the following covariates in a second step, to evaluate the determinants of eventual metabolic differences: age at PET, sex, and onset (spinal/bulbar). RESULTS sALS patients showed significant relative hypometabolism in bilateral fronto-temporo-occipital cortex and right insula as compared with FUS-ALS. After adjusting for age, the relative hypometabolism remained in the bilateral precentral gyrus and in the right middle and inferior temporal gyrus. As compared with HC, FUS patients displayed a significant relative hypermetabolism in the pontobulbar region and right cerebellar tonsil, dentate nucleus, and uvula, while sALS showed relative hypometabolism in bilateral frontal and occipital cortices and in left temporal and parietal regions. INTERPRETATION Patients with FUS-ALS show relative preservation of motor cortex metabolism compared with those with sALS, possibly reflecting the prevalence of lower motor neuron impairment in their phenotype. Prospective studies are necessary to investigate the possible role of 2-[18F]FDG-PET as a biomarker to track disease spreading in clinical trials. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Antonio Canosa
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1U, Turin, Italy
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
| | - Umberto Manera
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1U, Turin, Italy
| | - Rosario Vasta
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Grazia Zocco
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Francesca Di Pede
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Sara Cabras
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
- University of Camerino, Center for Neuroscience, Camerino, Italy
| | - Filippo De Mattei
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Francesca Palumbo
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Barbara Iazzolino
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Emilio Minerva
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Luca Sbaiz
- Department of Clinical Pathology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Laboratory of Genetics, Turin, Italy
| | - Maura Brunetti
- Department of Clinical Pathology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Laboratory of Genetics, Turin, Italy
| | - Salvatore Gallone
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1U, Turin, Italy
| | - Maurizio Grassano
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Enrico Matteoni
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Giulia Polverari
- Positron Emission Tomography Center AFFIDEA-IRMET S.p.A, Turin, Italy
| | - Giuseppe Fuda
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Federico Casale
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Paolina Salamone
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Giovanni De Marco
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Giulia Marchese
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
| | - Cristina Moglia
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1U, Turin, Italy
| | - Andrea Calvo
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1U, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Adriano Chiò
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Neurology Unit 1U, Turin, Italy
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
2
|
Corcia P, Couratier P, Ingre C. Could PLS represent a UMN-predominant ALS syndrome? Rev Neurol (Paris) 2025; 181:52-57. [PMID: 38782644 DOI: 10.1016/j.neurol.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Primary lateral sclerosis (PLS) is a motor neuron condition marked by pure upper motor neuron (UMN) degeneration. PLS represents around 3% of all motor neuron diseases. Classically the prognosis of PLS is less severe than those of amyotrophic lateral sclerosis (ALS). This explains the necessity to distinguish both conditions as early as possible. The key hallmark between the two diseases is the involvement of the lower motor neuron (LMN) system which is classically considered spared in PLS contrary to ALS. Although it seemed clinically easy to distinguish PLS from ALS with the aid of clinical and complementary examinations, there is a large body of evidence highlighting that the LMN system might be impaired in PLS. This led us to suggest that PLS might be considered as an almost pure UMN ALS phenotype.
Collapse
Affiliation(s)
- P Corcia
- Coordination Centre for Rare Disease Reference Centres (CRMR) ALS and other motor neurone diseases (FILSLAN), CHRU Bretonneau, 2, boulevard Tonnellé, 37000 Tours, France; UMR 1253 iBrain, Tours University, Inserm, 10, boulevard Tonnellé, 37000 Tours, France.
| | - P Couratier
- Coordination Centre for Rare Disease Reference Centres (CRMR) ALS and other motor neurone diseases (FILSLAN), CHU de Limoges, 2, Avenue Martin Luther King, 87000 Limoges, France
| | - C Ingre
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
3
|
Peng Y, Chai C, Xue K, Tang J, Wang S, Su Q, Liao C, Zhao G, Wang S, Zhang N, Zhang Z, Lei M, Liu F, Liang M. Unraveling multi-scale neuroimaging biomarkers and molecular foundations for schizophrenia: A combined multivariate pattern analysis and transcriptome-neuroimaging association study. CNS Neurosci Ther 2024; 30:e14906. [PMID: 39118226 PMCID: PMC11310100 DOI: 10.1111/cns.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
AIMS Schizophrenia is characterized by alterations in resting-state spontaneous brain activity; however, it remains uncertain whether variations at diverse spatial scales are capable of effectively distinguishing patients from healthy controls. Additionally, the genetic underpinnings of these alterations remain poorly elucidated. We aimed to address these questions in this study to gain better understanding of brain alterations and their underlying genetic factors in schizophrenia. METHODS A cohort of 103 individuals with diagnosed schizophrenia and 110 healthy controls underwent resting-state functional MRI scans. Spontaneous brain activity was assessed using the regional homogeneity (ReHo) metric at four spatial scales: voxel-level (Scale 1) and regional-level (Scales 2-4: 272, 53, 17 regions, respectively). For each spatial scale, multivariate pattern analysis was performed to classify schizophrenia patients from healthy controls, and a transcriptome-neuroimaging association analysis was performed to establish connections between gene expression data and ReHo alterations in schizophrenia. RESULTS The ReHo metrics at all spatial scales effectively discriminated schizophrenia from healthy controls. Scale 2 showed the highest classification accuracy at 84.6%, followed by Scale 1 (83.1%) and Scale 3 (78.5%), while Scale 4 exhibited the lowest accuracy (74.2%). Furthermore, the transcriptome-neuroimaging association analysis showed that there were not only shared but also unique enriched biological processes across the four spatial scales. These related biological processes were mainly linked to immune responses, inflammation, synaptic signaling, ion channels, cellular development, myelination, and transporter activity. CONCLUSIONS This study highlights the potential of multi-scale ReHo as a valuable neuroimaging biomarker in the diagnosis of schizophrenia. By elucidating the complex molecular basis underlying the ReHo alterations of this disorder, this study not only enhances our understanding of its pathophysiology, but also pave the way for future advancements in genetic diagnosis and treatment of schizophrenia.
Collapse
Affiliation(s)
- Yanmin Peng
- School of Medical Imaging and Tianjin Key Laboratory of Functional ImagingTianjin Medical UniversityTianjinChina
| | - Chao Chai
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
- Department of Radiology, School of Medicine, Tianjin First Central HospitalNankai UniversityTianjinChina
| | - Kaizhong Xue
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Tang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Sijia Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Qian Su
- Department of Molecular Imaging and Nuclear MedicineTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Chongjian Liao
- School of Medical Imaging and Tianjin Key Laboratory of Functional ImagingTianjin Medical UniversityTianjinChina
| | - Guoshu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Nannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional ImagingTianjin Medical UniversityTianjinChina
| |
Collapse
|
4
|
Calvo A, Moglia C, Canosa A, Manera U, Vasta R, Grassano M, Daviddi M, De Mattei F, Matteoni E, Gallone S, Brunetti M, Sbaiz L, Cabras S, Peotta L, Palumbo F, Iazzolino B, Mora G, Chiò A. High Frequency of Cognitive and Behavioral Impairment in Amyotrophic Lateral Sclerosis Patients with SOD1 Pathogenic Variants. Ann Neurol 2024; 96:150-158. [PMID: 38568044 DOI: 10.1002/ana.26928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE While the cognitive-behavioral characteristics of amyotrophic lateral sclerosis (ALS) patients carrying C9orf72 pathological repeat expansion have been extensively studied, our understanding of those carrying SOD1 variants is mostly based on case reports. The aim of this paper is to extensively explore the cognitive-behavioral characteristics of a cohort of ALS patients carrying pathogenetic variants of SOD1 gene, comparing them to patients without pathogenetic variants of 46 ALS-related genes (wild-type [WT]-ALS) and healthy controls. METHODS All ALS patients seen at the Turin ALS expert center in the 2009-2021 period who underwent both cognitive/behavioral and extensive genetic testing were eligible to be included in the study. Only patients with SOD1 pathogenetic variants (n = 28) (SOD1-ALS) and WT-ALS (n = 829) were enrolled in the study. A series of 129 controls was also included. RESULTS Among the 28 SOD1-ALS patients, 16 (57.1%) had normal cognitive function, 5 (17.9%) isolated cognitive impairment (ALSci) (17.9%), 6 (21.4%) isolated behavioral impairment (ALSbi), 1 (3.6%) cognitive and behavioral impairment (ALScbi), and no one ALS-FTD. SOD1-ALS performed worse than controls in all explored domains, in particular Social Cognition and Language domains. SOD1-ALS patients had similar scores in all tests compared to WT-ALS, except the Story-based Empathy Task (SET), where they performed worse. INTERPRETATION Cognitive-behavioral impairment is much more common in SOD1 patients than previously assumed. SOD1-ALS are characterized by a more frequent impairment of Social Cognition and, less markedly, of Language domains. These findings have relevant implication both in the clinical and in the research setting, also considering recently approved treatment for SOD1-ALS. ANN NEUROL 2024;96:150-158.
Collapse
Affiliation(s)
- Andrea Calvo
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Cristina Moglia
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Antonio Canosa
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Umberto Manera
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Rosario Vasta
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Maurizio Grassano
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Margherita Daviddi
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Filippo De Mattei
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Salvatore Gallone
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Maura Brunetti
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Luca Sbaiz
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Sara Cabras
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Laura Peotta
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Francesca Palumbo
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Barbara Iazzolino
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Gabriele Mora
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Adriano Chiò
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
- Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
5
|
Sun W, Liu SH, Wei XJ, Sun H, Ma ZW, Yu XF. Potential of neuroimaging as a biomarker in amyotrophic lateral sclerosis: from structure to metabolism. J Neurol 2024; 271:2238-2257. [PMID: 38367047 DOI: 10.1007/s00415-024-12201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motor neuron degeneration. The development of ALS involves metabolite alterations leading to tissue lesions in the nervous system. Recent advances in neuroimaging have significantly improved our understanding of the underlying pathophysiology of ALS, with findings supporting the corticoefferent axonal disease progression theory. Current studies on neuroimaging in ALS have demonstrated inconsistencies, which may be due to small sample sizes, insufficient statistical power, overinterpretation of findings, and the inherent heterogeneity of ALS. Deriving meaningful conclusions solely from individual imaging metrics in ALS studies remains challenging, and integrating multimodal imaging techniques shows promise for detecting valuable ALS biomarkers. In addition to giving an overview of the principles and techniques of different neuroimaging modalities, this review describes the potential of neuroimaging biomarkers in the diagnosis and prognostication of ALS. We provide an insight into the underlying pathology, highlighting the need for standardized protocols and multicenter collaborations to advance ALS research.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Si-Han Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiao-Jing Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hui Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Wei Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xue-Fan Yu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Domi T, Schito P, Sferruzza G, Russo T, Pozzi L, Agosta F, Carrera P, Riva N, Filippi M, Quattrini A, Falzone YM. Unveiling the SOD1-mediated ALS phenotype: insights from a comprehensive meta-analysis. J Neurol 2024; 271:1342-1354. [PMID: 37930481 DOI: 10.1007/s00415-023-12074-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Amyotrophic lateral sclerosis associated with mutations in SOD1 (SOD1-ALS) might be susceptible to specific treatment. The aim of the study is to outline the clinical features of SOD1-ALS patients by comparing them to patients without ALS major gene variants and patients with variants in other major ALS genes. Defining SOD1-ALS phenotype may assist clinicians in identifying patients who should be prioritized for genetic testing. METHODS We performed an extensive literature research including original studies which reported the clinical features of SOD1-ALS and at least one of the following patient groups: C9ORF72 hexanucleotide repeat expansion (C9-ALS), TARDBP (TARDBP-ALS), FUS (FUS-ALS) or patients without a positive test for a major-ALS gene (N-ALS). A random effects meta-analytic model was applied to clinical data extracted encompassing sex, site and age of onset. To reconstruct individual patient survival data, the published Kaplan-Meier curves were digitized. Data were measured as odds ratio (OR) or standardized mean difference (SMD) as appropriate. Median survival was compared between groups. RESULTS Twenty studies met the inclusion criteria. We identified 721 SOD1-ALS, 470 C9-ALS, 183 TARDBP-ALS, 113 FUS-ALS and 2824 N-ALS. SOD1-ALS showed a higher rate of spinal onset compared with N-ALS and C9-ALS (OR = 4.85, 95% CI = 3.04-7.76; OR = 10.47, 95% CI = 4.32-27.87) and an earlier onset compared with N-ALS (SMD = - 0.45, 95% CI = - 0.72 to - 0.18). SOD1-ALS had a similar survival compared with N-ALS (p = 0.14), a longer survival compared with C9-ALS (p < 0.01) and FUS-ALS (p = 0.019) and a shorter survival compared with TARDBP-ALS (p < 0.01). DISCUSSION This study indicates the presence of a specific SOD1-ALS phenotype. Insights in SOD1-ALS clinical features are important in genetic counseling, disease prognosis and support patients' stratification in clinical trials.
Collapse
Affiliation(s)
- Teuta Domi
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Giacomo Sferruzza
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Tommaso Russo
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroimaging Research Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, Laboratory of Clinical Molecular Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neuroimaging Research Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
7
|
Jamali AM, Kethamreddy M, Burkett BJ, Port JD, Pandey MK. PET and SPECT Imaging of ALS: An Educational Review. Mol Imaging 2023; 2023:5864391. [PMID: 37636591 PMCID: PMC10460279 DOI: 10.1155/2023/5864391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease leading to progressive motor degeneration and ultimately death. It is a complex disease that can take a significantly long time to be diagnosed, as other similar pathological conditions must be ruled out for a definite diagnosis of ALS. Noninvasive imaging of ALS has shed light on disease pathology and altered biochemistry in the ALS brain. Other than magnetic resonance imaging (MRI), two types of functional imaging, positron emission tomography (PET) and single photon emission computed tomography (SPECT), have provided valuable data about what happens in the brain of ALS patients compared to healthy controls. PET imaging has revealed a specific pattern of brain metabolism through [18F]FDG, while other radiotracers have uncovered neuroinflammation, changes in neuronal density, and protein aggregation. SPECT imaging has shown a general decrease in regional cerebral blood flow (rCBF) in ALS patients. This educational review summarizes the current state of ALS imaging with various PET and SPECT radiopharmaceuticals to better understand the pathophysiology of ALS.
Collapse
Affiliation(s)
| | | | | | - John D. Port
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
8
|
Martinelli I, Zucchi E, Simonini C, Gianferrari G, Zamboni G, Pinti M, Mandrioli J. The landscape of cognitive impairment in superoxide dismutase 1-amyotrophic lateral sclerosis. Neural Regen Res 2023; 18:1427-1433. [PMID: 36571338 PMCID: PMC10075107 DOI: 10.4103/1673-5374.361535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although mutations in the superoxide dismutase 1 gene account for only a minority of total amyotrophic lateral sclerosis cases, the discovery of this gene has been crucial for amyotrophic lateral sclerosis research. Since the identification of superoxide dismutase 1 in 1993, the field of amyotrophic lateral sclerosis genetics has considerably widened, improving our understanding of the diverse pathogenic basis of amyotrophic lateral sclerosis. In this review, we focus on cognitive impairment in superoxide dismutase 1-amyotrophic lateral sclerosis patients. Literature has mostly reported that cognition remains intact in superoxide dismutase 1-amyotrophic lateral sclerosis patients, but recent reports highlight frontal lobe function frailty in patients carrying different superoxide dismutase 1-amyotrophic lateral sclerosis mutations. We thoroughly reviewed all the various mutations reported in the literature to contribute to a comprehensive database of superoxide dismutase 1-amyotrophic lateral sclerosis genotype-phenotype correlation. Such a resource could ultimately improve our mechanistic understanding of amyotrophic lateral sclerosis, enabling a more robust assessment of how the amyotrophic lateral sclerosis phenotype responds to different variants across genes, which is important for the therapeutic strategy targeting genetic mutations. Cognition in superoxide dismutase 1-amyotrophic lateral sclerosis deserves further longitudinal research since this peculiar frailty in patients with similar mutations can be conditioned by external factors, including environment and other unidentified agents including modifier genes.
Collapse
Affiliation(s)
- Ilaria Martinelli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Zamboni
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
9
|
De Vocht J, Van Weehaeghe D, Ombelet F, Masrori P, Lamaire N, Devrome M, Van Esch H, Moisse M, Koole M, Dupont P, Van Laere K, Van Damme P. Differences in Cerebral Glucose Metabolism in ALS Patients with and without C9orf72 and SOD1 Mutations. Cells 2023; 12:cells12060933. [PMID: 36980274 PMCID: PMC10047407 DOI: 10.3390/cells12060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons. In 10% of patients, the disorder runs in the family. Our aim was to study the impact of ALS-causing gene mutations on cerebral glucose metabolism. Between October 2010 and October 2022, 538 patients underwent genetic testing for mutations with strong evidence of causality for ALS and 18F-2-fluoro-2-deoxy-D-glucose-PET (FDG PET), at University Hospitals Leuven. We identified 48 C9orf72-ALS and 22 SOD1-ALS patients. After propensity score matching, two cohorts of 48 and 21 matched sporadic ALS patients, as well as 20 healthy controls were included. FDG PET images were assessed using a voxel-based and volume-of-interest approach. We observed widespread frontotemporal involvement in all ALS groups, in comparison to healthy controls. The degree of relative glucose metabolism in SOD1-ALS in motor and extra-motor regions did not differ significantly from matched sporadic ALS patients. In C9orf72-ALS, we found more pronounced hypometabolism in the peri-rolandic region and thalamus, and hypermetabolism in the medulla extending to the pons, in comparison to matched sporadic ALS patients. Our study revealed C9orf72-dependent differences in glucose metabolism in the peri-rolandic region, thalamus, and brainstem (i.e., medulla, extending to the pons) in relation to matched sporadic ALS patients.
Collapse
Affiliation(s)
- Joke De Vocht
- Division of Psychiatry, Division of Neurology, University Hospitals Leuven, VIB-KULeuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-34-13-73
| | | | - Fouke Ombelet
- Division of Neurology, University Hospitals Leuven, VIB-KULeuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Pegah Masrori
- Division of Neurology, University Hospitals Leuven, VIB-KULeuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Nikita Lamaire
- Division of Neurology, University Hospitals Leuven, VIB-KULeuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Martijn Devrome
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Mathieu Moisse
- VIB-KU Leuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Michel Koole
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Patrick Dupont
- Laboratory of Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Philip Van Damme
- Division of Neurology, University Hospitals Leuven, VIB-KULeuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Gianferrari G, Martinelli I, Simonini C, Zucchi E, Fini N, Carra S, Moglia C, Mandrioli J. Case report: p.Glu134del SOD1 mutation in two apparently unrelated ALS patients with mirrored phenotype. Front Neurol 2023; 13:1052341. [PMID: 36686515 PMCID: PMC9846158 DOI: 10.3389/fneur.2022.1052341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
With upcoming personalized approaches based on genetics, it is important to report new mutations in amyotrophic lateral sclerosis (ALS) genes in order to understand their pathogenicity and possible patient responses to specific therapies. SOD1 mutations are the second most frequent genetic cause of ALS in European populations. Here, we describe two seemingly unrelated Italian patients with ALS carrying the same SOD1 heterozygous c.400_402 deletion (p.Glu134del). Both patients had spinal onset in their lower limbs, progressive muscular weakness with respiratory involvement, and sparing bulbar function. In addition to the clinical picture, we discuss the possible pathogenic role of this unfamiliar SOD1 mutation.
Collapse
Affiliation(s)
- Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy,Clinical and Experimental PhD Program, University of Modena and Reggio Emilia, Modena, Italy,*Correspondence: Ilaria Martinelli ✉
| | - Cecilia Simonini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy,Neurosciences PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Moglia
- S.C Neurology 1U, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza Torino, Torino, Italy,“Rita Levi Montalcini” Department of Neuroscience, University of Turin, Torino, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy,Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| |
Collapse
|
11
|
Juengling FD, Wuest F, Kalra S, Agosta F, Schirrmacher R, Thiel A, Thaiss W, Müller HP, Kassubek J. Simultaneous PET/MRI: The future gold standard for characterizing motor neuron disease-A clinico-radiological and neuroscientific perspective. Front Neurol 2022; 13:890425. [PMID: 36061999 PMCID: PMC9428135 DOI: 10.3389/fneur.2022.890425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging assessment of motor neuron disease has turned into a cornerstone of its clinical workup. Amyotrophic lateral sclerosis (ALS), as a paradigmatic motor neuron disease, has been extensively studied by advanced neuroimaging methods, including molecular imaging by MRI and PET, furthering finer and more specific details of the cascade of ALS neurodegeneration and symptoms, facilitated by multicentric studies implementing novel methodologies. With an increase in multimodal neuroimaging data on ALS and an exponential improvement in neuroimaging technology, the need for harmonization of protocols and integration of their respective findings into a consistent model becomes mandatory. Integration of multimodal data into a model of a continuing cascade of functional loss also calls for the best attempt to correlate the different molecular imaging measurements as performed at the shortest inter-modality time intervals possible. As outlined in this perspective article, simultaneous PET/MRI, nowadays available at many neuroimaging research sites, offers the perspective of a one-stop shop for reproducible imaging biomarkers on neuronal damage and has the potential to become the new gold standard for characterizing motor neuron disease from the clinico-radiological and neuroscientific perspectives.
Collapse
Affiliation(s)
- Freimut D. Juengling
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine, University Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Federica Agosta
- Division of Neuroscience, San Raffaele Scientific Institute, University Vita Salute San Raffaele, Milan, Italy
| | - Ralf Schirrmacher
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, University of Ulm Medical Center, Ulm, Germany
- Department of Diagnostic and Interventional Radiology, University of Ulm Medical Center, Ulm, Germany
| | - Hans-Peter Müller
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
12
|
Huang J, Li C, Shang H. Astrocytes in Neurodegeneration: Inspiration From Genetics. Front Neurosci 2022; 16:882316. [PMID: 35812232 PMCID: PMC9268899 DOI: 10.3389/fnins.2022.882316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
Despite the discovery of numerous molecules and pathologies, the pathophysiology of various neurodegenerative diseases remains unknown. Genetics participates in the pathogenesis of neurodegeneration. Neural dysfunction, which is thought to be a cell-autonomous mechanism, is insufficient to explain the development of neurodegenerative disease, implying that other cells surrounding or related to neurons, such as glial cells, are involved in the pathogenesis. As the primary component of glial cells, astrocytes play a variety of roles in the maintenance of physiological functions in neurons and other glial cells. The pathophysiology of neurodegeneration is also influenced by reactive astrogliosis in response to central nervous system (CNS) injuries. Furthermore, those risk-gene variants identified in neurodegenerations are involved in astrocyte activation and senescence. In this review, we summarized the relationships between gene variants and astrocytes in four neurodegenerative diseases, including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Parkinson’s disease (PD), and provided insights into the implications of astrocytes in the neurodegenerations.
Collapse
|