1
|
Minamimoto R, Abe Y, Kamiya S, Nakane T, Ito R, Kato K, Naganawa S. Imaging insights of FDG-PET from neonates to infants. Jpn J Radiol 2025:10.1007/s11604-025-01763-z. [PMID: 40038218 DOI: 10.1007/s11604-025-01763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
In pediatric oncology, 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) is valuable as a tool for noninvasive imaging and monitoring. While many reports have reviewed the use of PET and PET/CT in pediatrics, considerable variations in age, body size, and metabolism are seen during different stages of childhood development. Neonates (from birth to one month old) and infants (from 1 month to 1 year) present unique challenges for FDG-PET/CT examination due to their small body size, the immaturity of organs, the need for specialized patient preparation, and support requirements during scanning. In addition, differences in metabolic activity can lead to distinct differences in patterns of physiological FDG uptake on PET/CT imaging between neonates and infants. These factors differ significantly from those encountered in older children, who may be treated similarly to adults during imaging procedures. This review, based on both the literature and clinical experience, explores the specific characteristics, challenges, and considerations for FDG-PET/CT imaging from neonates to infants, with a focus on optimizing imaging protocols and interpreting physiological variations in this growth period.
Collapse
Affiliation(s)
- Ryogo Minamimoto
- Department of Integrated Image Information Analysis, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Shouwa-ku, Nagoya, Aichi, 466-8550, Japan.
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Yumi Abe
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinichiro Kamiya
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Innovative Biomedical Visualization (Ibmv), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Katsuhiko Kato
- Functional Medical Imaging, Biomedical Imaging Sciences, Division of Advanced Information Health Sciences, Department of Integrated Health Sciences, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Liu G, Gu Y, Sollini M, Lazar A, Besson FL, Li S, Wu Z, Nardo L, Al-Ibraheem A, Zheng J, Kulkarni HR, Rominger A, Fan W, Zhu X, Zhao X, Wu H, Liu J, Li B, Cheng Z, Wang R, Xu B, Agostini D, Tang H, Tan L, Yang Z, Huo L, Gu J, Shi H. Expert consensus on workflow of PET/CT with long axial field-of-view. Eur J Nucl Med Mol Imaging 2025; 52:1038-1049. [PMID: 39520515 DOI: 10.1007/s00259-024-06968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Positron emission tomography/computed tomography (PET/CT) imaging has been widely used in clinical practice. Long axial field-of-view (LAFOV) systems have enhanced clinical practice by leveraging their technological advantages and have emerged as the new state-of-the-art PET imaging modalities. A consensus was conducted to explore expert views in this emerging field to comprehensively elucidate the proposed workflow in LAFOV PET/CT examinations and highlight the potential challenges inherent in the workflow. METHODS A multidisciplinary task group formed by 28 experts from six countries over the world discussed and approved the consensus based on the published guidelines, peer-reviewed articles of LAFOV PET/CT, and the collective experience from clinical practice. This consensus focuses on the workflow that allows for a broader range of imaging protocols of LAFOV PET/CT, catering to diverse patient needs and in line with precision medicine principles. RESULTS This consensus describes the workflows and imaging protocols of LAFOV PET/CT for various imaging scenarios including routine static imaging, dynamic imaging, low-activity imaging, fast imaging, prolonged imaging, delayed imaging, and dual-tracer imaging. In addition, imaging reconstruction and reviewing specific to LAFOV PET/CT imaging, as well as the main challenges facing installation and application of LAFOV PET/CT scanner were also summarized. CONCLUSION This consensus summarized the various imaging workflow, imaging protocol, and challenges of LAFOV PET/CT imaging, aiming to enhance the clinical and research applications of these scanners.
Collapse
Affiliation(s)
- Guobing Liu
- Shanghai Institute of Medical Imaging, Shanghai, 200032, P.R. China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, P.R. China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Yushen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, P.R. China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, P.R. China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Martina Sollini
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Alexandra Lazar
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Florent L Besson
- Department of Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris-Saclay, AP-HP, DMU Smart Imaging, CHU Bicêtre, Paris, France and Université Paris-Saclay, Commissariat À L'énergie Atomique Et Aux Énergies Alternatives (CEA), Centre National de La Recherche Scientifique (CNRS), InsermBioMaps, Orsay, France
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, P.R. China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, P.R. China
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, 95819, USA
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman, 11941, Jordan
- Department of Radiology and Nuclear Medicine, School of Medicine, University of Jordan, Amman, 11942, Jordan
| | - Jiefu Zheng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Medical Imaging, University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA, 22908-0170, USA
| | - Harshad R Kulkarni
- BAMF Health, Grand Rapids, MI, 49503, USA
- Department of Radiology, Michigan State University College of Human Medicine, East Lansing, MI, 48824, USA
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010, Bern, Switzerland
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, No. 651 Dongfengdong Road, Guangzhou, 510060, P.R. China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, P.R. China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, P.R. China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 PuJian Road, Shanghai, 200127, P.R. China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Ruijin Er Road, Shanghai, 200025, P.R. China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, P.R. China
| | - Ruimin Wang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Baixuan Xu
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Denis Agostini
- Department of Nuclear Medicine, University Hospital of Caen and Normandie Université, EA, 4650, Caen, France
| | - Han Tang
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Lijie Tan
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, P.R. China
| | - Li Huo
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, P.R. China
- Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P.R. China
| | - Jianying Gu
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Department of Plastic Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, P.R. China.
- Clinical Research Center for Precision Medicine of Abdominal Tumor of Fujian Province, Xiamen, 361015, P.R. China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, P.R. China.
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Clinical Research Center for Precision Medicine of Abdominal Tumor of Fujian Province, Xiamen, 361015, P.R. China.
- Department of Nuclear Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, P.R. China.
| |
Collapse
|
3
|
Dias AH, Andersen KF, Fosbøl MØ, Gormsen LC, Andersen FL, Munk OL. Long Axial Field-of-View PET/CT: New Opportunities for Pediatric Imaging. Semin Nucl Med 2025; 55:76-85. [PMID: 39542815 DOI: 10.1053/j.semnuclmed.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
The combined use of Positron Emission Tomography (PET) and Computed Tomography (CT) has become increasingly vital for diagnosing and managing oncological and infectious diseases in pediatric patients. The introduction of long axial field-of-view (LAFOV) PET/CT scanners, also known as "Total Body PET/CT," marks a significant advancement in nuclear medicine. This new technology enables faster pediatric imaging with substantially reduced radiation exposure and essentially eliminates the need for sedation, addressing previous critical concerns in pediatric imaging. This review will explore the applications and challenges of LAFOV PET/CT in pediatric imaging, highlight the benefits observed at two Danish hospitals, and evaluate its potential to transform the management of pediatric patients.
Collapse
Affiliation(s)
- André Henrique Dias
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark.
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Marie Øbro Fosbøl
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Honoré d’Este S, Andersen FL, Schulze C, Saxtoft E, Fischer BM, Andersen KF. QUALIPAED-A retrospective quality control study evaluating pediatric long axial field-of-view low-dose FDG-PET/CT. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1398773. [PMID: 39355209 PMCID: PMC11440848 DOI: 10.3389/fnume.2024.1398773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 10/03/2024]
Abstract
Introduction Pediatric patients have an increased risk of radiation-induced malignancies due to their ongoing development and long remaining life span. Thus, optimization of PET protocols is an important task in pediatric nuclear medicine. Long axial field-of-view (LAFOV) PET/CT has shown a significant increase in sensitivity, which provides an ideal opportunity for reduction of injected tracer activity in the pediatric population. In this study we aim to evaluate the clinical performance of a 2-[18F]FDG-tracer reduction from 3 MBq/kg to 1.5 MBq/kg on the Biograph Vision Quadra LAFOV PET/CT. Materials and methods The first 50 pediatric patients referred for clinical whole-body PET/CT with 1.5 MBq/kg 2-[18F]FDG, were included. A standard pediatric protocol was applied. Five reconstructions were created with various time, filter and iteration settings. Image noise was computed as coefficient-of-variance (COV = SD/mean standardized-uptake-value) calculated from a spherical 20-50 mm (diameter) liver volume-of-interest. Sets of reconstructions were reviewed by one nuclear medicine physicians, who reported image lesions on a pre-defined list of sites. Paired comparison analysis was performed with significance at PB < 0.05 (Bonferroni corrected). Results All reconstructions, except one, achieved a COVmean (0.08-0.15) equal to or lower than current clinical acceptable values (COVref ≤ 0.15). Image noise significantly improved with increasing acquisition time, lowering iterations (i) from 6i to 4i (both with five subsets) and when applying a 2 mm Gauss filter (PB < 0.001). Significant difference in lesion detection was seen from 150s to 300s and from 150s to 600s (PB = 0.006-0.007). 99% of all lesions rated as malignant could be found on the 150s reconstruction, while 100% was found on the 300s, when compared to the 600s reconstruction. Conclusion Injected activity and scan time can be reduced to 1.5 MBq/kg 2-[18F]FDG with 5 min acquisition time on LAFOV PET/CT, while maintaining clinical performance in the pediatric population. These results can help limit radiation exposure to patients and personnel as well as shorten total scan time, which can help increase patient comfort, lessen the need for sedation and provide individually tailored scans.
Collapse
Affiliation(s)
- Sabrina Honoré d’Este
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina Schulze
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eunice Saxtoft
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- King’s College London & Guy’s and St Thomas’ PET Centre, St Thomas’ Hospital, London, United Kingdom
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|