1
|
Cellina M, Cè M, Grimaldi E, Mastellone G, Fortunati A, Oliva G, Martinenghi C, Carrafiello G. The role of dual-energy computed tomography (DECT) in emergency radiology: a visual guide to advanced diagnostics. Clin Radiol 2025; 83:106836. [PMID: 40037137 DOI: 10.1016/j.crad.2025.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
Dual-energy computed tomography (DECT) has become an essential tool in emergency radiology, significantly enhancing diagnostic capabilities for a variety of acute conditions. By utilising two distinct X-ray energy spectra, DECT differentiates materials based on their attenuation properties, providing detailed insights into tissue composition and pathology. In emergency settings, DECT is used in thoracic imaging for the detection of pulmonary embolism, in abdominal imaging to enhance the diagnosis and characterisation of conditions such as pancreatitis, appendicitis, gastrointestinal bleeding, and bowel ischaemia and in the genitourinary system for identifying kidney stones, pyelonephritis, and urinary bleeding. In neuroimaging, DECT enables image optimisation through virtual monochromatic images and the reduction of metal artifacts. It helps in the differential diagnosis of haemorrhage versus tumour-related haemorrhage, haemorrhage versus contrast extravasation, and in the dating of vertebral collapse. DECT offers several advantages, including enhanced visualisation, the potential to reduce radiation exposure and contrast medium, and improved diagnostic accuracy across a wide range of conditions. However, its routine clinical adoption is still evolving due to challenges such as limited availability, cost, and the need for specialised training. This pictorial essay aims to encourage the broader integration of DECT into emergency imaging protocols by showcasing its clinical applications and benefits.
Collapse
Affiliation(s)
- M Cellina
- Radiology Department, ASST Fatebenefratelli Sacco, Piazza Principessa Clotilde 3, 20121 Milan, Italy.
| | - M Cè
- Postgraduation School in Radiodiagnostic, University of Milan, via Festa del Perdono 7, 20122, Milan, Italy
| | - E Grimaldi
- Postgraduation School in Radiodiagnostic, University of Milan, via Festa del Perdono 7, 20122, Milan, Italy
| | - G Mastellone
- Postgraduation School in Radiodiagnostic, University of Milan, via Festa del Perdono 7, 20122, Milan, Italy
| | - A Fortunati
- Postgraduation School in Radiodiagnostic, University of Milan, via Festa del Perdono 7, 20122, Milan, Italy
| | - G Oliva
- Radiology Department, ASST Fatebenefratelli Sacco, Piazza Principessa Clotilde 3, 20121 Milan, Italy
| | - C Martinenghi
- Radiology Department, IRCCS San Raffaele Hospital, Via Olgettina, 60, 20132, Milan, Italy
| | - G Carrafiello
- Radiology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy
| |
Collapse
|
2
|
Guerrini S, Zanoni M, Sica C, Bagnacci G, Mancianti N, Galzerano G, Garosi G, Cacioppa LM, Cellina M, Zamboni GA, Minetti G, Floridi C, Mazzei MA. Dual-Energy CT as a Well-Established CT Modality to Reduce Contrast Media Amount: A Systematic Review from the Computed Tomography Subspecialty Section of the Italian Society of Radiology. J Clin Med 2024; 13:6345. [PMID: 39518485 PMCID: PMC11546204 DOI: 10.3390/jcm13216345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Our study aims to provide an overview of existing evidence regarding the image quality of dual-energy CT (DECT) employing reduced contrast media (CM) volumes, in comparison to single-energy CT (SECT) with standard CM loads. The advantages, indications, and possible applications of DECT were investigated from the perspective of providing better patient care, minimizing CM volume and managing CM shortage. Methods: In this systematic review (PRISMA methodology), PubMed and WOS were searched from January 2010 to January 2023 by two independent reviewers. The scan and CM characteristics, radiation dose, and results of quantitative (contrast to noise ratio, CNR, and signal to noise ratio, SNR) and qualitative assessment of image quality were collected. Sixty non-duplicated records eligible for full-text screening were examined. Results: Finally, 22 articles (1818 patients) were included. The average CM reduction with DECT ranged between 43.4 ± 11%. Despite the wide variability in CT scan protocols, no differences were found in radiation doses between DECT and SECT. Conclusions: DECT scanners allow the employment of lower CM volumes with equal or better image quality evaluated by quantitative and qualitative analyses and similar dose radiation compared to SECT. Using image reconstructions at low monochromatic energy levels, DECT increases iodine conspicuity and attenuation contributing to CM containment measures.
Collapse
Affiliation(s)
- Susanna Guerrini
- Unit of Diagnostic Imaging, Department of Medical Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
| | - Matteo Zanoni
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (M.Z.); (C.S.)
| | - Cristian Sica
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (M.Z.); (C.S.)
| | - Giulio Bagnacci
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (M.Z.); (C.S.)
| | - Nicoletta Mancianti
- Unit of Nephrology, Dialysis and Transplantation, Department of Emergency and Transplantation, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (N.M.); (G.G.)
| | - Giuseppe Galzerano
- Unit of Vascular Surgery, Department of Heart, Thorax and Vessels, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Guido Garosi
- Unit of Nephrology, Dialysis and Transplantation, Department of Emergency and Transplantation, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (N.M.); (G.G.)
| | - Laura Maria Cacioppa
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, 60126 Ancona, Italy
| | - Michaela Cellina
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Principessa Clotilde 3, 20121 Milan, Italy
| | - Giulia A. Zamboni
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Institute of Radiology, Department of Diagnostics and Public Health, Policlinico GB Rossi, University of Verona, 37134 Verona, Italy
| | - Giuseppe Minetti
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Radiology Unit, Ospedale Santo Spirito, ASL AL Casale Monferrato, 15121 Alessandria, Italy
| | - Chiara Floridi
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, 60126 Ancona, Italy
| | - Maria Antonietta Mazzei
- Italian Society of Medical and Interventional Radiology (SIRM), Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, 20122 Milano, Italy; (G.B.); (M.C.); (G.A.Z.); (G.M.); (C.F.); (M.A.M.)
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy; (M.Z.); (C.S.)
| |
Collapse
|
3
|
Han K, Ryu CH, Lee CL, Han TH. Deep learning-based material decomposition of iodine and calcium in mobile photon counting detector CT. PLoS One 2024; 19:e0306627. [PMID: 39058758 PMCID: PMC11280148 DOI: 10.1371/journal.pone.0306627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Photon-counting detector (PCD)-based computed tomography (CT) offers several advantages over conventional energy-integrating detector-based CT. Among them, the ability to discriminate energy exhibits significant potential for clinical applications because it provides material-specific information. That is, material decomposition (MD) can be achieved through energy discrimination. In this study, deep learning-based material decomposition was performed using live animal data. We propose MD-Unet, which is a deep learning strategy for material decomposition based on an Unet architecture trained with data from three energy bins. To mitigate the data insufficiency, we developed a pretrained model incorporating various simulation data forms and augmentation strategies. Incorporating these approaches into model training results in enhanced precision in material decomposition, thereby enabling the identification of distinct materials at individual pixel locations. The trained network was applied to the acquired animal data to evaluate material decomposition results. Compared with conventional methods, the newly generated MD-Unet demonstrated more accurate material decomposition imaging. Moreover, the network demonstrated an improved material decomposition ability and significantly reduced noise. In addition, they can potentially offer an enhancement level similar to that of a typical contrast agent. This implies that it can acquire images of the same quality with fewer contrast agents administered to patients, thereby demonstrating its significant clinical value.
Collapse
Affiliation(s)
- Kwanhee Han
- Health & Medical Equipment Business Unit, Samsung Electronics, Suwon-si, Gyeonggi-do, Korea
- Department of Digital Media and Communications Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Korea
| | - Chang Ho Ryu
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Korea
| | - Chang-Lae Lee
- Health & Medical Equipment Business Unit, Samsung Electronics, Suwon-si, Gyeonggi-do, Korea
| | - Tae Hee Han
- Department of Semiconductor Systems Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Korea
| |
Collapse
|
4
|
Afifah M, Bulthuis MC, Goudschaal KN, Verbeek-Spijkerman JM, Rosario TS, den Boer D, Hinnen KA, Bel A, van Kesteren Z. Virtual unenhanced dual-energy computed tomography for photon radiotherapy: The effect on dose distribution and cone-beam computed tomography based position verification. Phys Imaging Radiat Oncol 2024; 29:100545. [PMID: 38369991 PMCID: PMC10869258 DOI: 10.1016/j.phro.2024.100545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Background and Purpose Virtual Unenhanced images (VUE) from contrast-enhanced dual-energy computed tomography (DECT) eliminate manual suppression of contrast-enhanced structures (CES) or pre-contrast scans. CT intensity decreases in high-density structures outside the CES following VUE algorithm application. This study assesses VUE's impact on the radiotherapy workflow of gynecological tumors, comparing dose distribution and cone-beam CT-based (CBCT) position verification to contrast-enhanced CT (CECT) images. Materials and Methods A total of 14 gynecological patients with contrast-enhanced CT simulation were included. Two CT images were reconstructed: CECT and VUE. Volumetric Modulated Arc Therapy (VMAT) plans generated on CECT were recalculated on VUE using both the CECT lookup table (LUT) and a dedicated VUE LUT. Gamma analysis assessed 3D dose distributions. CECT and VUE images were retrospectively registered to daily CBCT using Chamfer matching algorithm.. Results Planning target volume (PTV) dose agreement with CECT was within 0.35% for D2%, Dmean, and D98%. Organs at risk (OARs) D2% agreed within 0.36%. A dedicated VUE LUT lead to smaller dose differences, achieving a 100% gamma pass rate for all subjects. VUE imaging showed similar translations and rotations to CECT, with significant but minor translation differences (<0.02 cm). VUE-based registration outperformed CECT. In 24% of CBCT-CECT registrations, inadequate registration was observed due to contrast-related issues, while corresponding VUE images achieved clinically acceptable registrations. Conclusions VUE imaging in the radiotherapy workflow is feasible, showing comparable dose distributions and improved CBCT registration results compared to CECT. VUE enables automated bone registration, limiting inter-observer variation in the Image-Guided Radiation Therapy (IGRT) process.
Collapse
Affiliation(s)
- Maryam Afifah
- Amsterdam UMC, Location Vrije Universiteit, Department of Radiation Oncology, De Boelelaan 1118, Amsterdam, the Netherlands
| | - Marloes C. Bulthuis
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Karin N. Goudschaal
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jolanda M. Verbeek-Spijkerman
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Tezontl S. Rosario
- Amsterdam UMC, Location Vrije Universiteit, Department of Radiation Oncology, De Boelelaan 1118, Amsterdam, the Netherlands
| | - Duncan den Boer
- Amsterdam UMC, Location Vrije Universiteit, Department of Radiation Oncology, De Boelelaan 1118, Amsterdam, the Netherlands
| | - Karel A. Hinnen
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Arjan Bel
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Zdenko van Kesteren
- Amsterdam UMC, Location University of Amsterdam, Department of Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Macri F, Khasanova E, Niu BT, Parakh A, Patino M, Kambadakone A, Sahani DV. Optimal Abdominal CT Image Quality in Non-Lean Patients: Customization of CM Injection Protocols and Low-Energy Acquisitions. Diagnostics (Basel) 2023; 13:2279. [PMID: 37443673 PMCID: PMC10377374 DOI: 10.3390/diagnostics13132279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
We compared the image quality of abdominopelvic single-energy CT with 100 kVp (SECT-100 kVp) and dual-energy CT with 65 keV (DECT-65 keV) obtained with customized injection protocols to standard abdominopelvic CT scans (SECT-120 kVp) with fixed volumes of contrast media (CM). We retrospectively included 91 patients (mean age, 60.7 ± 15.8 years) with SECT-100 kVp and 83 (mean age, 60.3 ± 11.7 years) patients with DECT-65 keV in portovenous phase. Total body weight-based customized injection protocols were generated by a software using the following formula: patient weight (kg) × 0.40/contrast concentration (mgI/mL) × 1000. Patients had a prior abdominopelvic SECT-120 kVp with fixed injection. Iopamidol-370 was administered for all examinations. Quantitative and qualitative image quality comparisons were made between customized and fixed injection protocols. Compared to SECT-120 kVp, customized injection yielded a significant reduction in CM volume (mean difference = 9-12 mL; p ≤ 0.001) and injection rate (mean differences = 0.2-0.4 mL/s; p ≤ 0.001) in all weight categories. Improvements in attenuation, noise, signal-to-noise and contrast-to-noise ratios were observed for both SECT-100 kVp and DECT-65 keV compared to SECT-120 kVp in all weight categories (e.g., pancreas DECT-65 keV, 1.2-attenuation-fold increase vs. SECT-120 kVp; p < 0.001). Qualitative scores were ≥4 in 172 cases (98.8.4%) with customized injections and in all cases with fixed injections (100%). These findings suggest that customized CM injection protocols may substantially reduce iodine dose while yielding higher image quality in SECT-100 kVp and DECT-65 keV abdominopelvic scans compared to SECT-120 kVp using fixed CM volumes.
Collapse
Affiliation(s)
- Francesco Macri
- Department of Radiology, Geneva University Hospitals, University of Geneva, 1211 Geneva, Switzerland
| | - Elina Khasanova
- Department of Radiology, Geneva University Hospitals, University of Geneva, 1211 Geneva, Switzerland
| | - Bonnie T Niu
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anushri Parakh
- Department of Radiology, Abdominal Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Manuel Patino
- Department of Radiology, Abdominal Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Avinash Kambadakone
- Department of Radiology, Abdominal Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Multi-Energy CT Applications. Radiol Clin North Am 2023; 61:1-21. [DOI: 10.1016/j.rcl.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Lubner MG, Ziemlewicz TJ, Wells SA, Li K, Wu PH, Hinshaw JL, Lee FT, Brace CL. Advanced CT techniques for hepatic microwave ablation zone monitoring and follow-up. Abdom Radiol (NY) 2022; 47:2658-2668. [PMID: 34731282 DOI: 10.1007/s00261-021-03333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate utility of advanced CT techniques including HighlY constrained back-projection and dual-energy CT for intra- and post-procedure hepatic microwave ablation zone monitoring. METHODS 8 hepatic microwave ablations were performed in 4 adult swine (5 min/65 W). Low-dose routine CECT and dual-energy CT images were obtained every 1 min during ablation. Images were reconstructed ± HYPR. Image quality and dose metrics were collected. 21 MWA were performed in 4 adult swine. Immediate post-procedure CECT was performed in the arterial, portal venous, and delayed phases using both routine and DECT imaging with full-dose weight-based IV contrast dosing. An additional 16 MWA were subsequently performed in 2 adult swine. Immediate post-procedure CT was performed with half-dose IV contrast using routine and DECT. 12 patients (10 M/2F, mean age 62.4 yrs) with 14 hepatic tumors (4 HCC, 10 metastatic lesions) treated with MWA were prospectively imaged with DECT 1 month post-procedure. 120 kV equivalent images were compared to DECT [51 keV, iodine material density]. Image quality and dose metrics were collected. RESULTS Gas created during MWA led to high CNR in all intraprocedural CT datasets. Optimal CNRs were noted at 4 min with CNR 6.7, 15.5,15.9, and 21.5 on LD-CECT, LD-CECT + HYPR, DECT, and DECT + HYPR, respectively (p < 0.001). Image quality scores at 4 min were 1.8, 2.8, 2.4, and 3, respectively (p < 0.001). Mean radiation dose (CTDIvol) was eightfold higher for the DECT series. For swine, post-procedural DECT images (IMD/51 keV) showed improved CNR compared to routine CT at all time points with full and with reduced dose contrast (CNR 4.6, 3.2, and 1.5, respectively, at half-contrast dose, p < 0.001). For human subjects, the 51 keV and IMD images showed higher CNRs (5.8, 4.8 vs 4.0, p < 0.001) and SNRs (3.7, 5.9 vs 2.8). Ablation zone sharpness was improved with DECT (routine 3.0 ± 0.7, DECT 3.5 ± 0.5). Diagnostic confidence was higher with DECT (routine 2.3 ± 0.9, DECT 2.6 ± 0.8). Mean DLP for DECT was 905.7 ± 606 mGy-cm, CTDIvol 37.5 ± 21.2 mGy, and effective dose 13.6 ± 9.1 mSv, slightly higher than conventional CT series. CONCLUSION Advanced CT techniques can improve CT image quality in peri-procedural hepatic microwave ablation zone evaluation.
Collapse
Affiliation(s)
- Meghan G Lubner
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA.
| | - Timothy J Ziemlewicz
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
| | - Shane A Wells
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
| | - Ke Li
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Po-Hung Wu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
- Department of Biomedical and Electrical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Electrical and Computer Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Louis Hinshaw
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
| | - Chris L Brace
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical and Electrical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
8
|
Kuba T, Tokushige A, Murayama S, Ueda S. Proposal of a novel protocol using estimated cardiac index fractional dose to improve aortic contrast enhancement for early-phase dynamic CT. Medicine (Baltimore) 2022; 101:e29410. [PMID: 35758375 PMCID: PMC9276326 DOI: 10.1097/md.0000000000029410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Maximum aortic computed tomography value (CTV) is difficult to control because of variations in cardiac function and patient physique. Therefore, to improve early-phase aortic enhancement on dynamic computed tomography (CT), we developed an estimated cardiac index fractional dose (eciFD). The eciFD protocol is a novel and original protocol for administering fractional dose (FD), representing the amount of iodine per unit body weight per injection duration, based on cardiac index (cardiac output divided by body surface area) as estimated by age in early-phase dynamic CT. At the time of administration, by selecting FD based on the patient's age and selecting a parameter that can achieve this FD, an aortic CTV ≥300 HU (ACTV≥300) can be obtained. This study aimed to investigate aortic enhancement on CT angiography using the eciFD protocol.This retrospective study investigated 291 consecutive patients who underwent dynamic CT from neck to abdomen after recommendation of the eciFD protocol at our institution. We compared early-phase aortic CTV distributions by scan delay between an eciFD group (eciFD applied, n = 135) and a non-eciFD group (eciFD not applied, n = 80). The effect of eciFD on early-phase ACTV≥300 was evaluated using logistic regression analysis adjusted for several potentially meaningful clinical confounders related to aortic CTV, namely male sex, heart rate ≤80 beats/min, estimated glomerular filtration rate ≤40 mL/min, use of eciFD, bolus tracking (BT), history of myocardial infarction, and order from the emergency center.The eciFD protocol was a significant factor for early-phase ACTV≥300 after adjusting for several confounders (odds ratio 3.03; 95% confidence intervals 1.59-5.77; P = .001). No interaction was seen between BT and eciFD protocol (p for interaction = 0.76). In terms of CTV distribution, with both a fixed scan delay time and BT, the eciFD group showed a high aortic CTV. The combination of eciFD protocol with BT provided a particularly high percentage of patients with ACTV≥300 (86.4%).The eciFD protocol was useful for improving aortic contrast enhancement. These findings need to be validated in a randomized controlled study.
Collapse
Affiliation(s)
- Tadashi Kuba
- Department of Clinical Research and Quality Management, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Akihiro Tokushige
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Sadayuki Murayama
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
9
|
Saleh M, Mujtaba B, Jensen C, Aslam R, Elsayes A, Kuchana V, Bhosale P. Feasibility of half the recommended dose of IV contrast in DECT: image quality evaluation and diagnostic acceptability in cancer patients. Clin Imaging 2022; 88:59-65. [DOI: 10.1016/j.clinimag.2022.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
|
10
|
Greffier J, Viry A, Barbotteau Y, Frandon J, Loisy M, Oliveira F, Beregi JP, Dabli D. Phantom task‐based image quality assessment of three generations of rapid kV‐switching dual‐energy CT systems on virtual monoenergetic images. Med Phys 2022; 49:2233-2244. [DOI: 10.1002/mp.15558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Joël Greffier
- Department of medical imaging CHU Nîmes Univ Montpellier, Nîmes Medical Imaging Group Nîmes 2992 France
| | - Anaïs Viry
- Institute of Radiation Physics Lausanne University Hospital and University of Lausanne Rue du Grand‐Pré 1 Lausanne 1007 Switzerland
| | - Yves Barbotteau
- Hôpital Privé Clairval – Service d'Imagerie 317, Bd du Redon Marseille 13009 France
| | - Julien Frandon
- Department of medical imaging CHU Nîmes Univ Montpellier, Nîmes Medical Imaging Group Nîmes 2992 France
| | - Maeliss Loisy
- Department of medical imaging CHU Nîmes Univ Montpellier, Nîmes Medical Imaging Group Nîmes 2992 France
| | - Fabien Oliveira
- Department of medical imaging CHU Nîmes Univ Montpellier, Nîmes Medical Imaging Group Nîmes 2992 France
| | - Jean Paul Beregi
- Department of medical imaging CHU Nîmes Univ Montpellier, Nîmes Medical Imaging Group Nîmes 2992 France
| | - Djamel Dabli
- Department of medical imaging CHU Nîmes Univ Montpellier, Nîmes Medical Imaging Group Nîmes 2992 France
| |
Collapse
|
11
|
Adam SZ, Rabinowich A, Kessner R, Blachar A. Spectral CT of the abdomen: Where are we now? Insights Imaging 2021; 12:138. [PMID: 34580788 PMCID: PMC8476679 DOI: 10.1186/s13244-021-01082-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Spectral CT adds a new dimension to radiological evaluation, beyond assessment of anatomical abnormalities. Spectral data allows for detection of specific materials, improves image quality while at the same time reducing radiation doses and contrast media doses, and decreases the need for follow up evaluation of indeterminate lesions. We review the different acquisition techniques of spectral images, mainly dual-source, rapid kV switching and dual-layer detector, and discuss the main spectral results available. We also discuss the use of spectral imaging in abdominal pathologies, emphasizing the strengths and pitfalls of the technique and its main applications in general and in specific organs.
Collapse
Affiliation(s)
- Sharon Z Adam
- Department of Diagnostic Radiology, Tel Aviv Sourasky Medical Center, 6 Weizmann St., 6423906, Tel Aviv, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Aviad Rabinowich
- Department of Diagnostic Radiology, Tel Aviv Sourasky Medical Center, 6 Weizmann St., 6423906, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rivka Kessner
- Department of Diagnostic Radiology, Tel Aviv Sourasky Medical Center, 6 Weizmann St., 6423906, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arye Blachar
- Department of Diagnostic Radiology, Tel Aviv Sourasky Medical Center, 6 Weizmann St., 6423906, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Metal artifact reduction and tumor detection using photon-counting multi-energy computed tomography. PLoS One 2021; 16:e0247355. [PMID: 33667250 PMCID: PMC7935306 DOI: 10.1371/journal.pone.0247355] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Metal artifacts are considered a major challenge in computed tomography (CT) as these adversely affect the diagnosis and treatment of patients. Several approaches have been developed to address this problem. The present study explored the clinical potential of a novel photon-counting detector (PCD) CT system in reducing metal artifacts in head CT scans. In particular, we studied the recovery of an oral tumor region located under metal artifacts after correction. Three energy thresholds were used to group data into three bins (bin 1: low-energy, bin 2: middle-energy, and bin 3: high-energy) in the prototype PCD CT system. Three types of physical phantoms were scanned on the prototype PCD CT system. First, we assessed the accuracy of iodine quantification using iodine phantoms at varying concentrations. Second, we evaluated the performance of material decomposition (MD) and virtual monochromatic images (VMIs) using a multi-energy CT phantom. Third, we designed an ATOM phantom with metal insertions to verify the effect of the proposed metal artifact reduction. In particular, we placed an insertion-mimicking an iodine-enhanced oral tumor in the beam path of metallic objects. Normalized metal artifact reduction (NMAR) was performed for each energy bin image, followed by an image-based MD and VMI reconstruction. Image quality was analyzed quantitatively by contrast-to-noise ratio (CNR) measurements. The results of iodine quantification showed a good match between the true and measured iodine concentrations. Furthermore, as expected, the contrast between iodine and the surrounding material was higher in bin 1 image than in bin 3 image. On the other hand, the bin 3 image of the ATOM phantom showed fewer metal artifacts than the bin 1 image because of the higher photon energy. The result of quantitative assessment demonstrated that the 40-keV VMI (CNR: 20.6 ± 1.2) with NMAR and MD remarkably increased the contrast of the iodine-enhanced region compared with that of the conventional images (CNR: 10.4 ± 0.5) having 30 to 140 keV energy levels. The PCD-based multi-energy CT imaging has immense potential to maximize the contrast of the target tissue and reduce metal artifacts simultaneously. We believe that it would open the door to novel applications for the diagnosis and treatment of several diseases.
Collapse
|
13
|
Lin YM, Chiou YY, Wu MH, Huang SS, Shen SH. Postablation assessment of hepatocellular carcinoma using dual-energy CT: Comparison of half versus standard iodine contrast medium. PLoS One 2019; 14:e0219577. [PMID: 31287838 PMCID: PMC6615706 DOI: 10.1371/journal.pone.0219577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
This retrospective study was aimed to evaluate the reduced iodine load on image quality and diagnostic performance in multiphasic hepatic CT using a novel monoenergetic reconstruction algorithm (nMERA) in assessment of local tumor progression after radiofrequency ablation (RFA) of hepatocellular carcinoma (HCC). Ninety patients who underwent CT 1 month after RFA of HCC. Forty-five patients had multiphasic hepatic dual-energy CT with a half-reduced contrast medium (HRCM) of 277.5 mg I/kg. The nMERA (40-70-keV) images were reconstructed in each phase. Another 45 patients received a standard contrast medium (SCM) of 555 mg I/kg, and the images were reconstructed as a simulated 120-kVp images. Primary outcome was accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) in assessment of local tumor progression. Additional advanced assessments included the image noise, attenuation value, contrast-to-noise ratio (CNR), and subjective image quality between the groups. The accuracy, sensitivity and specificity of nMERA HRCM images were 95.7%, 100% and 93.9% for 40 keV, 95.7%, 85.7% and 100% for 50 keV, 83.0%, 42.8% and 100% for 60 keV, and 83.0%, 42.9% and 100% for 70 keV. The AUROC was 0.99, 0.99, 0.94, and 0.93 for 40-70 keV nMERA HRCM images, respectively. Compared with simulated 120-kVp SCM images, nMERA HRCM images demonstrated comparable noise at 70-keV (P < 0.05), and comparable CNR at 40- and 50-keV (P < 0.05). nMERA DECT enables the contrast medium to be reduced to up to 50% in multiphasic hepatic CT while preserving diagnostic accuracy.
Collapse
Affiliation(s)
- Yuan-Mao Lin
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-You Chiou
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Han Wu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Imaging, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shan Su Huang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shu-Huei Shen
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Parakh A, Negreros-Osuna AA, Patino M, McNulty F, Kambadakone A, Sahani DV. Low-keV and Low-kVp CT for Positive Oral Contrast Media in Patients with Cancer: A Randomized Clinical Trial. Radiology 2019; 291:620-629. [PMID: 30964423 DOI: 10.1148/radiol.2019182393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Substantial gain in the attenuation of iodine on low-kVp and dual-energy CT processed low-keV virtual monochromatic images provides an opportunity for customization of positive oral contrast media administration. Purpose To perform an intrapatient comparison of bowel labeling, opacification, and taste preference with iodinated oral contrast medium (ICM) in standard (sICM) and 25%-reduced (rICM) concentrations at low tube voltage (100 kVp) or on low-energy (50-70 keV) virtual monochromatic images compared with barium-based oral contrast medium (BCM) at 120 kVp. Materials and Methods In this prospective clinical trial, 200 adults (97 men, 103 women; mean age, 63 years ± 13 [standard deviation]) who weighed less than 113 kg and who were undergoing oncologic surveillance (from April 2017 to July 2018) and who had previously undergone 120-kVp abdominopelvic CT with BCM randomly received sICM (7.2 g iodine) or rICM (5.4 g iodine) and underwent 100-kVp CT or dual-energy CT (80/140 kVp) scans to be in one of four groups (n = 50 each): sICM/100 kVp, rICM/100 kVp, sICM/dual-energy CT, and rICM/dual-energy CT. Qualitative analysis was performed for image quality (with a five-point scale), extent of bowel labeling, and homogeneity of opacification (with a four-point scale). Intraluminal attenuation of opacified small bowel was measured. A post-CT patient survey was performed to indicate contrast medium preference, taste of ICM (with a five-point scale), and adverse effects. Data were analyzed with analogs of analysis of variance. Results All CT studies were of diagnostic image quality (3.4 ± 0.3), with no difference in the degree of bowel opacification between sICM and rICM (P > .05). Compared with BCM/120 kVp (282 HU ± 73), mean attenuation was 78% higher with sICM/100 kVp (459 HU ± 282) and 26%-121% higher at sICM/50-65 keV (50 keV = 626 HU ± 285; 65 keV = 356 HU ± 171). With rICM, attenuation was 46% higher for 100 kVp (385 HU ± 215) and 19%-108% higher for 50-65 keV (50 keV = 567 HU ± 270; 65 keV = 325 HU ± 156) compared with BCM (P < .05). A total of 171 of 200 study participants preferred ICM to BCM, with no taste differences between sICM and rICM (3.9 ± 0.6). Fifteen participants had diarrhea with BCM, but none had diarrhea with ICM. Conclusion A 25%-reduced concentration of iodinated oral contrast medium resulted in acceptable bowel labeling while yielding substantially higher luminal attenuation at low-kVp and low-keV CT examinations with improved preference in patients undergoing treatment for cancer. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Laghi in this issue.
Collapse
Affiliation(s)
- Anushri Parakh
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Adrian Antonio Negreros-Osuna
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Manuel Patino
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Fredrick McNulty
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Avinash Kambadakone
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Dushyant V Sahani
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| |
Collapse
|
15
|
Baleato-González S, García-Figueiras R, Luna A, Domínguez-Robla M, Vilanova J. Functional imaging in pancreatic disease. RADIOLOGIA 2018. [DOI: 10.1016/j.rxeng.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Baleato-González S, García-Figueiras R, Luna A, Domínguez-Robla M, Vilanova JC. Functional imaging in pancreatic disease. RADIOLOGIA 2018; 60:451-464. [PMID: 30236460 DOI: 10.1016/j.rx.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
In addition to the classical morphological evaluation of pancreatic disease, the constant technological advances in imaging techniques based fundamentally on computed tomography and magnetic resonance imaging have enabled the quantitative functional and molecular evaluation of this organ. In many cases, this imaging-based information results in substantial changes to patient management and can be a fundamental tool for the development of biomarkers. The aim of this article is to review the role of emerging functional and molecular techniques based on computed tomography and magnetic resonance imaging in the evaluation of pancreatic disease.
Collapse
Affiliation(s)
- S Baleato-González
- Departamento de Radiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, España.
| | - R García-Figueiras
- Departamento de Radiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, España
| | - A Luna
- Grupo Health Time. Director - Advanced Medical Imaging, Sercosa (Servicio de Radiología Computerizada), Clínica Las Nieves, Jaén, España
| | - M Domínguez-Robla
- Departamento de Radiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, España
| | - J C Vilanova
- Departamento de Radiología, Clínica Girona-Hospital Santa Caterina, Girona, España
| |
Collapse
|
17
|
Parakh A, Macri F, Sahani D. Dual-Energy Computed Tomography: Dose Reduction, Series Reduction, and Contrast Load Reduction in Dual-Energy Computed Tomography. Radiol Clin North Am 2018; 56:601-624. [PMID: 29936950 DOI: 10.1016/j.rcl.2018.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Evolution in computed tomography technology and image reconstruction have significantly changed practice. Dual energy computed tomography is being increasingly adopted owing to benefits of material separation, quantification, and improved contrast-to-noise ratio. The radiation dose can match that from single energy computed tomography. Spectral information derived from a polychromatic x-ray beam at different energies yields in image reconstructions that reduce the number of phases in a multiphasic examination and decrease the absolute amount of contrast media. This increased analytical and image processing capability provides new avenues for addressing radiation dose and iodine exposure concerns.
Collapse
Affiliation(s)
- Anushri Parakh
- Department of Radiology, Abdominal Imaging Division, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA 02114, USA
| | - Francesco Macri
- Department of Radiology, Abdominal Imaging Division, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA 02114, USA; Department of Radiology, University Hospital of Nimes, Place di Pr Debre, Nimes 30029, France
| | - Dushyant Sahani
- Department of Radiology, Abdominal Imaging Division, Massachusetts General Hospital, White 270, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Megibow AJ, Kambadakone A, Ananthakrishnan L. Dual-Energy Computed Tomography. Radiol Clin North Am 2018; 56:507-520. [DOI: 10.1016/j.rcl.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
van Hamersvelt RW, Eijsvoogel NG, Mihl C, de Jong PA, Schilham AMR, Buls N, Das M, Leiner T, Willemink MJ. Contrast agent concentration optimization in CTA using low tube voltage and dual-energy CT in multiple vendors: a phantom study. Int J Cardiovasc Imaging 2018. [PMID: 29516228 DOI: 10.1007/s10554-018-1329-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigated the feasibility and extent to which iodine concentration can be reduced in computed tomography angiography imaging of the aorta and coronary arteries using low tube voltage and virtual monochromatic imaging of 3 major dual-energy CT (DECT) vendors. A circulation phantom was imaged with dual source CT (DSCT), gemstone spectral imaging (GSI) and dual-layer spectral detector CT (SDCT). For each scanner, a reference scan was acquired at 120 kVp using routine iodine concentration (300 mg I/ml). Subsequently, scans were acquired at lowest possible tube potential (70, 80, 80 kVp, respectively), and DECT-mode (80/150Sn, 80/140 and 120 kVp, respectively) in arterial phase after administration of iodine (300, 240, 180, 120, 60, 30 mg I/ml). Objective image quality was evaluated using attenuation, CNR and dose corrected CNR (DCCNR) measured in the aorta and left main coronary artery. Average DCCNR at reference was 227.0, 39.7 and 60.2 for DSCT, GSI and SDCT. Maximum iodine concentration reduction without loss of DCCNR was feasible down to 180 mg I/ml (40% reduced) for DSCT (DCCNR 467.1) and GSI (DCCNR 46.1) using conventional CT low kVp, and 120 mg I/ml (60% reduced) for SDCT (DCCNR 171.5) using DECT mode. Low kVp scanning and DECT allows for 40-60% iodine reduction without loss in image quality compared to reference. Optimal scan protocol and to which extent varies per vendor. Further patient studies are needed to extend and translate our findings to clinical practice.
Collapse
Affiliation(s)
- Robbert W van Hamersvelt
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P. O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Nienke G Eijsvoogel
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Casper Mihl
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P. O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Arnold M R Schilham
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P. O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Nico Buls
- Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Marco Das
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P. O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Martin J Willemink
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P. O. Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
20
|
George E, Wortman JR, Fulwadhva UP, Uyeda JW, Sodickson AD. Dual energy CT applications in pancreatic pathologies. Br J Radiol 2017; 90:20170411. [PMID: 28936888 PMCID: PMC6047640 DOI: 10.1259/bjr.20170411] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Dual energy CT (DECT) is a technology that is gaining widespread acceptance, particularly for its abdominopelvic applications. Pancreatic pathologies are an ideal application for the many advantages offered by dual energy post-processing. This article reviews the current literature on dual energy CT pancreatic imaging, specifically in the evaluation of pancreatic adenocarcinoma, other solid and cystic pancreatic neoplasms, and pancreatitis. The advantages in characterization and quantification of enhancement, detection of subtle lesions, and potential reduction of imaging phases and contrast usage are reviewed. We also discuss directions for future research, and the ideal use of dual energy CT in routine clinical practice.
Collapse
Affiliation(s)
- Elizabeth George
- Department of Radiology, Division of Emergency Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeremy R Wortman
- Department of Radiology, Division of Emergency Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Urvi P Fulwadhva
- Department of Radiology, Division of Emergency Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer W Uyeda
- Department of Radiology, Division of Emergency Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aaron D Sodickson
- Department of Radiology, Division of Emergency Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Nagayama Y, Nakaura T, Oda S, Utsunomiya D, Funama Y, Iyama Y, Taguchi N, Namimoto T, Yuki H, Kidoh M, Hirata K, Nakagawa M, Yamashita Y. Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load: a matched-pair comparison with a 120 kVp protocol. Eur Radiol 2017; 28:1719-1730. [PMID: 29063254 DOI: 10.1007/s00330-017-5114-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To evaluate the image quality and lesion conspicuity of virtual-monochromatic-imaging (VMI) with dual-layer DECT (DL-DECT) for reduced-iodine-load multiphasic-hepatic CT. METHODS Forty-five adults with renal dysfunction who had undergone hepatic DL-DECT with 300-mgI/kg were included. VMI (40-70-keV, DL-DECT-VMI) was generated at each enhancement phase. As controls, 45 matched patients undergoing standard 120-kVp protocol (120-kVp, 600-mgI/kg, and iterative reconstruction) were included. We compared the size-specific dose estimate (SSDE), image noise, CT attenuation, and contrast-to-noise ratio (CNR) between protocols. Two radiologists scored the image quality and lesion conspicuity. RESULTS SSDE was significantly lower in DL-DECT group (p < 0.01). Image noise of DL-DECT-VMI was almost constant at each keV (differences of ≤15%) and equivalent to or lower than of 120-kVp. As the energy decreased, CT attenuation and CNR gradually increased; the values of 55-60 keV images were almost equivalent to those of standard 120-kVp. The highest scores for overall quality and lesion conspicuity were assigned at 40-keV followed by 45 to 55-keV, all of which were similar to or better than of 120-kVp. CONCLUSIONS For multiphasic-hepatic CT with 50% iodine-load, DL-DECT-VMI at 40- to 55-keV provides equivalent or better image quality and lesion conspicuity without increasing radiation dose compared with standard 120-kVp protocol. KEY POINTS • 40-55-keV yields optimal image quality for half-iodine-load multiphasic-hepatic CT with DL-DECT. • DL-DECT protocol decreases radiation exposure compared with 120-kVp scans with iterative reconstruction. • 40-keV images maximise conspicuity of hepatocellular carcinoma especially at hepatic-arterial phase.
Collapse
Affiliation(s)
- Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshinori Funama
- Department of Medical Physics, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Yuji Iyama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Narumi Taguchi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tomohiro Namimoto
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hideaki Yuki
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kenichiro Hirata
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masataka Nakagawa
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yasuyuki Yamashita
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
22
|
Image Quality of a Novel Frequency Selective Nonlinear Blending Algorithm: An Ex Vivo Phantom Study in Comparison to Single-Energy Acquisitions and Dual-Energy Acquisitions With Monoenergetic Reconstructions. Invest Radiol 2017; 51:647-54. [PMID: 27175549 DOI: 10.1097/rli.0000000000000293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Aim of this ex vivo phantom study was to evaluate the contrast enhancement applying a new frequency split nonlinear blending algorithm (best contrast [BC]) and to compare it with standard 120-kV single-energy computed tomography (SECT) images, as well as with low-kiloelectron volt monoenergetic extrapolations (Mono+40-100keV) from dual-energy CT (DECT) and with low-kilovolt (70-100 kV) SECT acquisitions. MATERIALS AND METHODS A dilution series of iodinated contrast material-filled syringes was centered in an attenuation phantom and was scanned with SECT70-120kV and DECT80-100/Sn150. Monoenergetic images (40-100 keV) were reconstructed, and a new manual frequency split nonlinear blending algorithm (BC) was applied to SECT70kV and SECT120kV images. Manual BC settings were set to simulate a reading situation with fixed overall best values (FVBC120kV) as well as to achieve best possible values for each syringe (BVBC120kV) for maximum contrast enhancement. Contrast-to-noise ratios (CNRs) were used as an objective region of interest-based image analysis parameter. Two radiologists evaluated the detectability of hyperdense and hypodense syringes (Likert). Results were compared between SECT70-100kV, Mono+40-100keV, and DECT80-100/Sn150kV, as well as FVBC120kV, BVBC120kV, and BC70kV. RESULTS Highest CNR without BC was detected at SECT70kV (5.04 ± 0.12) and Mono+40keV (4.40 ± 0.11). FVBC and BVBC images allow a significant increase of CNR compared with SECT120kV (CNRBVBC, 5.21 ± 0.15; CNRFVBC, 5.12 ± 0.16; CNRSECT120kV, 2.5 ± 0.08; all P ≤ 0.01). There was no significant difference in CNR between BVBC and FVBC. Averaged CNR in BVBC and FVBC was significantly higher compared with Mono+40-100keV (all P ≤ 0.01). Compared with SECT70kV, averaged CNR in BVBC and FVBC show no significant differences. BVBC70kV (7.67 ± 0.17) significantly increases CNR in SECT70kV up to 213%.Subjective image analysis showed an interobserver agreement of 0.63 to 0.83 (κ), confirming the superiority of BC in detecting hyperdense and hypodense syringes, when compared with SECT120kV. Compared with SECT120kV, BVBC70kV was scored highest, followed by SECT70kV. BVBC showed higher scores when comparing to Mono+40keV, however almost identical to those of SECT70kV. Scores of FVBC were slightly lower than SECT70kV, but in the range of Mono+40keV. CONCLUSIONS The new frequency split nonlinear blending algorithm with fixed settings offers a superior differentiation of contrast levels from low- to high-contrast settings. Using the optimal settings, this algorithm shows an equivalent contrast enhancement when compared with SECT70kV. Because of the non-DECT-based algorithm of BC, the new method of contrast enhancement seems to be particularly valuable for implementation in CT systems not equipped for dual-energy or spectral CT imaging.
Collapse
|
23
|
White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 4: Abdominal and Pelvic Applications. J Comput Assist Tomogr 2017; 41:8-14. [PMID: 27824670 DOI: 10.1097/rct.0000000000000546] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This is the fourth of a series of 4 white papers that represent expert consensus documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography. This article, part 4, discusses DECT for abdominal and pelvic applications and, at the end of each, will offer our consensus opinions on the current clinical utility of the application and opportunities for further research.
Collapse
|
24
|
Al-Hawary MM, Kaza RK, Francis IR. Optimal Imaging Modalities for the Diagnosis and Staging of Periampullary Masses. Surg Oncol Clin N Am 2016; 25:239-53. [PMID: 27013362 DOI: 10.1016/j.soc.2015.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Imaging plays a central role in the management of patients with suspected or known periampullary masses, including the initial diagnosis, staging, and follow-up to assess treatment response or recurrence. Use of appropriate imaging tools, application of optimal imaging protocols, and knowledge about imaging findings are essential for the diagnosis and accurate staging of these masses. Structured reporting of the imaging studies offers several advantages over freestyle dictations ensuring completeness of the relevant imaging findings, which would in turn help in deciding the best individual treatment strategy for each patient.
Collapse
Affiliation(s)
- Mahmoud M Al-Hawary
- Department of Radiology, University Hospital, University of Michigan, Room B1 D502, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Ravi K Kaza
- Department of Radiology, University Hospital, University of Michigan, Room B1 D501, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Isaac R Francis
- Department of Radiology, University Hospital, University of Michigan, Room B1 D540, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Saade C, Deeb IA, Mohamad M, Al-Mohiy H, El-Merhi F. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know. Diagn Interv Radiol 2016; 22:116-24. [PMID: 26728701 PMCID: PMC4790062 DOI: 10.5152/dir.2015.15219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/06/2015] [Accepted: 07/20/2015] [Indexed: 12/12/2022]
Abstract
Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted.
Collapse
Affiliation(s)
- Charbel Saade
- From the Department of Radiology (C.S., I.A.D., M.M., F.E.M. ), American University of Beirut, Beirut, Lebanon; the Department of Radiology (H.A.M.), King Khalid University, Abha, Saudi Arabia
| | - Ibrahim Alsheikh Deeb
- From the Department of Radiology (C.S., I.A.D., M.M., F.E.M. ), American University of Beirut, Beirut, Lebanon; the Department of Radiology (H.A.M.), King Khalid University, Abha, Saudi Arabia
| | - Maha Mohamad
- From the Department of Radiology (C.S., I.A.D., M.M., F.E.M. ), American University of Beirut, Beirut, Lebanon; the Department of Radiology (H.A.M.), King Khalid University, Abha, Saudi Arabia
| | - Hussain Al-Mohiy
- From the Department of Radiology (C.S., I.A.D., M.M., F.E.M. ), American University of Beirut, Beirut, Lebanon; the Department of Radiology (H.A.M.), King Khalid University, Abha, Saudi Arabia
| | - Fadi El-Merhi
- From the Department of Radiology (C.S., I.A.D., M.M., F.E.M. ), American University of Beirut, Beirut, Lebanon; the Department of Radiology (H.A.M.), King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
26
|
|
27
|
Al-Hawary MM, Francis IR, Anderson MA. Pancreatic Solid and Cystic Neoplasms: Diagnostic Evaluation and Intervention. Radiol Clin North Am 2015; 53:1037-48. [PMID: 26321452 DOI: 10.1016/j.rcl.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-resolution imaging modalities, such as multi-detector computed tomography, MR imaging, and endoscopic ultrasound, are frequently used alone or in combination to characterize focal solid and cystic pancreatic neoplasms. Imaging in solid pancreatic neoplasms, typically adenocarcinoma and neuroendocrine tumors, is primarily used to detect and stage the extent of the tumor and to determine if complete surgical resection for cure is feasible. In cystic pancreatic masses, imaging aims to differentiate benign nonmucinous cystic lesions from potentially or frankly malignant mucin-producing cysts. Several noninvasive and invasive treatment options can be performed if surgical resection is not possible or contraindicated.
Collapse
Affiliation(s)
- Mahmoud M Al-Hawary
- Division of Abdominal Imaging, Department of Radiology, University of Michigan Hospitals, 1500 East Medical Center Drive, Room B1 D502, Ann Arbor, MI 48109, USA.
| | - Isaac R Francis
- Division of Abdominal Imaging, Department of Radiology, University of Michigan Hospitals, 1500 East Medical Center Drive, Room B1 D540, Ann Arbor, MI 48109, USA
| | - Michelle A Anderson
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Hospitals, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|