1
|
Wang Q, Yu G, Qiu J, Lu W. Application of Intravoxel Incoherent Motion in Clinical Liver Imaging: A Literature Review. J Magn Reson Imaging 2024; 60:417-440. [PMID: 37908165 DOI: 10.1002/jmri.29086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Intravoxel incoherent motion (IVIM) modeling is a widely used double-exponential model for describing diffusion-weighted imaging (DWI) signal, with a slow component related to pure molecular diffusion and a fast component associated with microcirculatory perfusion, which compensates for the limitations of traditional DWI. IVIM is a noninvasive technique for obtaining liver pathological information and characterizing liver lesions, and has potential applications in the initial diagnosis and treatment monitoring of liver diseases. Recent studies have demonstrated that IVIM-derived parameters are useful for evaluating liver lesions, including nonalcoholic fatty liver disease (NAFLD), liver fibrosis and liver tumors. However, the results are not stable. Therefore, it is necessary to summarize the current applications of IVIM in liver disease research, identify existing shortcomings, and point out the future development direction. In this review, we searched for studies related to hepatic IVIM-DWI applications over the past two decades in the PubMed database. We first introduce the fundamental principles and influential factors of IVIM, and then discuss its application in NAFLD, liver fibrosis, and focal hepatic lesions. It has been found that IVIM is still unstable in ensuring the robustness and reproducibility of measurements in the assessment of liver fibrosis grade and liver tumors differentiation, due to inconsistent and substantial overlap in the range of IVIM-derived parameters for different fibrotic stages. In the end, the future direction of IVIM-DWI in the assessment of liver diseases is discussed, emphasizing the need for further research on the stability of IVIM-derived parameters, particularly perfusion-related parameters, in order to promote the clinical practice of IVIM-DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Guanghui Yu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
2
|
Yang Z, Liu C, Shi Z, Qin J. IDEAL-IQ combined with intravoxel incoherent motion diffusion-weighted imaging for quantitative diagnosis of osteoporosis. BMC Med Imaging 2024; 24:155. [PMID: 38902641 PMCID: PMC11188172 DOI: 10.1186/s12880-024-01326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) is a common chronic metabolic bone disease characterized by decreased bone mineral content and microstructural damage, leading to increased fracture risk. Traditional methods for measuring bone density have limitations in accurately distinguishing vertebral bodies and are influenced by vertebral degeneration and surrounding tissues. Therefore, novel methods are needed to quantitatively assess changes in bone density and improve the accurate diagnosis of OP. METHODS This study aimed to explore the applicative value of the iterative decomposition of water and fat with echo asymmetry and least-squares estimation-iron (IDEAL-IQ) sequence combined with intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for the diagnosis of osteoporosis. Data from 135 patients undergoing dual-energy X-ray absorptiometry (DXA), IDEAL-IQ, and IVIM-DWI were prospectively collected and analyzed. Various parameters obtained from IVIM-DWI and IDEAL-IQ sequences were compared, and their diagnostic efficacy was evaluated. RESULTS Statistically significant differences were observed among the three groups for FF, R2*, f, D, DDC values, and BMD values. FF and f values exhibited negative correlations with BMD values, with r=-0.313 and - 0.274, respectively, while R2*, D, and DDC values showed positive correlations with BMD values, with r = 0.327, 0.532, and 0.390, respectively. Among these parameters, D demonstrated the highest diagnostic efficacy for osteoporosis (AUC = 0.826), followed by FF (AUC = 0.713). D* exhibited the lowest diagnostic performance for distinguishing the osteoporosis group from the other two groups. Only D showed a significant difference between genders. The AUCs for IDEAL-IQ, IVIM-DWI, and their combination were 0.74, 0.89, and 0.90, respectively. CONCLUSIONS IDEAL-IQ combined with IVIM-DWI provides valuable information for the diagnosis of osteoporosis and offers evidence for clinical decisions. The superior diagnostic performance of IVIM-DWI, particularly the D value, suggests its potential as a more sensitive and accurate method for diagnosing osteoporosis compared to IDEAL-IQ. These findings underscore the importance of integrating advanced imaging techniques into clinical practice for improved osteoporosis management and highlight the need for further research to explore the full clinical implications of these imaging modalities.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Chenglong Liu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Zhaojuan Shi
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Jian Qin
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China.
| |
Collapse
|
3
|
Thomaides‐Brears H. Editorial for “Microvascular Dysfunction Associates With Outcomes in Hypertrophic Cardiomyopathy: Insights From the Intravoxel Incoherent Motion
MRI
”. J Magn Reson Imaging 2022; 57:1776-1777. [PMID: 36349891 DOI: 10.1002/jmri.28516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
|
4
|
Cheng Z, Yang Q, He H, Li R, Li X, Jiang H, Zhao X, Li J, Wang L, Zhou S, Zhang S. Intravoxel incoherent motion diffusion-weighted imaging and shear wave elastography for evaluating peritumoral liver fibrosis after transarterial chemoembolization in a VX2 rabbit liver tumor model. Front Physiol 2022; 13:893925. [PMID: 36311244 PMCID: PMC9597251 DOI: 10.3389/fphys.2022.893925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we sought to evaluate changes in peritumoral fibrosis after transarterial chemoembolization (TACE) in a rabbit VX2 liver tumor model using intravoxel incoherent motion diffusion-weighted imaging (IVIM DWI) and ultrasound shear wave elastography (SWE). A total of 20 rabbits underwent implantation of VX2 tumor tissues in the left lobe of the liver. The rabbits were randomly divided into an experimental group (n = 10) or a control group (n = 10). Those in the experimental group were treated with an emulsion of lipiodol and pirarubicin through a microcatheter 2–3 weeks after implantation; those in the control group were treated with sterile water. Compared with the control group, the true diffusion coefficient (D) and pseudodiffusion coefficient (D*) values in liver tissues were significantly lower (p < 0.05 for all) and liver stiffness values (LSV) (10.58 ± 0.89 kPa) were higher in the experimental group (7.65 ± 0.86 kPa; p < 0.001). The median stage of liver fibrosis based on METAVIR scores was 1 (1,1) in the control group and 2 (2,3) in the experimental group (Z = 4.15, p < 0.001). D, D*, and LSV were significantly correlated with pathologic staining in the assessment of liver fibrosis (r = −0.54 p = 0.015; r = −0.50, p = 0.025; r = 0.91, p < 0.001; respectively). These data suggest that TACE aggravates liver injury and liver fibrosis, especially surrounding the tumor, in a rabbit VX2 liver tumor model. IVIM DWI and SWE can be used to evaluate the change in liver fibrosis.
Collapse
Affiliation(s)
- Zhimei Cheng
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Qin Yang
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Huizhou He
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Ran Li
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Xueying Li
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Hongyu Jiang
- GCP Institution Office, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Xuya Zhao
- Department of Interventional Radiology, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Junxiang Li
- Institute of Image, Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Lizhou Wang
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
| | - Shi Zhou
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
- *Correspondence: Shi Zhou, ; Shuai Zhang,
| | - Shuai Zhang
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
- *Correspondence: Shi Zhou, ; Shuai Zhang,
| |
Collapse
|
5
|
Noninvasive Assessment of Liver Parenchyma Using Gray-Scale Ultrasound-Based Histogram Analysis in Patients With Chronic Hepatitis B Infection. Ultrasound Q 2020; 36:69-73. [PMID: 30855417 DOI: 10.1097/ruq.0000000000000438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aims of this study were to examine the alterations of liver echo-intensity histogram parameters in chronic hepatitis B (CHB) patients and to assess the potential role of histogram parameters in the evaluation of hepatic fibrosis. A total of 52 patients with CHB who underwent liver biopsies were included in the study. The control group consisted of 30 healthy individuals. Histogram parameters were obtained from histogram analysis of gray-scale ultrasound images of both groups. The histogram parameters of the groups were compared. The association of histogram parameters with the grading and staging of histological activity index (HAI) in patients with CHB were evaluated. The patient group had statistically significant lower skewness, kurtosis, and higher variance, mean, 50th, and 90th percentile values compared with control group. When patients with CHB were divided into subgroups according to HAI stage, there was the increasing trend in skewness values and decreasing trend in kurtosis values across subgroups. The first percentile values showed negative correlation with HAI staging in patients with CHB. Ultrasound is a fast, inexpensive, and reproducible imaging method; histogram analysis of gray-scale ultrasound images may provide useful information for evaluation of hepatic fibrosis in CHB patients.
Collapse
|
6
|
Wang Q, Liu H, Zhu Z, Sheng Y, Du Y, Li Y, Liu J, Zhang J, Xing W. Feasibility of T1 mapping with histogram analysis for the diagnosis and staging of liver fibrosis: Preclinical results. Magn Reson Imaging 2020; 76:79-86. [PMID: 33242591 DOI: 10.1016/j.mri.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/10/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To compare the diagnostic accuracy of parameters derived from the histogram analysis of precontrast, 10-min hepatobiliary phase (HBP) and 20-min HBP T1 maps for staging liver fibrosis (LF). METHODS LF was induced in New Zealand white rabbits by subcutaneous injections of carbon tetrachloride for 4-16 weeks (n = 120), and 20 rabbits injected with saline served as controls. Precontrast, 10-min and 20-min HBP modified Look-Locker inversion recovery (MOLLI) T1 mapping was performed. Histogram analysis of T1 maps was performed, and the mean, median, skewness, kurtosis, entropy, inhomogeneity and 10th/25th/75th/90th percentiles of T1native, T110min and T120min were derived. Quantitative histogram parameters were compared. For significant parameters, further receiver operating characteristic (ROC) analyses were performed to evaluate the potential diagnostic performance in differentiating LF stages. RESULTS Finally, 17, 20, 21, 21 and 20 rabbits were included for the F0, F1, F2, F3, and F4 pathological grades of fibrosis, respectively. The mean/75th of T1native, entropy of T110min and entropy/mean/median/10th of T120min demonstrated a significant good correlation with the LF stage (|r| = 0.543-0.866, all P < 0.05). The 75th of T1native, entropy10min, and entropy20min were the three most reliable imaging markers in reflecting the stage of LF. The area under the ROC curve of entropy20min was larger than that of entropy10min (P < 0.05 for LF ≥ F2, ≥F3, and ≥ F4) and the 75th of T1native (P < 0.05 for LF ≥ F2 and ≥ F3) for staging LF. CONCLUSION Magnetic resonance histogram analysis of T1 maps, particularly the entropy derived from 20-min HBP T1 mapping, is promising for predicting the LF stage.
Collapse
Affiliation(s)
- Qing Wang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou & Changzhou First People's Hospital, Jiangsu 213200, China.
| | - HaiFeng Liu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou & Changzhou First People's Hospital, Jiangsu 213200, China
| | - ZuHui Zhu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou & Changzhou First People's Hospital, Jiangsu 213200, China
| | - Ye Sheng
- Department of Interventional Radiology, Third Affiliated Hospital of Soochow University & Changzhou First People's Hospital, Changzhou, Jiangsu 213200, China
| | - YaNan Du
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou & Changzhou First People's Hospital, Jiangsu 213200, China
| | - YuFeng Li
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou & Changzhou First People's Hospital, Jiangsu 213200, China
| | - JianHong Liu
- Department of Pathology, The Third People's Hospital of Changzhou, Changzhou, Jiangsu 213200, China
| | | | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou & Changzhou First People's Hospital, Jiangsu 213200, China.
| |
Collapse
|
7
|
Functional diagnosis of placenta accreta by intravoxel incoherent motion model diffusion-weighted imaging. Eur Radiol 2020; 31:740-748. [PMID: 32862290 DOI: 10.1007/s00330-020-07200-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/21/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To investigate the diagnostic value of intravoxel incoherent motion (IVIM) DWI for placenta accreta by comparing diffusion and perfusion characteristics of placentas with accreta lesions (APs) with those of normal placentas (NPs). METHODS Twenty-five pregnant women with AP and 24 with NP underwent 3-T magnetic resonance examinations with IVIM-DWI. The perfusion percentage (f), pseudo-diffusion coefficient (D*), and diffusion coefficient (D) values were calculated from different ROIs: the entire-plane of the AP (AP-ROI) and NP (NP-ROI) and the implanted (IR-ROI) and non-implanted region (NIR-ROI) of the AP. The AP-ROIs and NP-ROIs were compared using covariance analysis; the IR-ROIs and NIR-ROIs were compared using the Wilcoxon signed-rank test. ROC curves were produced to evaluate the parameters for predicting placenta accreta. RESULTS The f and D* values for the AP-ROIs ([45.0 ± 7.63]%, [11.64 ± 2.15]mm2/s) were significantly higher than those for the NP-ROIs ([31.85 ± 5.96]%, [9.04 ± 3.13]mm2/s) (both p < 0.05); the IR-ROIs (54.8%, 14.03 mm2/s) were also significantly higher than the NIR-ROIs (37.4%, 11.4 mm2/s) (both p < 0.05). No significant differences were found between the D values of the AP-ROIs and NP-ROIs (p > 0.05) or of the IR-ROIs and NIR-ROIs (p > 0.05). The areas under the curve for f and D* of the ROC curves were 0.93 and 0.79, respectively. CONCLUSIONS These results suggest that the IVIM parameters f and D* can be used to quantitatively evaluate the higher perfusion of AP when compared with NP. Furthermore, IVIM may be a useful functional diagnostic technique to predict placenta accreta. KEY POINTS • Intravoxel incoherent motion (IVIM) may be a useful diagnostic technique to quantitatively estimate the perfusion of the placenta. • The perfusion percentage (f) and pseudo-diffusion coefficient (D*) values differed significantly between placentas with accreta lesions and normal placentas. • ROC curves showed that perfusion percentage (f) and pseudo-diffusion coefficient (D*) values could accurately predict placenta accreta.
Collapse
|
8
|
Tao YY, Zhou Y, Wang R, Gong XQ, Zheng J, Yang C, Yang L, Zhang XM. Progress of intravoxel incoherent motion diffusion-weighted imaging in liver diseases. World J Clin Cases 2020; 8:3164-3176. [PMID: 32874971 PMCID: PMC7441263 DOI: 10.12998/wjcc.v8.i15.3164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023] Open
Abstract
Traditional magnetic resonance (MR) diffusion-weighted imaging (DWI) uses a single exponential model to obtain the apparent diffusion coefficient to quantitatively reflect the diffusion motion of water molecules in living tissues, but it is affected by blood perfusion. Intravoxel incoherent motion (IVIM)-DWI utilizes a double-exponential model to obtain information on pure water molecule diffusion and microcirculatory perfusion-related diffusion, which compensates for the insufficiency of traditional DWI. In recent years, research on the application of IVIM-DWI in the diagnosis and treatment of hepatic diseases has gradually increased and has achieved considerable progress. This study mainly reviews the basic principles of IVIM-DWI and related research progress in the diagnosis and treatment of hepatic diseases.
Collapse
Affiliation(s)
- Yun-Yun Tao
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi Zhou
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ran Wang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xue-Qin Gong
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Jing Zheng
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Cui Yang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
9
|
Ye Z, Wei Y, Chen J, Yao S, Song B. Value of intravoxel incoherent motion in detecting and staging liver fibrosis: A meta-analysis. World J Gastroenterol 2020; 26:3304-3317. [PMID: 32684744 PMCID: PMC7336331 DOI: 10.3748/wjg.v26.i23.3304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver fibrosis (LF) is a common pathological feature of all chronic liver diseases. With the accumulation of extracellular matrix in the fibrotic liver, true molecular water diffusion and perfusion-related diffusion are restricted. Intravoxel incoherent motion (IVIM) can capture the information on tissue diffusivity and microcapillary perfusion separately and reflect the fibrotic severity with diffusion coefficients.
AIM To investigate the diagnostic performance of IVIM in detecting and staging LF with histology as a reference standard.
METHODS A comprehensive literature search was conducted to identify studies on the diagnostic accuracy of IVIM for assessment of histologically proven LF. The stages of LF were classified as F0 (no fibrosis), F1 (portal fibrosis without septa), F2 (periportal fibrosis with few septa), F3 (septal fibrosis), and F4 (cirrhosis) according to histopathological findings. Data were extracted to calculate the pooled sensitivity, specificity, positive and negative likelihood ratios, and diagnostic odds ratio, as well as the area under the summary receiver operating characteristic curve (AUC) in each group.
RESULTS A total of 12 studies with 923 subjects were included in this meta-analysis with 5 studies (n = 465) for LF ≥ F1, 9 studies (n = 757) for LF ≥ F2, 4 studies (n = 413) for LF ≥ F3, and 6 studies (n = 562) for LF = F4. The pooled sensitivity and specificity were estimated to be 0.78 (95% confidence interval: 0.73-0.82) and 0.81 (0.74-0.86) for LF ≥ F1 detection with IVIM; 0.82 (0.79-0.86) and 0.80 (0.75-0.84) for staging F2 fibrosis; 0.85 (0.79-0.90) and 0.83 (0.77-0.87) for staging F3 fibrosis, and 0.90 (0.84-0.94) and 0.75 (0.70-0.79) for detecting F4 cirrhosis, respectively. The AUCs for LF ≥ F1, F2, F3, F4 detection were 0.862 (0.811-0.914), 0.883 (0.856-0.909), 0.886 (0.865-0.907), and 0.899 (0.866-0.932), respectively. Moderate to substantial heterogeneity was observed with inconsistency index (I2) ranging from 0% to 77.9%. No publication bias was detected.
CONCLUSION IVIM is a noninvasive tool with good diagnostic performance in detecting and staging LF. Optimized and standardized IVIM protocols are needed to further improve its diagnostic accuracy in clinical practice.
Collapse
Affiliation(s)
- Zheng Ye
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Wei
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Shan Yao
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
10
|
Tosun M, Onal T, Uslu H, Alparslan B, Çetin Akhan S. Intravoxel incoherent motion imaging for diagnosing and staging the liver fibrosis and inflammation. Abdom Radiol (NY) 2020; 45:15-23. [PMID: 31705248 DOI: 10.1007/s00261-019-02300-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the diagnostic accuracy of intravoxel incoherent motion (IVIM) model parameters for the diagnosis and staging of liver fibrosis and inflammation in patients with chronic hepatitis B. METHODS Fifty-four patients with chronic hepatitis B and 42 healthy volunteers were included in the study. All subjects were examined by 3 T magnetic resonance imaging. Diffusion-weighted imaging was undertaken with sixteen b values. IVIM parameters [D (true diffusion coefficient), D* (pseudo-diffusion coefficient), f (perfusion fraction)] were calculated. Histological evaluation of biopsy samples was considered the reference standard for the staging of liver fibrosis and inflammation. Differences in IVIM parameters between patient and control groups were analyzed. In the patient group, fibrosis stage and inflammation grade groups were analyzed with respect to IVIM parameters. The correlation was assessed between IVIM parameters and Ishak-modified scale of fibrosis stages and inflammation grades. RESULTS The D was significantly lower in the patient group than the control group, p = 0.038 with Cohen's d effect size of 0.452. D was significantly different between fibrosis stage levels. D values decreased in fibrosis stages from the minimal to moderate to marked fibrosis. Fibrosis grades significantly negatively correlated with D and D* values, p = 0.001, and 0.021, respectively. In addition, inflammation grades negatively correlated with f values, p = 0.047. CONCLUSION D values measured with IVIM imaging may help to diagnose liver fibrosis. IVIM imaging could be an alternative to liver biopsy for the staging of liver fibrosis.
Collapse
Affiliation(s)
- Mesude Tosun
- Department of Radiology, Kocaeli University School of Medicine, Kocaeli, Turkey.
| | | | - Hande Uslu
- Department of Radiology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Burcu Alparslan
- Department of Radiology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Sıla Çetin Akhan
- Department of Infectious Diseases and Clinical Microbiology, Kocaeli University School of Medicine, Kocaeli, Turkey
| |
Collapse
|
11
|
Tan H, Xu H, Luo F, Zhang Z, Yang Z, Yu N, Yu Y, Wang S, Fan Q, Li Y. Combined intravoxel incoherent motion diffusion-weighted MR imaging and magnetic resonance spectroscopy in differentiation between osteoporotic and metastatic vertebral compression fractures. J Orthop Surg Res 2019; 14:299. [PMID: 31488174 PMCID: PMC6727483 DOI: 10.1186/s13018-019-1350-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose Our purpose was to combine intravoxel incoherent motion diffusion-weighted MR imaging (IVIM-DWI) and magnetic resonance spectroscopy (MRS) to differentiate osteoporotic fractures from osteolytic metastatic vertebral compression fractures (VCFs). Methods A total of 70 patients with VCFs were included and divided into two groups, according to their causes of fractures based on pathological findings or clinical follow-up. All patients underwent conventional sagittal T1WI, T2WI, STIR, IVIM-DWI, and single-voxel MRS. The diffusion coefficient (D), pseudo diffusion (D*), and perfusion fraction (f) parameters from IVIM-DWI and the lipid water ratio (LWR) and fat fraction (FF) parameters from MRS were obtained and compared among groups. Furthermore, the diagnostic performance of MRS, IVIM-DWI, and IVIM-DWI combined with MRS for differentiation between osteoporotic and osteolytic metastatic VCFs was assessed by using receiver operating characteristic (ROC) curve analysis. Results Compared with the osteoporotic group, the metastatic group had significantly lower values for f, D, and FF, but higher D* (all P < 0.05). The area under the receiver operating characteristic (ROC) curve of MRS, IVIM-DWI, and IVIM-DWI combined with MRS were 0.73, 0.88, and 0.94, respectively. Among these, the IVIM-DWI combined with MRS showed the highest sensitivity, specificity, and accuracy, which are 90.63% (29/32), 97.37 % (37/38), and 94.29% (66/70), respectively. Conclusions IVIM-DWI combined with MRS can be more accurate and efficient for differentiation between osteoporotic and osteolytic metastatic VCFs than single MRS or IVIM-DWI.
Collapse
Affiliation(s)
- Hui Tan
- Institute of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hui Xu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
| | - Feifei Luo
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhaoguo Zhang
- Institute of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhen Yang
- Institute of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Nan Yu
- Institute of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yong Yu
- Institute of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | | | - Qiuju Fan
- Institute of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China. .,Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Yue Li
- Institute of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
12
|
Sauer F, Oswald L, Ariza de Schellenberger A, Tzschätzsch H, Schrank F, Fischer T, Braun J, Mierke CT, Valiullin R, Sack I, Käs JA. Collagen networks determine viscoelastic properties of connective tissues yet do not hinder diffusion of the aqueous solvent. SOFT MATTER 2019; 15:3055-3064. [PMID: 30912548 DOI: 10.1039/c8sm02264j] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Collagen accounts for the major extracellular matrix (ECM) component in many tissues and provides mechanical support for cells. Magnetic Resonance (MR) Imaging, MR based diffusion measurements and MR Elastography (MRE) are considered sensitive to the microstructure of tissues including collagen networks of the ECM. However, little is known whether water diffusion interacts with viscoelastic properties of tissues. This study combines highfield MR based diffusion measurements, novel compact tabletop MRE and confocal microscopy in collagen networks of different cross-linking states (untreated collagen gels versus additional treatment with glutaraldehyde). The consistency of bulk rheology and MRE within a wide dynamic range is demonstrated in heparin gels, a viscoelastic standard for MRE. Additional crosslinking of collagen led to an 8-fold increased storage modulus, a 4-fold increased loss modulus and a significantly decreased power law exponent, describing multi-relaxational behavior, corresponding to a pronounced transition from viscous-soft to elastic-rigid properties. Collagen network changes were not detectable by MR based diffusion measurements and microscopy which are sensitive to the micrometer scale. The MRE-measured shear modulus is sensitive to collagen fiber interactions which take place on the intrafiber level such as fiber stiffness. The insensitivity of MR based diffusion measurements to collagen hydrogels of different cross-linking states alludes that congeneric collagen structures in connective tissues do not hinder extracellular diffusive water transport. Furthermore, the glutaraldehyde induced rigorous changes in viscoelastic properties indicate that intrafibrillar dissipation is the dominant mode of viscous dissipation in collagen-dominated connective tissue.
Collapse
Affiliation(s)
- Frank Sauer
- Soft Matter Physics Division, Peter Debye Institute for Soft Matter Physics, Linnestr. 5, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Paschoal AM, Leoni RF, Dos Santos AC, Paiva FF. Intravoxel incoherent motion MRI in neurological and cerebrovascular diseases. Neuroimage Clin 2018; 20:705-714. [PMID: 30221622 PMCID: PMC6141267 DOI: 10.1016/j.nicl.2018.08.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022]
Abstract
Intravoxel Incoherent Motion (IVIM) is a recently rediscovered noninvasive magnetic resonance imaging (MRI) method based on diffusion-weighted imaging. It enables the separation of the intravoxel signal into diffusion due to Brownian motion and perfusion-related contributions and provides important information on microperfusion in the tissue and therefore it is a promising tool for applications in neurological and neurovascular diseases. This review focuses on the basic principles and outputs of IVIM and details it major applications in the brain, such as stroke, tumor, and cerebral small vessel disease. A bi-exponential model that considers two different compartments, namely capillaries, and medium-sized vessels, has been frequently used for the description of the IVIM signal and may be important in those clinical applications cited before. Moreover, the combination of IVIM and arterial spin labeling MRI enables the estimation of water permeability across the blood-brain barrier (BBB), suggesting a potential imaging biomarker for disrupted-BBB diseases.
Collapse
Affiliation(s)
- André M Paschoal
- Inbrain Lab, Department de Física, FFCLRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Renata F Leoni
- Inbrain Lab, Department de Física, FFCLRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Antonio C Dos Santos
- Departamento de Clínica Médica, FMRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Fernando F Paiva
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
14
|
Li H, Zhang J, Zheng Z, Guo Y, Chen M, Xie C, Zhang Z, Mei Y, Feng Y, Xu Y. Preoperative histogram analysis of intravoxel incoherent motion (IVIM) for predicting microvascular invasion in patients with single hepatocellular carcinoma. Eur J Radiol 2018; 105:65-71. [PMID: 30017300 DOI: 10.1016/j.ejrad.2018.05.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 02/09/2023]
Abstract
PURPOSE To evaluate the value of intravoxel incoherent motion (IVIM) histogram analysis based on whole tumor volume in predicting microvascular invasion (MVI) of single hepatocellular carcinoma (HCC). MATERIALS AND METHODS The study enrolled 41 patients with pathologically proven HCCs who underwent IVIM diffusion-weighted imaging with nine b values and contrast-enhanced magnetic resonance imaging (MRI). Histogram parameters including mean; skewness; kurtosis; and percentiles (5th, 10th, 25th, 50th, 75th, 90th, 95th) were derived from apparent diffusion coefficient (ADC), perfusion fraction (f), true diffusion coefficient (D), and pseudo diffusion coefficient (D*). Quantitative histogram parameters and clinical data were compared between HCCs with and without MVI. For significant parameters, receiver operating characteristic (ROC) curves were further plotted to compare the diagnosis performance for identifying MVI. RESULTS The mean, 5th, 10th, 25th, 50th, and 75th percentiles of D, and the 5th, 10th, and 25th percentiles of ADC between HCCs with and without MVI were statistically significant (all P<0.05). The histogram parameters of D* and f showed no statistically significant differences between HCCs with and without MVI (all P>0.05). The areas under the ROC curves (AUCs) were 0.707-0.874 for D and 0.668-0.720 for ADC. The largest AUC of D (5th percentile) showed significantly higher accuracy than that of ADC or tumor size (P = 0.009-0.046). With a cut-off of 0.403 × 10-3 mm²/s, the 5th percentile of D value provided a sensitivity of 81% and a specificity of 85% in the prediction of MVI. CONCLUSIONS Histogram analysis of IVIM based on whole tumor volume can be useful for predicting MVI. The 5th percentile of D was most useful value to predict MVI of HCC.
Collapse
Affiliation(s)
- Hongxiang Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Jing Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Zeyu Zheng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Yihao Guo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, PR China.
| | - Maodong Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, PR China.
| | - Caiqin Xie
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | | | - Yingjie Mei
- Philips Intergrated Solution Center, Guangzhou, PR China.
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, PR China.
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|