1
|
Simchick G, Allen TJ, Hernando D. Reproducibility of intravoxel incoherent motion quantification in the liver across field strengths and gradient hardware. Magn Reson Med 2024; 92:2652-2669. [PMID: 39119838 PMCID: PMC11436311 DOI: 10.1002/mrm.30237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE To evaluate reproducibility and interlobar agreement of intravoxel incoherent motion (IVIM) quantification in the liver across field strengths and MR scanners with different gradient hardware. METHODS Cramer-Rao lower bound optimization was performed to determine optimized monopolar and motion-robust 2D (b-value and first-order motion moment [M1]) IVIM-DWI acquisitions. Eleven healthy volunteers underwent diffusion MRI of the liver, where each optimized acquisition was obtained five times across three MRI scanners. For each data set, IVIM estimates (diffusion coefficient (D), pseudo-diffusion coefficients (d 1 * $$ {d}_1^{\ast } $$ andd 2 * $$ {d}_2^{\ast } $$ ), blood velocity SDs (Vb1 and Vb2), and perfusion fractions [f1 and f2]) were obtained in the right and left liver lobes using two signal models (pseudo-diffusion and M1-dependent physical) with and without T2 correction (fc1 and fc2) and three fitting techniques (tri-exponential region of interest-based full and segmented fitting and blood velocity SD distribution fitting). Reproducibility and interlobar agreement were compared across methods using within-subject and pairwise coefficients of variation (CVw and CVp), paired sample t-tests, and Bland-Altman analysis. RESULTS Using a combination of motion-robust 2D (b-M1) data acquisition, M1-dependent physical signal modeling with T2 correction, and blood velocity SD distribution fitting, multiscanner reproducibility with median CVw = 5.09%, 11.3%, 9.20%, 14.2%, and 12.6% for D, Vb1, Vb2, fc1, and fc2, respectively, and interlobar agreement with CVp = 8.14%, 11.9%, 8.50%, 49.9%, and 42.0%, respectively, was achieved. CONCLUSION Recently proposed advanced IVIM acquisition, signal modeling, and fitting techniques may facilitate reproducible IVIM quantification in the liver, as needed for establishment of IVIM-based quantitative biomarkers for detection, staging, and treatment monitoring of diseases.
Collapse
Affiliation(s)
- Gregory Simchick
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Allen
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diego Hernando
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
3
|
Wang Q, Yu G, Qiu J, Lu W. Application of Intravoxel Incoherent Motion in Clinical Liver Imaging: A Literature Review. J Magn Reson Imaging 2024; 60:417-440. [PMID: 37908165 DOI: 10.1002/jmri.29086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Intravoxel incoherent motion (IVIM) modeling is a widely used double-exponential model for describing diffusion-weighted imaging (DWI) signal, with a slow component related to pure molecular diffusion and a fast component associated with microcirculatory perfusion, which compensates for the limitations of traditional DWI. IVIM is a noninvasive technique for obtaining liver pathological information and characterizing liver lesions, and has potential applications in the initial diagnosis and treatment monitoring of liver diseases. Recent studies have demonstrated that IVIM-derived parameters are useful for evaluating liver lesions, including nonalcoholic fatty liver disease (NAFLD), liver fibrosis and liver tumors. However, the results are not stable. Therefore, it is necessary to summarize the current applications of IVIM in liver disease research, identify existing shortcomings, and point out the future development direction. In this review, we searched for studies related to hepatic IVIM-DWI applications over the past two decades in the PubMed database. We first introduce the fundamental principles and influential factors of IVIM, and then discuss its application in NAFLD, liver fibrosis, and focal hepatic lesions. It has been found that IVIM is still unstable in ensuring the robustness and reproducibility of measurements in the assessment of liver fibrosis grade and liver tumors differentiation, due to inconsistent and substantial overlap in the range of IVIM-derived parameters for different fibrotic stages. In the end, the future direction of IVIM-DWI in the assessment of liver diseases is discussed, emphasizing the need for further research on the stability of IVIM-derived parameters, particularly perfusion-related parameters, in order to promote the clinical practice of IVIM-DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Guanghui Yu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
4
|
Guo Y, Guo T, Huang C, Sun P, Wu Z, Jin Z, Zheng C, Li X. Combining T1rho and advanced diffusion MRI for noninvasively staging liver fibrosis: an experimental study in rats. Abdom Radiol (NY) 2024; 49:1881-1891. [PMID: 38607572 PMCID: PMC11213740 DOI: 10.1007/s00261-024-04327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE To investigate the value of imaging parameters derived from T1 relaxation times in the rotating frame (T1ρ or T1rho), diffusion kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) in assessment of liver fibrosis in rats and propose an optimal diagnostic model based on multiparametric MRI. METHODS Thirty rats were divided into one control group and four fibrosis experimental groups (n = 6 for each group). Liver fibrosis was induced by administering thioacetamide (TAA) for 2, 4, 6, and 8 weeks. T1ρ, mean kurtosis (MK), mean diffusivity (MD), perfusion fraction (f), true diffusion coefficient (D), and pseudo-diffusion coefficient (D*) were measured and compared among different fibrosis stages. An optimal diagnostic model was established and the diagnostic efficiency was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS The mean AUC values, sensitivity, and specificity of T1ρ and MD derived from DKI across all liver fibrosis stages were comparable but much higher than those of other imaging parameters (0.954, 92.46, 91.85 for T1ρ; 0.949, 92.52, 91.24 for MD). The model combining T1ρ and MD exhibited better diagnostic performance with higher AUC values than any individual method for staging liver fibrosis (≥ F1: 1.000 (0.884-1.000); ≥ F2: 0.935 (0.782-0.992); ≥ F3: 0.982 (0.852-1.000); F4: 0.986 (0.859-1.000)). CONCLUSION Among the evaluated imaging parameters, T1ρ and MD were superior for differentiating varying liver fibrosis stages. The model combining T1ρ and MD was promising to be a credible diagnostic biomarker to detect and accurately stage liver fibrosis.
Collapse
Affiliation(s)
- Yiwan Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tingting Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chen Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Sun
- Clinical & Technical Support, Philips Healthcare, No. 1628, Zhongshan Road, Wuhan, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, No. 1628, Zhongshan Road, Wuhan, China
| | - Ziwei Jin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
5
|
Mai XF, Zhang H, Wang Y, Zhong WX, Zou LQ. Multiparametric MRI-based whole-liver radiomics for predicting early-stage liver fibrosis in rabbits. Br J Radiol 2024; 97:964-970. [PMID: 38552321 PMCID: PMC11075985 DOI: 10.1093/bjr/tqae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 05/09/2024] Open
Abstract
OBJECTIVES To develop and validate a whole-liver radiomic model using multiparametric MRI for predicting early-stage liver fibrosis (LF) in rabbits. METHODS A total of 134 rabbits (early-stage LF, n = 91; advanced-stage LF, n = 43) who underwent liver magnetic resonance elastography (MRE), hepatobiliary phase, dynamic contrast enhanced (DCE), intravoxel incoherent motion (IVIM), diffusion kurtosis imaging, and T2* scanning were enrolled and randomly allocated to either the training or validation cohort. Whole-liver radiomic features were extracted and selected to develop a radiomic model and generate quantitative Rad-scores. Then, multivariable logistic regression was utilized to determine the Rad-scores associated with early-stage LF, and effective features were integrated to establish a combined model. The predictive performance was assessed by the area under the curve (AUC). RESULTS The MRE model achieved superior AUCs of 0.95 in the training cohort and 0.86 in the validation cohort, followed by the DCE-MRI model (0.93 and 0.82), while the IVIM model had lower AUC values of 0.91 and 0.82, respectively. The Rad-scores of MRE, DCE-MRI and IVIM were identified as independent predictors associated with early-stage LF. The combined model demonstrated AUC values of 0.96 and 0.88 for predicting early-stage LF in the training and validation cohorts, respectively. CONCLUSIONS Our study highlights the remarkable performance of a multiparametric MRI-based radiomic model for the individualized diagnosis of early-stage LF. ADVANCES IN KNOWLEDGE This is the first study to develop a combined model by integrating multiparametric radiomic features to improve the accuracy of LF staging.
Collapse
Affiliation(s)
- Xiao-Fei Mai
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen 518052, China
| | - Hao Zhang
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen 518052, China
| | - Yang Wang
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen 518052, China
| | - Wen-Xin Zhong
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen 518052, China
| | - Li-Qiu Zou
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen 518052, China
| |
Collapse
|
6
|
Ren H, Xu H, Yang D, Tong X, Zhao X, Wang Q, Sun Y, Ou X, Jia J, You H, Wang Z, Yang Z. Intravoxel incoherent motion assessment of liver fibrosis staging in MASLD. Abdom Radiol (NY) 2024; 49:1411-1418. [PMID: 38461432 DOI: 10.1007/s00261-024-04207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE Partial correlation analysis was performed to account for the interference of steatosis changes and inflammatory factors, to determine the true correlation between fibrosis and IVIM parameters (Dfast, Dslow, and F), and to evaluate the diagnostic efficacy of IVIM for liver fibrosis. METHODS A total of 106 patients with metabolic dysfunction-associated steatotic liver disease (MASLD) examined by IVIM from November 2016 to November 2023 at our hospital were retrospectively included. Preliminary analysis of each IVIM parameter and correlations with pathological findings were performed using Spearman correlation analysis, and partial correlation analysis was used to exclude the interference of other pathological factors, thus yielding the true correlations between IVIM parameters (Dfast, Dslow, and F) and pathology. The diagnostic efficacy of IVIM parameters for diagnosing MASLD was assessed via receiver operating characteristic (ROC) curve analysis. RESULTS Spearman correlation analysis of all the IVIM parameters revealed correlations with steatosis, lobular inflammation, and ballooning. Partial correlation analysis indicated that Dfast was correlated with the pathological fibrosis stage (r = - 0.593, P < 0.001), Dslow was correlated with the pathological steatosis score (r = - 0.313, P < 0.05), and F was correlated with the pathological fibrosis stage and steatosis score (r = - 0.456 and 0.255, P < 0.001 and P < 0.05). In the diagnosis of hepatic fibrosis, significant hepatic fibrosis, advanced liver fibrosis and cirrhosis, Dfast achieved areas under the ROC curve of 0.763, 0.801, 0.853, and 0.897, respectively. The threshold values for diagnosing different fibrosis stages using Dfast (10-3 mm2/s) were 57.613, 54.587, 52.714, and 51.978, respectively. CONCLUSION According to our partial correlation analysis, there was a moderate correlation between Dfast and F according to fibrosis stage, and Dfast was not influenced by inflammation or steatosis when diagnosing fibrosis in MASLD patients. A relatively close Dfast threshold is insufficient for accurately and noninvasively assessing various stages of MASLD fibrosis. In clinical practice, this approach can be considered an alternative method for the preliminary assessment of fibrosis in MASLD patients.
Collapse
Affiliation(s)
- Hao Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Xiaofei Tong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Qianyi Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China.
| |
Collapse
|
7
|
Tsujita Y, Sofue K, Ueshima E, Ueno Y, Hori M, Murakami T. Clinical Application of Quantitative MR Imaging in Nonalcoholic Fatty Liver Disease. Magn Reson Med Sci 2023; 22:435-445. [PMID: 35584952 PMCID: PMC10552668 DOI: 10.2463/mrms.rev.2021-0152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Viral hepatitis was previously the most common cause of chronic liver disease. However, in recent years, nonalcoholic fatty liver disease (NAFLD) cases have been increasing, especially in developed countries. NAFLD is histologically characterized by fat, fibrosis, and inflammation in the liver, eventually leading to cirrhosis and hepatocellular carcinoma. Although biopsy is the gold standard for the assessment of the liver parenchyma, quantitative evaluation methods, such as ultrasound, CT, and MRI, have been reported to have good diagnostic performances. The quantification of liver fat, fibrosis, and inflammation is expected to be clinically useful in terms of the prognosis, early intervention, and treatment response for the management of NAFLD. The aim of this review was to discuss the basics and prospects of MRI-based tissue quantifications of the liver, mainly focusing on proton density fat fraction for the quantification of fat deposition, MR elastography for the quantification of fibrosis, and multifrequency MR elastography for the evaluation of inflammation.
Collapse
Affiliation(s)
- Yushi Tsujita
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Eisuke Ueshima
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshiko Ueno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masatoshi Hori
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
8
|
Bagheri M, Ghorbani F, Akbari-Lalimi H, Akbari-Zadeh H, Asadinezhad M, Shafaghi A, Montazerabadi A. Histopathological graded liver lesions: what role does the IVIM analysis method have? MAGMA (NEW YORK, N.Y.) 2023; 36:565-575. [PMID: 36943581 DOI: 10.1007/s10334-022-01060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 03/23/2023]
Abstract
PURPOSE This study aims to investigate three different image processing methods on quantitative parameters of IVIM sequence, as well as apparent diffusion coefficients and simple perfusion fractions, for benign and malignant liver tumors. MATERIALS AND METHODS IVIM images with 8 b-values (0-1000 s/mm2) and 1.5 T MRI scanner in 16 patients and 3 healthy people were obtained. Next, the regions of interest were selected for malignant, benign, and healthy liver regions (50, 56, and 12, respectively). Then, the bi-exponential equation of the IVIM technique was fitted with two segmented fitting methods as well as one full fitting method (three methods in total). Using the segmented fitting method, diffusion coefficient (D) is fixed with a mono-exponential equation with b-values that are greater than 200 s/mm2. The perfusion fraction (f) can then be calculated by extrapolating, as the first method, or fitting simultaneously with the pseudo-diffusion coefficient (D*) as the second method. In the full fitting method, as the third method, all IVIM parameters were obtained simultaneously. The mean values of parameters from different methods were compared in different grades of lesions. RESULTS Our results indicate that the image processing method can change statistical comparisons between different groups for each parameter. The D value is the only quantity in this technique that does not depend on the fitting process and can be used as an indicator of comparison between studies (P < 0.05). The most effective method to distinguish liver lesions is the extrapolated f method (first method). This method created a significant difference (P < 0.05) between the perfusion parameters between benign and malignant lesions. CONCLUSION Using extrapolated f is the most effective method of distinguishing liver lesions using IVIM parameters. The comparison between groups does not depend on the fitting method only for parameter D.
Collapse
Affiliation(s)
- Mona Bagheri
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Ghorbani
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Akbari-Lalimi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Akbari-Zadeh
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Asadinezhad
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afshin Shafaghi
- Caspian Digestive Disease Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Montazerabadi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Li Q, Zhang T, Che F, Yao S, Gao F, Nie L, Tang H, Wei Y, Song B. Intravoxel incoherent motion diffusion weighted imaging for preoperative evaluation of liver regeneration after hepatectomy in hepatocellular carcinoma. Eur Radiol 2023; 33:5222-5235. [PMID: 36892648 DOI: 10.1007/s00330-023-09496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVES To explore whether intravoxel incoherent motion (IVIM) parameters could evaluate liver regeneration preoperatively. METHODS A total of 175 HCC patients were initially recruited. The apparent diffusion coefficient, true diffusion coefficient (D), pseudodiffusion coefficient (D*), pseudodiffusion fraction (f), diffusion distribution coefficient, and diffusion heterogeneity index (Alpha) were measured by two independent radiologists. Spearman's correlation test was used to assess correlations between IVIM parameters and the regeneration index (RI), calculated as 100% × (the volume of the postoperative remnant liver - the volume of the preoperative remnant liver) / the volume of the preoperative remnant liver. Multivariate linear regression analyses were used to identify the factors for RI. RESULTS Finally, 54 HCC patients (45 men and 9 women, mean age 51.26 ± 10.41 years) were retrospectively analyzed. The intraclass correlation coefficient ranged from 0.842 to 0.918. In all patients, fibrosis stage was reclassified as F0-1 (n = 10), F2-3 (n = 26), and F4 (n = 18) using the METAVIR system. Spearman correlation test showed D* (r = 0.303, p = 0.026) was associated with RI; however, multivariate analysis showed that only D value was a significant predictor (p < 0.05) of RI. D and D*showed moderate correlations with fibrosis stage (r = -0.361, p = 0.007; r = -0.457, p = 0.001). Fibrosis stage showed a negative correlation with RI (r = -0.263, p = 0.015). In the 29 patients who underwent minor hepatectomy, only the D value showed a positive association (p < 0.05) with RI, and a negative correlation with fibrosis stage (r = -0.360, p = 0.018). However, in the 25 patients who underwent major hepatectomy, no IVIM parameters were associated with RI (p > 0.05). CONCLUSIONS The D and D* values, especially the D value, may be reliable preoperative predictors of liver regeneration. KEY POINTS • The D and D* values, especially the D value, derived from IVIM diffusion-weighted imaging may be useful markers for the preoperative prediction of liver regeneration in patients with HCC. • The D and D* values derived from IVIM diffusion-weighted imaging show significant negative correlations with fibrosis, an important predictor of liver regeneration. • No IVIM parameters were associated with liver regeneration in patients who underwent major hepatectomy, but the D value was a significant predictor of liver regeneration in patients who underwent minor hepatectomy.
Collapse
Affiliation(s)
- Qian Li
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Tong Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Feng Che
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Feifei Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Hehan Tang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China.
- Department of Radiology, Sanya People's Hospital, Sanya, 572000, China.
| |
Collapse
|
10
|
Radiomics nomograms based on R2* mapping and clinical biomarkers for staging of liver fibrosis in patients with chronic hepatitis B: a single-center retrospective study. Eur Radiol 2023; 33:1653-1667. [PMID: 36149481 DOI: 10.1007/s00330-022-09137-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the value of R2* mapping-based radiomics nomograms in staging liver fibrosis in patients with chronic hepatitis B. METHODS Between January 2020 and December 2020, 151 patients with chronic hepatitis B were randomly divided into training (n = 103) and validation (n = 48) cohorts. From January to February 2021, 58 patients were included in a test cohort. Radiomics features were selected using the interclass correlation coefficient and least absolute shrinkage and selection operator method. Three radiomics nomograms, combining the radiomics score (Radscore) derived from R2* mapping and clinical variables, were used for staging significant and advanced fibrosis, and cirrhosis. Performance of the model was evaluated using the AUC. The utility and clinical benefits were evaluated using the continuous net reclassification index (NRI), integrated discrimination improvement (IDI), and decision curve analysis (DCA). RESULTS The Radscore calculated by 12 radiomics features and independent factors (laminin and platelet) of advanced fibrosis were used to construct the radiomics nomograms. In the test cohort, the AUCs of the radiomics nomograms for staging significant fibrosis, advanced fibrosis, and cirrhosis were 0.738 (95% confidence interval [CI]: 0.604-0.872), 0.879 (95% CI: 0.779-0.98), and 0.952 (95% CI: 0.878-1), respectively. NRI, IDI, and DCA confirmed that radiomics nomograms demonstrated varying degrees of clinical benefit and improvement for advanced fibrosis and cirrhosis, but not for significant fibrosis. CONCLUSIONS Radiomics nomograms combined with R2* mapping-based Radscore, laminin, and platelet have value in staging advanced fibrosis and cirrhosis but limited value for staging significant fibrosis. KEY POINTS • Laminin and platelets were independent predictors of advanced fibrosis. • Radiomics analysis based on R2* mapping was beneficial for evaluating advanced fibrosis and cirrhosis. • It was difficult to distinguish significant fibrosis using a radiomics nomogram, which is possibly due to the complex pathological microenvironment of chronic liver diseases.
Collapse
|
11
|
Wan Q, Peng H, Lyu J, Liu F, Cheng C, Qiao Y, Deng J, Zheng H, Wang Y, Zou C, Liu X. Water Specific MRI T1 Mapping for Evaluating Liver Inflammation Activity Grades in Rats With Methionine-Choline-Deficient Diet-Induced Nonalcoholic Fatty Liver Disease. J Magn Reson Imaging 2022; 56:1429-1436. [PMID: 35212074 DOI: 10.1002/jmri.28131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Early detection and grading of liver inflammation are important for the management of nonalcoholic fatty liver disease (NAFLD) patients. There is still lack of a noninvasive way for the inflammation characterization in NAFLD. PURPOSE To assess liver inflammation grades by water specific T1 (wT1) in a rat model. STUDY TYPE Prospective. ANIMAL MODEL A total of 65 male rats with methionine-choline-deficient diet-induced NAFLD and 15 male normal rats as control. FIELD STRENGTH/SEQUENCE A 3 T; multiecho variable flip angle gradient echo sequence. ASSESSMENT The wT1 and proton density fat fraction were quantified. Inflammation and fibrosis were assessed histologically with H&E and Sirius red stained slices according to the nonalcoholic steatohepatitis scoring system. Inflammation grade was scored with G0/G1/G2/G3 as none/mild/moderate/severe inflammation in NALFD rats. G0 + G1 and G2 + G3 were combined as none-to-mild grade (GL) and moderate-to-severe grade (GH) inflammation groups. STATISTICAL TESTS Analysis of variance (ANOVA), Mann-Whitney U test, Spearman's correlation, and receiver operating characteristic (ROC) analysis were performed. The areas under ROC (AUROC) was used for the diagnostic performance of wT1 in discriminating GH and GL. A P value < 0.01 was considered statistically significant. RESULTS Seventy-six rats were included in the analysis. The numbers in G0-G3 groups were 5, 16, 13, and 27. wT1 of G0-G3 was 568.55 ± 63.93 msec, 582.53 ± 62.98 msec, 521.21 ± 67.31 msec, and 508.79 ± 60.53 msec. A moderate but significant negative correlation between wT1 and histopathological inflammation grades was observed (rs = -0.42). The wT1 of GH (512.80 ± 62.22 msec) was significantly lower than GL (579.20 ± 61.89 msec). The AUROC of wT1 was 0.79, and the optimal cut-off of wT1 was 562.64 msec (sensitivity: 90%, specificity: 76%), for the discrimination of GL and GH. DATA CONCLUSIONS wT1 could differentiate none-to-mild inflammation from moderate-to-severe inflammation in the early stage of the NAFLD rat model. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Peng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianxun Lyu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Liu
- Department of Radiology, Peking University People's Hospital, Beijing, 100044, China.,Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Peking University People's Hospital, Beijing, 100044, China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yangzi Qiao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Deng
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Wang
- Department of Radiology, Peking University People's Hospital, Beijing, 100044, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Cheng Z, Yang Q, He H, Li R, Li X, Jiang H, Zhao X, Li J, Wang L, Zhou S, Zhang S. Intravoxel incoherent motion diffusion-weighted imaging and shear wave elastography for evaluating peritumoral liver fibrosis after transarterial chemoembolization in a VX2 rabbit liver tumor model. Front Physiol 2022; 13:893925. [PMID: 36311244 PMCID: PMC9597251 DOI: 10.3389/fphys.2022.893925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we sought to evaluate changes in peritumoral fibrosis after transarterial chemoembolization (TACE) in a rabbit VX2 liver tumor model using intravoxel incoherent motion diffusion-weighted imaging (IVIM DWI) and ultrasound shear wave elastography (SWE). A total of 20 rabbits underwent implantation of VX2 tumor tissues in the left lobe of the liver. The rabbits were randomly divided into an experimental group (n = 10) or a control group (n = 10). Those in the experimental group were treated with an emulsion of lipiodol and pirarubicin through a microcatheter 2–3 weeks after implantation; those in the control group were treated with sterile water. Compared with the control group, the true diffusion coefficient (D) and pseudodiffusion coefficient (D*) values in liver tissues were significantly lower (p < 0.05 for all) and liver stiffness values (LSV) (10.58 ± 0.89 kPa) were higher in the experimental group (7.65 ± 0.86 kPa; p < 0.001). The median stage of liver fibrosis based on METAVIR scores was 1 (1,1) in the control group and 2 (2,3) in the experimental group (Z = 4.15, p < 0.001). D, D*, and LSV were significantly correlated with pathologic staining in the assessment of liver fibrosis (r = −0.54 p = 0.015; r = −0.50, p = 0.025; r = 0.91, p < 0.001; respectively). These data suggest that TACE aggravates liver injury and liver fibrosis, especially surrounding the tumor, in a rabbit VX2 liver tumor model. IVIM DWI and SWE can be used to evaluate the change in liver fibrosis.
Collapse
Affiliation(s)
- Zhimei Cheng
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Qin Yang
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Huizhou He
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Ran Li
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Xueying Li
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Hongyu Jiang
- GCP Institution Office, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Xuya Zhao
- Department of Interventional Radiology, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Junxiang Li
- Institute of Image, Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Lizhou Wang
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
| | - Shi Zhou
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
- *Correspondence: Shi Zhou, ; Shuai Zhang,
| | - Shuai Zhang
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
- *Correspondence: Shi Zhou, ; Shuai Zhang,
| |
Collapse
|
13
|
Simchick G, Geng R, Zhang Y, Hernando D. b value and first-order motion moment optimized data acquisition for repeatable quantitative intravoxel incoherent motion DWI. Magn Reson Med 2022; 87:2724-2740. [PMID: 35092092 PMCID: PMC9275352 DOI: 10.1002/mrm.29165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To design a b value and first-order motion moment (M1 ) optimized data acquisition for repeatable intravoxel incoherent motion (IVIM) quantification in the liver. METHODS Cramer-Rao lower bound optimization was performed to determine optimal monopolar and optimal 2D samplings of the b-M1 space based on noise performance. Monte Carlo simulations were used to evaluate the bias and variability in estimates obtained using the proposed optimal samplings and conventional monopolar sampling. Diffusion MRI of the liver was performed in 10 volunteers using 3 IVIM acquisitions: conventional monopolar, optimized monopolar, and b-M1 -optimized gradient waveforms (designed based on the optimal 2D sampling). IVIM parameter maps of diffusion coefficient, perfusion fraction, and blood velocity SD were obtained using nonlinear least squares fitting. Noise performance (SDs), stability (outlier percentage), and test-retest or scan-rescan repeatability (intraclass correlation coefficients) were evaluated and compared across acquisitions. RESULTS Cramer-Rao lower bound and Monte Carlo simulations demonstrated improved noise performance of the optimal 2D sampling in comparison to monopolar samplings. Evaluating the designed b-M1 -optimized waveforms in healthy volunteers, significant decreases (p < 0.05) in the SDs and outlier percentages were observed for measurements of diffusion coefficient, perfusion fraction, and blood velocity SD in comparison to measurements obtained using monopolar samplings. Good-to-excellent repeatability (intraclass correlation coefficients ≥ 0.77) was observed for all 3 parameters in both the right and left liver lobes using the b-M1 -optimized waveforms. CONCLUSIONS 2D b-M1 -optimized data acquisition enables repeatable IVIM quantification with improved noise performance. 2D acquisitions may advance the establishment of IVIM quantitative biomarkers for liver diseases.
Collapse
Affiliation(s)
- Gregory Simchick
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ruiqi Geng
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Yuxin Zhang
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Hernando
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
14
|
Xie S, Qiu C, Sun Y, Yu Y, Hu Z, Zhang K, Chen L, Cheng Y, Bao M, Zhang Q, Zhu J, Grimm R, Shen W. Assessment of Fibrotic Liver Regeneration After Partial Hepatectomy With Intravoxel Incoherent Motion Diffusion-Weighted Imaging: An Experimental Study in a Rat Model With Carbon Tetrachloride Induced Liver Injury. Front Physiol 2022; 13:822763. [PMID: 35250624 PMCID: PMC8894856 DOI: 10.3389/fphys.2022.822763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To determine whether intravoxel incoherent motion (IVIM) parameters correlate with liver regeneration and function recovery after partial hepatectomy (PH) in rats with carbon tetrachloride (CCl4)-induced liver fibrosis. Methods Sixty-two adult Sprague-Dawley rats were divided into the control group and the fibrosis group with CCl4 injection for 8 weeks. At the end of the 8th week, all rats received left lateral lobe liver resection. Within each group, IVIM imaging (n = 10/group) and histologic and biochemical analyses (n = 3/group/time point) were performed pre- and post-PH (on days 1, 2, 3, 5, 7, 14, and 21). Differences in liver IVIM parameters and correlation between IVIM parameters and Ki-67 indices, hepatocyte diameter, alanine transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBil) values were analyzed. Results Post-PH, liver true diffusion coefficient (D) values decreased and pseudodiffusion coefficient (D*) and perfusion fraction (PF) values increased, then recovered to pre-PH levels gradually in both fibrosis and control rats. PF in fibrosis group were significantly higher than in controls from 3 to 21 days (P < 0.05). In fibrosis rats, both Ki-67 indices and hepatocyte diameters increased, and a strong correlation was found between PF and Ki-67 indices (r = −0.756; P = 0.03), D* and PF values and ALT, AST, and TBil values (r = −0.762 to −0.905; P < 0.05). In control rats, only hepatocyte diameters increased, and all IVIM parameters correlated well with hepatocyte diameters, ALT, AST and TBil values (r = 0.810 to −1.000; P < 0.05). Conclusion The regeneration pattern in fibrotic liver tissue was different compared with control livers. IVIM parameters can monitor liver regeneration and functional recovery non-invasively after PH.
Collapse
Affiliation(s)
- Shuangshuang Xie
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Caixin Qiu
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Yajie Sun
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Yongquan Yu
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Zhandong Hu
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Kun Zhang
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Lihua Chen
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Yue Cheng
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Mingzhu Bao
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Quansheng Zhang
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Jinxia Zhu
- Siemens Healthcare (China), Beijing, China
| | | | - Wen Shen
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
- *Correspondence: Wen Shen,
| |
Collapse
|
15
|
Zou L, Jiang J, Zhang H, Zhong W, Xiao M, Xin S, Wang Y, Xing W. Comparing and combining MRE, T1ρ, SWI, IVIM, and DCE-MRI for the staging of liver fibrosis in rabbits: Assessment of a predictive model based on multiparametric MRI. Magn Reson Med 2021; 87:2424-2435. [PMID: 34931716 DOI: 10.1002/mrm.29126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE To establish and validate an optimal predictive model based on multiparametric MRI for staging liver fibrosis (LF) in rabbits with magnetic resonance elastography (MRE), spin-lattice relaxation time in the rotating frame (T1ρ imaging), SWI, intravoxel incoherent motion (IVIM), and DCE-MRI. METHODS The LF group included 120 rabbits induced by subcutaneous injections of carbon tetrachloride (CCl4 ); 30 normal rabbits served as the control group. Multiparametric MRI was performed, including MRE, T1ρ, SWI, IVIM, and DCE-MRI. The quantitative parameters were analyzed in two groups, with histopathological results serving as the reference standard. The diagnostic performance of multiparametric MRI and the predictive model established by multivariable logistic regression analysis were evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS In total, 32, 67, and 51 rabbits were histologically diagnosed as no fibrosis (stage F0), early-stage LF (F1-F2), and advanced-stage LF (F3-F4), respectively. The LF stages presented a strong correlation with liver stiffness (LS) on MRE (r = 0.90), signal-intensity ratio (SIR) on SWI (r = -0.84), and Ktrans on DCE-MRI (r = 0.71; p < 0.05 for all). The LS and SIR parameters had higher AUC values for distinguishing early-stage LF from both no fibrosis (0.94 and 0.93, respectively) and advanced-stage LF (0.95 and 0.87, respectively). The predictive model showed a slightly higher AUC value of 0.97 (0.90-0.99) than LS and SIR in distinguishing early-stage LF from no fibrosis (p > 0.05), a significantly higher AUC value of 0.98 (0.93-0.99) than the SIR in distinguishing early-stage from advanced-stage LF (p < 0.05). CONCLUSION SWI, DCE-MRI, and MRE in particular showed improved performance for LF diagnosis and stage. The predictive model based on multiparametric MRI was found to further enhance diagnostic accuracy and could serve as an excellent imaging tool for staging LF.
Collapse
Affiliation(s)
- Liqiu Zou
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jinzhao Jiang
- Department of Radiology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Hao Zhang
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenxin Zhong
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Min Xiao
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shunbao Xin
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yang Wang
- Department of Radiology, Sixth Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
16
|
ZENGİN FISTIKÇIOĞLU N, İNAN GÜRCAN N, TOSUN M, USLU H. Comparison of the Efficiency of Conventional Diffusion, Diffusion Tensor Imaging, and Dynamic Susceptibility Contrast-Enhanced Magnetic Resonance Perfusion Imaging in the Evaluation of Liver Fibrosis. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2021. [DOI: 10.30934/kusbed.936876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Application of Field-of-View Optimized and Constrained Undistorted Single Shot (FOCUS) with Intravoxel Incoherent Motion (IVIM) in 3T in Locally Advanced Rectal Cancer. DISEASE MARKERS 2021; 2021:5565902. [PMID: 33936322 PMCID: PMC8055408 DOI: 10.1155/2021/5565902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 01/05/2023]
Abstract
Purpose To evaluate the efficacy of field-of-view (FOV) optimized and constrained undistorted single shot (FOCUS) with IVIM in 3T MRI in the grading of patients with locally advanced rectal cancer. Methods From January 1st to December 31st, 2019, patients with locally advanced rectal cancer were retrieved. FOCUS DWI and FOCUS IVIM were obtained. Apparent diffusion coefficient (ADC) and IVIM parameters including mean true diffusion coefficient (D), pseudodiffusion coefficient associated with blood flow (D∗), and perfusion fraction (f) of the tumor parenchyma and normal rectal wall, as well as the normalized tumor parameters by corresponding normal intestinal wall parameters (ADCNOR, DNOR, D∗NOR, and fNOR), were compared between the well/moderately differentiated and poorly differentiated groups by Student's t-test. The relationship between the above parameters and the histologic grade was analyzed using Spearman's correlation test, with the ROC curve generated. Results Eighty-eight patients (aged 31 to 77 years old, mean = 56) were included for analysis. Dtumor and ftumor were positively correlated with the tumor grade (r = 0.483, p < 0.001 and r = 0.610, p < 0.001, respectively). All the normalized parameters (ADCNOR, DNOR, D∗NOR, and fNOR) were positively correlated with the tumor grade (r = 0.267, p = 0.007; r = 0.564, p = 0.001; r = 0.414, p = 0.005; and r = 0.605, p < 0.001, respectively). The best discriminative parameter was the ftumor value, and the area under the ROC curve was 0.927. With a cut-off value of 22.0%, ftumor had a sensitivity of 88.9% and a specificity of 100%. Conclusion FOCUS IVIM-derived parameters and normalized parameters are useful for predicting the histologic grade in rectal cancer patients.
Collapse
|
18
|
Moura Cunha G, Navin PJ, Fowler KJ, Venkatesh SK, Ehman RL, Sirlin CB. Quantitative magnetic resonance imaging for chronic liver disease. Br J Radiol 2021; 94:20201377. [PMID: 33635729 DOI: 10.1259/bjr.20201377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease (CLD) has rapidly increased in prevalence over the past two decades, resulting in significant morbidity and mortality worldwide. Historically, the clinical gold standard for diagnosis, assessment of severity, and longitudinal monitoring of CLD has been liver biopsy with histological analysis, but this approach has limitations that may make it suboptimal for clinical and research settings. Magnetic resonance (MR)-based biomarkers can overcome the limitations by allowing accurate, precise, and quantitative assessment of key components of CLD without the risk of invasive procedures. This review briefly describes the limitations associated with liver biopsy and the need for non-invasive biomarkers. It then discusses the current state-of-the-art for MRI-based biomarkers of liver iron, fat, and fibrosis, and inflammation.
Collapse
Affiliation(s)
- Guilherme Moura Cunha
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | | | - Kathryn J Fowler
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | | | | | - Claude B Sirlin
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
19
|
Association between liver diffusion-weighted imaging apparent diffusion coefficient values and other measures of liver disease in pediatric autoimmune liver disease patients. Abdom Radiol (NY) 2021; 46:197-204. [PMID: 32462385 DOI: 10.1007/s00261-020-02595-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple quantitative magnetic resonance imaging (MRI) methods have been described to noninvasively detect and characterize liver fibrosis, including diffusion-weighted imaging (DWI). PURPOSE To evaluate associations between liver MRI DWI apparent diffusion coefficient (ADC) values and clinical factors and other quantitative liver MRI metrics in pediatric patients with autoimmune liver disease (AILD). MATERIALS AND METHODS Fifty-seven research liver MRI examinations performed from January 2017 to August 2018 for pediatric AILD registry participants were evaluated. Liver DWI ADC values, liver and spleen stiffness (kPa), and iron-corrected T1 (cT1; Perspectum Diagnostics) were measured at four anatomic levels. Participant age, sex, and laboratory data (alanine aminotransferase [ALT], total bilirubin, alkaline phosphatase, gamma-glutamyl transferase [GGT]) were recorded. Spearman's rank-order correlation (rho) and multiple linear regression were used to evaluate the associations between liver ADC values and predictor variables. RESULTS Mean (SD) participant age was 14.8 (4.0) years, 45.6% (26/57) were girls. Mean liver DWI ADC value was 1.34 (0.14 × 10-3) mm2/s. Liver ADC values showed weak to moderate correlations with liver stiffness (r = - 0.42, p = 0.001), spleen stiffness (r = - 0.34; p = 0.015), whole-liver mean cT1 (r = - 0.39; p = 0.007), ALT (r = - 0.50; p = 0.0001), and GGT (r = - 0.48; p = 0.0004). Multiple linear regression showed liver stiffness (p = 0.0009) and sex (p = 0.023) to be independent predictors of liver ADC values. CONCLUSION Liver DWI ADC values are significantly associated with liver and spleen stiffnesses, liver cT1, ALT, GGT, and participant sex, with liver stiffness and sex remaining significant at multivariable regression. Liver ADC ultimately may play a role in multi-parametric prediction of chronic liver disease/fibrosis severity.
Collapse
|
20
|
Marti-Aguado D, Rodríguez-Ortega A, Alberich-Bayarri A, Marti-Bonmati L. Magnetic Resonance imaging analysis of liver fibrosis and inflammation: overwhelming gray zones restrict clinical use. Abdom Radiol (NY) 2020; 45:3557-3568. [PMID: 32857259 DOI: 10.1007/s00261-020-02713-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Magnetic resonance (MR) identification and grading of subjects with liver fibrosis and inflammation represents a clinical challenge. MR elastography plays a well-defined role in fibrosis estimation, but its use is not widely available in clinical settings. Given that liver MR is becoming the reference standard for fat and iron quantitation, there is a need to clarify whether there is any role for MR imaging in the concomitant evaluation of fibrosis and inflammation in this setting. This review summarizes the diagnostic estimations of different MR imaging parameters obtained from conventional non-contrast-enhanced multiple b values diffusion-weighted acquisitions, variable flip angles T1 relaxation maps and STIR images. Although some derived parameters have shown a significant correlation to histological scores, a small magnitude of effect with wide overlap across severity grades is the rule. Contrary to fat and iron quantification, the low precision and reproducibility of MR imaging metrics limits its clinical relevance in fibrosis and inflammation assessment. In a sequential clinical approach combining different methodologies, MR imaging has no applicability for ruling-out and low accuracy for ruling-in advanced fibrosis. Thereby, MR elastography remains as the only image method with high diagnostic accuracy for the detection of advanced fibrosis. Until date, inflammation remains in a gray zone where biopsy cannot be replaced, and further investigations are needed. The present review offers an in-depth discuss of the MR imaging diagnostic performance for the evaluation of liver fibrosis and inflammation, highlighting the need for scientific improvements.
Collapse
Affiliation(s)
- D Marti-Aguado
- Department of Gastroenterology and Hepatology, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain
| | - A Rodríguez-Ortega
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain
| | - A Alberich-Bayarri
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | - L Marti-Bonmati
- Biomedical Imaging Research Group (GIBI230 and PREBI), and Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain.
- Radiology Department, La Fe University and Polytechnic Hospital, Av Fernando Abril Martorell 106, 46026, Valencia, Spain.
| |
Collapse
|
21
|
Thomaides-Brears HB, Lepe R, Banerjee R, Duncker C. Multiparametric MR mapping in clinical decision-making for diffuse liver disease. Abdom Radiol (NY) 2020; 45:3507-3522. [PMID: 32761254 PMCID: PMC7593302 DOI: 10.1007/s00261-020-02684-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Accurate diagnosis, monitoring and treatment decisions in patients with chronic liver disease currently rely on biopsy as the diagnostic gold standard, and this has constrained early detection and management of diseases that are both varied and can be concurrent. Recent developments in multiparametric magnetic resonance imaging (mpMRI) suggest real potential to bridge the diagnostic gap between non-specific blood-based biomarkers and invasive and variable histological diagnosis. This has implications for the clinical care and treatment pathway in a number of chronic liver diseases, such as haemochromatosis, steatohepatitis and autoimmune or viral hepatitis. Here we review the relevant MRI techniques in clinical use and their limitations and describe recent potential applications in various liver diseases. We exemplify case studies that highlight how these techniques can improve clinical practice. These techniques could allow clinicians to increase their arsenals available to utilise on patients and direct appropriate treatments.
Collapse
Affiliation(s)
| | - Rita Lepe
- Texas Liver Institute, 607 Camden St, Suite 101, San Antonio, TX, 78215, USA
| | | | - Carlos Duncker
- Perspectum, 600 N. Pearl St. Suite 1960, Plaza of The Americas, Dallas, TX, 75201, USA
| |
Collapse
|
22
|
Tao YY, Zhou Y, Wang R, Gong XQ, Zheng J, Yang C, Yang L, Zhang XM. Progress of intravoxel incoherent motion diffusion-weighted imaging in liver diseases. World J Clin Cases 2020; 8:3164-3176. [PMID: 32874971 PMCID: PMC7441263 DOI: 10.12998/wjcc.v8.i15.3164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023] Open
Abstract
Traditional magnetic resonance (MR) diffusion-weighted imaging (DWI) uses a single exponential model to obtain the apparent diffusion coefficient to quantitatively reflect the diffusion motion of water molecules in living tissues, but it is affected by blood perfusion. Intravoxel incoherent motion (IVIM)-DWI utilizes a double-exponential model to obtain information on pure water molecule diffusion and microcirculatory perfusion-related diffusion, which compensates for the insufficiency of traditional DWI. In recent years, research on the application of IVIM-DWI in the diagnosis and treatment of hepatic diseases has gradually increased and has achieved considerable progress. This study mainly reviews the basic principles of IVIM-DWI and related research progress in the diagnosis and treatment of hepatic diseases.
Collapse
Affiliation(s)
- Yun-Yun Tao
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi Zhou
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ran Wang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xue-Qin Gong
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Jing Zheng
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Cui Yang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
23
|
Ye Z, Wei Y, Chen J, Yao S, Song B. Value of intravoxel incoherent motion in detecting and staging liver fibrosis: A meta-analysis. World J Gastroenterol 2020; 26:3304-3317. [PMID: 32684744 PMCID: PMC7336331 DOI: 10.3748/wjg.v26.i23.3304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver fibrosis (LF) is a common pathological feature of all chronic liver diseases. With the accumulation of extracellular matrix in the fibrotic liver, true molecular water diffusion and perfusion-related diffusion are restricted. Intravoxel incoherent motion (IVIM) can capture the information on tissue diffusivity and microcapillary perfusion separately and reflect the fibrotic severity with diffusion coefficients.
AIM To investigate the diagnostic performance of IVIM in detecting and staging LF with histology as a reference standard.
METHODS A comprehensive literature search was conducted to identify studies on the diagnostic accuracy of IVIM for assessment of histologically proven LF. The stages of LF were classified as F0 (no fibrosis), F1 (portal fibrosis without septa), F2 (periportal fibrosis with few septa), F3 (septal fibrosis), and F4 (cirrhosis) according to histopathological findings. Data were extracted to calculate the pooled sensitivity, specificity, positive and negative likelihood ratios, and diagnostic odds ratio, as well as the area under the summary receiver operating characteristic curve (AUC) in each group.
RESULTS A total of 12 studies with 923 subjects were included in this meta-analysis with 5 studies (n = 465) for LF ≥ F1, 9 studies (n = 757) for LF ≥ F2, 4 studies (n = 413) for LF ≥ F3, and 6 studies (n = 562) for LF = F4. The pooled sensitivity and specificity were estimated to be 0.78 (95% confidence interval: 0.73-0.82) and 0.81 (0.74-0.86) for LF ≥ F1 detection with IVIM; 0.82 (0.79-0.86) and 0.80 (0.75-0.84) for staging F2 fibrosis; 0.85 (0.79-0.90) and 0.83 (0.77-0.87) for staging F3 fibrosis, and 0.90 (0.84-0.94) and 0.75 (0.70-0.79) for detecting F4 cirrhosis, respectively. The AUCs for LF ≥ F1, F2, F3, F4 detection were 0.862 (0.811-0.914), 0.883 (0.856-0.909), 0.886 (0.865-0.907), and 0.899 (0.866-0.932), respectively. Moderate to substantial heterogeneity was observed with inconsistency index (I2) ranging from 0% to 77.9%. No publication bias was detected.
CONCLUSION IVIM is a noninvasive tool with good diagnostic performance in detecting and staging LF. Optimized and standardized IVIM protocols are needed to further improve its diagnostic accuracy in clinical practice.
Collapse
Affiliation(s)
- Zheng Ye
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Wei
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Shan Yao
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|