1
|
Harper KC, Ronot M, Wells ML, Luna A, Ba-Ssalamah A, Wang J, Welle CL, Silva AC, Fidler J, Venkatesh SK. Hypointense Findings on Hepatobiliary Phase MR Images. Radiographics 2025; 45:e240090. [PMID: 39883575 DOI: 10.1148/rg.240090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Hepatobiliary (HB) contrast agents are increasingly valuable diagnostic tools in MRI, offering a wider range of applications as their clinical use expands. Normal hepatocytes take up HB contrast agents, which are subsequently excreted in bile. This property creates a distinct HB phase providing valuable insights into liver function and biliary anatomy. HB contrast agents can assist in diagnosing a broad spectrum of HB diseases ranging from diffuse liver disease to focal hepatic lesions and can delineate anatomic details of the biliary tree. Understanding the pharmacodynamics of HB contrast agents is paramount to their appropriate clinical application and troubleshooting. HB phase hypointensity can arise from various diffuse and focal abnormalities that may or may not be associated with biliary excretion. Hypointensity during the HB phase can be broadly grouped into diffuse hypointensity, regional hypointensity, and focal lesions for better evaluation of the underlying cause. Abnormalities may arise from hepatic parenchymal, biliary, or vascular causes, or a combination thereof in each of the broad groups. Recognition of a suboptimal hypointense HB phase is important in the evaluation of focal lesions in patients with cirrhosis of the liver and particularly in those with hepatocellular carcinoma. Furthermore, hypointensity can also suggest the aggressiveness of malignancies such as hepatocellular carcinoma or colorectal metastases, which may affect the prognosis. It is essential to consider all imaging findings relative to the clinical context and the complete set of the MRI sequences performed for diagnosis of liver abnormalities. This comprehensive approach minimizes the risk of misinterpretation or pitfalls. The authors aim to equip radiologists with key insights for accurately understanding hypointensity in the HB phase, ultimately leading to more accurate diagnoses. ©RSNA, 2025 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Kelly C Harper
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Maxime Ronot
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Michael L Wells
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Antonio Luna
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Ahmed Ba-Ssalamah
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Jin Wang
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Christopher L Welle
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Alvin C Silva
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Jeff Fidler
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| | - Sudhakar K Venkatesh
- From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.)
| |
Collapse
|
3
|
Carney BW, Gholami S, Fananapazir G, Sekhon S, Lamba R, Loehfelm TW, Wilson MD, Corwin MT. Utility of combined gadoxetic acid and ferumoxytol-enhanced liver MRI for preoperative detection of colorectal cancer liver metastases: a pilot study. Acta Radiol 2022; 64:1357-1362. [PMID: 36437569 DOI: 10.1177/02841851221136499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Colorectal cancer (CRC) is the second-leading cause of cancer-related death worldwide and resection of CRC metastases confined to the liver is the treatment of choice when feasible. Ferumoxytol is an off-label contrast agent that opacifies vasculature and may be helpful in distinguishing metastases from small hemangiomas and blood vessels on gadoxetic acid-enhanced magnetic resonance imaging (MRI). Purpose To compare the diagnostic accuracy of MRI using a standard gadoxetic acid protocol and a combined gadoxetic acid/ferumoxytol protocol in patients with suspected colorectal hepatic metastases. Material and Methods In this institutional review board-approved, single-institution, retrospective study, eight patients underwent gadoxetic acid-enhanced liver MRI, supplemented with additional T1-weighted ferumoxytol enhanced sequences. Two radiologists in consensus identified all metastases using all available sequences, which served as the reference standard. Two different radiologists reviewed each exam twice, once using the standard protocol and once with additional ferumoxytol sequences. The detection rate was estimated as the predicted probability of a metastasis along with the 95% confidence interval (CI) using hierarchical logistic regression models. Results A total of 49 metastases were identified. The mean diameter was 10 mm, measured in greatest axial dimension (median=7 mm; range=2–70 mm). Readers 1 and 2 had detection rates of 69.6% (95% CI = 48.2–85.0) and 53.1% (95% CI = 35.2–70.3) for gadoxetic acid alone and 98.0% (95% CI = 86.3–99.7) and 83.5% (95% CI = 59.3–94.7) for combined protocol. Conclusion In this preliminary investigation, adding ferumoxytol-enhanced sequences to gadoxetic acid liver MRI protocol increased the detection rate of CRC hepatic metastases and may aid in preoperative decision making.
Collapse
Affiliation(s)
- Benjamin W Carney
- Department of Radiology, University of California, Davis Health System, Sacramento, CA, USA
| | - Sepideh Gholami
- Department of Surgery, University of California, Davis Health System, Sacramento, CA, USA
| | - Ghaneh Fananapazir
- Department of Radiology, University of California, Davis Health System, Sacramento, CA, USA
| | - Simran Sekhon
- Department of Radiology, University of California, Davis Health System, Sacramento, CA, USA
| | - Ramit Lamba
- Department of Radiology, University of California, Davis Health System, Sacramento, CA, USA
| | - Thomas W Loehfelm
- Department of Radiology, University of California, Davis Health System, Sacramento, CA, USA
| | - Machelle D Wilson
- Department of Biostatistics, University of California, Davis Health System, Sacramento, CA, USA
| | - Michael T Corwin
- Department of Radiology, University of California, Davis Health System, Sacramento, CA, USA
| |
Collapse
|