1
|
Mirza-Aghazadeh-Attari M. Deep Learning Radiopathomics for Predicting Tumor Vasculature and Prognosis in Hepatocellular Carcinoma. Radiol Imaging Cancer 2025; 7:e250141. [PMID: 40314587 DOI: 10.1148/rycan.250141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD 21205
| |
Collapse
|
2
|
Zhong L, Long S, Pei Y, Liu W, Chen J, Bai Y, Luo Y, Zou B, Guo J, Li M, Li W. MRI Tomoelastography to Assess the Combined Status of Vessels Encapsulating Tumor Clusters and Microvascular Invasion in Hepatocellular Carcinoma. J Magn Reson Imaging 2025; 61:2169-2182. [PMID: 39506537 DOI: 10.1002/jmri.29654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Integrating vessels encapsulating tumor clusters (VETC) and microvascular invasion (MVI) (VM hereafter) is potentially useful in risk stratification of hepatocellular carcinoma (HCC). However, noninvasive assessment methods for VM are lacking. PURPOSE To investigate the diagnostic performance of tomoelastography in assessing the VM status in HCC. STUDY TYPE Retrospective. POPULATION One hundred sixty-eight patients with surgically confirmed HCC consisting of 115 training and 53 validation cohorts, divided into negative-VM and positive-VM groups with mild or severe-VMs. Of them, 127 patients completed the follow-up (median: 26.1 months). FIELD STRENGTH/SEQUENCE 3D multifrequency tomoelastography with a single-shot spin-echo echo-planar imaging sequence, and liver MRI including T1-weighted in-phase and opposed-phase gradient echo (GRE), T2-weighted turbo spin echo, diffusion-weighted imaging and dynamic contrast-enhanced T1-weighted GRE sequences at 3.0 T. ASSESSMENT Shear wave speed (c) and phase angle of the shear modulus (φ) were calculated on tomoelastograms. Imaging features were visually analyzed and clinical features were collected. Conventional models used clinical and imaging features while nomograms combined tomoelastography, clinical and imaging features. STATISTICAL TESTS Univariable and multivariable logistic regression analyses, nomogram, area under the receiver operating characteristic curve (AUC), DeLong test, Kaplan-Meier analysis and log-rank test. P < 0.05 was considered statistically significant. RESULTS Tumor-to-liver parenchyma ratio of c (cr) and tumor c were independent risk factors for positive-VM and severe-VM, respectively. In validation cohort, the nomograms including cr and tumor c performed significantly better than the conventional models for diagnosing positive-VM (0.84 [95% CI: 0.72-0.93] vs. 0.77 [95% CI: 0.64-0.88]) and severe-VM (0.86 [95% CI: 0.68-0.96] vs. 0.75 [95% CI: 0.55-0.89]). Patients with estimated positive-VM (9.3 months)/severe-VM (9.2 months) based on nomograms had shorter median recurrence-free survival than those with estimated negative-VM (>20.0 months)/mild-VM (18.0 months) in validation cohort. DATA CONCLUSION Tomoelastography based-nomograms showed good performance for noninvasively assessing VM status in patients with HCC. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Linhui Zhong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shichao Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yigang Pei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenguang Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Bai
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijing Luo
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bocheng Zou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Guo
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mengsi Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Lu M, Yan Z, Qu Q, Zhu G, Xu L, Liu M, Jiang J, Gu C, Chen Y, Zhang T, Zhang X. Diagnostic Model for Proliferative HCC Using LI-RADS: Assessing Therapeutic Outcomes in Hepatectomy and TKI-ICI Combination. J Magn Reson Imaging 2025; 61:134-147. [PMID: 38647041 DOI: 10.1002/jmri.29400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Proliferative hepatocellular carcinoma (HCC), aggressive with poor prognosis, and lacks reliable MRI diagnosis. PURPOSE To develop a diagnostic model for proliferative HCC using liver imaging reporting and data system (LI-RADS) and assess its prognostic value. STUDY TYPE Retrospective. POPULATION 241 HCC patients underwent hepatectomy (90 proliferative HCCs: 151 nonproliferative HCCs), divided into the training (N = 167) and validation (N = 74) sets. 57 HCC patients received combination therapy with tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs). FIELD STRENGTH/SEQUENCE 3.0 T, T1- and T2-weighted, diffusion-weighted, in- and out-phase, T1 high resolution isotropic volume excitation and dynamic gadoxetic acid-enhanced imaging. ASSESSMENT LI-RADS v2018 and other MRI features (intratumoral artery, substantial hypoenhancing component, hepatobiliary phase peritumoral hypointensity, and irregular tumor margin) were assessed. A diagnostic model for proliferative HCC was established, stratifying patients into high- and low-risk groups. Follow-up occurred every 3-6 months, and recurrence-free survival (RFS), progression-free survival (PFS) and overall survival (OS) in different groups were compared. STATISTICAL TESTS Fisher's test or chi-square test, t-test or Mann-Whitney test, logistic regression, Harrell's concordance index (C-index), Kaplan-Meier curves, and Cox proportional hazards. Significance level: P < 0.05. RESULTS The diagnostic model, incorporating corona enhancement, rim arterial phase hyperenhancement, infiltrative appearance, intratumoral artery, and substantial hypoenhancing component, achieved a C-index of 0.823 (training set) and 0.804 (validation set). Median follow-up was 32.5 months (interquartile range [IQR], 25.1 months) for postsurgery patients, and 16.8 months (IQR: 13.2 months) for combination-treated patients. 99 patients experienced recurrence, and 30 demonstrated tumor nonresponse. Differences were significant in RFS and OS rates between high-risk and low-risk groups post-surgery (40.3% vs. 65.8%, 62.3% vs. 90.1%, at 5 years). In combination-treated patients, PFS rates differed significantly (80.6% vs. 7.7% at 2 years). DATA CONCLUSION The MR-based model could pre-treatment identify proliferative HCC and assist in prognosis evaluation. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Mengtian Lu
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Zuyi Yan
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Qi Qu
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Guodong Zhu
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Lei Xu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Maotong Liu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Jifeng Jiang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Chunyan Gu
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Ying Chen
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Tao Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Xueqin Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Yang J, Dong X, Jin S, Wang S, Wang Y, Zhang L, Wei Y, Wu Y, Wang L, Zhu L, Feng Y, Gan M, Hu H, Ji W. Radiomics Model of Dynamic Contrast-Enhanced MRI for Evaluating Vessels Encapsulating Tumor Clusters and Microvascular Invasion in Hepatocellular Carcinoma. Acad Radiol 2025; 32:146-156. [PMID: 39025700 DOI: 10.1016/j.acra.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
RATIONALE AND OBJECTIVES To develop and validate a clinical-radiomics model of dynamic contrast-enhanced MRI (DCE-MRI) for the preoperative discrimination of Vessels encapsulating tumor clusters (VETC)- microvascular invasion (MVI) and prognosis of hepatocellular carcinoma (HCC). MATERIALS AND METHODS 219 HCC patients from Institution 1 were split into internal training and validation groups, with 101 patients from Institution 2 assigned to external validation. Histologically confirmed VETC-MVI pattern categorizing HCC into VM-HCC+ (VETC+/MVI+, VETC-/MVI+, VETC+/MVI-) and VM-HCC- (VETC-/MVI-). The regions of intratumor and peritumor were segmented manually in the arterial, portal-venous and delayed phase (AP, PP, and DP, respectively) of DCE-MRI. Six radiomics models (intratumor and peritumor in AP, PP, and DP of DCE-MRI) and one clinical model were developed for assessing VM-HCC. Establishing intra-tumoral and peri-tumoral models through combining intratumor and peritumor features. The best-performing radiomics model and the clinical model were then integrated to create a Combined model. RESULTS In institution 1, pathological VM-HCC+ were confirmed in 88 patients (training set: 61, validation set: 27). In internal testing, the Combined model had an AUC of 0.85 (95% CI: 0.76-0.93), which reached an AUC of 0.75 (95% CI: 0.66-0.85) in external validation. The model's predictions were associated with early recurrence and progression-free survival in HCC patients. CONCLUSIONS The clinical-radiomics model offers a non-invasive approach to discern VM-HCC and predict HCC patients' prognosis preoperatively, which could offer clinicians valuable insights during the decision-making phase.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China; Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
| | - Xue Dong
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Shengze Jin
- Department of Radiology, Taizhou Hospital of Zhejiang Province, Shaoxing University, Taizhou 318000 Zhejiang, China.
| | - Sheng Wang
- Department of Radiology, Taizhou First People's Hospital, Wenzhou Medical College, Taizhou 318020 Zhejiang, China.
| | - Yanna Wang
- Department of Radiology, Taizhou Central Hospital,Wenzhou Medical University, Taizhou 318000 Zhejiang,China.
| | - Limin Zhang
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yuguo Wei
- Precision Health Institution, GE Healthcare, 310000 Xihu District, Hangzhou, China.
| | - Yitian Wu
- Department of Radiology, Taizhou Hospital of Zhejiang Province, Shaoxing University, Taizhou 318000 Zhejiang, China.
| | - Lingxia Wang
- Department of Radiology, Taizhou Hospital, Zhejiang University, Taizhou 318000 Zhejiang, China.
| | - Lingwei Zhu
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China.
| | - Yuyi Feng
- Department of Radiology, Taizhou Hospital of Zhejiang Province, Shaoxing University, Taizhou 318000 Zhejiang, China.
| | - Meifu Gan
- Department of Pathology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China.
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016 Hangzhou, People's Republic of China.
| | - Wenbin Ji
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China; Key Laboratory of evidence-based Radiology of Taizhou, Linhai 317000, Zhejiang, China.
| |
Collapse
|
5
|
Pan J, Huang H, Zhang S, Zhu Y, Zhang Y, Wang M, Zhang C, Zhao YC, Chen F. Intraindividual comparison of CT and MRI for predicting vessels encapsulating tumor clusters in hepatocellular carcinoma. Eur Radiol 2025; 35:61-72. [PMID: 38992109 DOI: 10.1007/s00330-024-10944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVES To establish and validate scoring models for predicting vessels encapsulating tumor clusters (VETC) in hepatocellular carcinoma (HCC) using computed tomography (CT) and magnetic resonance imaging (MRI), and to intra-individually compare the predictive performance between the two modalities. METHODS We retrospectively included 324 patients with surgically confirmed HCC who underwent preoperative dynamic CT and MRI with extracellular contrast agent between June 2019 and August 2020. These patients were then divided into a discovery cohort (n = 227) and a validation cohort (n = 97). Imaging features and Liver Imaging Reporting and Data System (LI-RADS) categories of VETC-positive HCCs were evaluated. Logistic regression analyses were conducted on the discovery cohort to identify clinical and imaging predictors associated with VETC-positive cases. Subsequently, separate CT-based and MRI-based scoring models were developed, and their diagnostic performance was compared using generalized estimating equations. RESULTS On both CT and MRI, VETC-positive HCCs exhibited a higher frequency of size > 5.0 cm, necrosis or severe ischemia, non-smooth tumor margin, targetoid appearance, intratumor artery, and heterogeneous enhancement with septations or irregular ring-like structure compared to VETC-negative HCCs (all p < 0.05). Regarding LI-RADS categories, VETC-positive HCCs were more frequently categorized as LR-M than VETC-negative cases (all p < 0.05). In the validation cohort, the CT-based model showed similar sensitivity (76.7% vs. 86.7%, p = 0.375), specificity (83.6% vs. 74.6%, p = 0.180), and area under the curve value (0.80 vs. 0.81, p = 0.910) to the MRI-based model in predicting VETC-positive HCCs. CONCLUSION Preoperative CT and MRI demonstrated comparable performance in the identification of VETC-positive HCCs, thus displaying promising predictive capabilities. CLINICAL RELEVANCE STATEMENT Both computed tomography and magnetic resonance imaging demonstrated promise in preoperatively identifying the vessel-encapsulating tumor cluster pattern in hepatocellular carcinoma, with no statistically significant difference between the two modalities, potentially adding additional prognostic value. KEY POINTS Computed tomography (CT) and magnetic resonance imaging (MRI) show promise in the preoperative identification of vessels encapsulating tumor clusters-positive hepatocellular carcinoma (HCC). HCC with vessels encapsulating tumor cluster patterns were more frequently LR-M compared to those without. These CT and MRI models showed comparable ability in identifying vessels encapsulating tumor clusters-positive HCC.
Collapse
Affiliation(s)
- Junhan Pan
- Department of Radiology, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Huizhen Huang
- Department of Radiology, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Siying Zhang
- Department of Radiology, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Yuhao Zhang
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Meng Wang
- Department of Pathology, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Cong Zhang
- Department of Radiology, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Yan-Ci Zhao
- Department of Radiology, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
6
|
Matsuda K, Ueno A, Tsuzaki J, Kurebayashi Y, Masugi Y, Yamazaki K, Tamura M, Abe Y, Hasegawa Y, Kitago M, Jinzaki M, Sakamoto M. Vessels encapsulating tumor clusters contribute to the intratumor heterogeneity of HCC on Gd-EOB-DTPA-enhanced MRI. Hepatol Commun 2025; 9:e0593. [PMID: 39670871 PMCID: PMC11637751 DOI: 10.1097/hc9.0000000000000593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/14/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Vessels encapsulating tumor clusters (VETC) pattern is tumor vasculature of HCC and is a predictor of prognosis and therapeutic efficacy. Recent radiological studies have demonstrated the predictability of VETC from preoperative images, but the mechanisms of image formation are not elucidated. This study aims to determine the relationship between VETC and intratumor heterogeneity in Gd-EOB-DTPA-enhanced magnetic resonance imaging (EOB-MRI) and to provide its pathological evidence. METHODS Radiologists visually classified preoperative arterial- and hepatobiliary-phase EOB-MRI images of 204 surgically resected HCCs into patterns based on heterogeneity and signal intensity; these classifications were validated using texture analysis. Single and multiplex immunohistochemistry for CD34, h-caldesmon, and OATP1B3 were performed to evaluate VETC, arterial vessel density (AVD), and OATP1B3 expression. Recurrence-free survival was assessed using the generalized Wilcoxon test. The contribution of clinicoradiological factors to the prediction of VETC was evaluated by random forest and least absolute shrinkage and selection operator regression. RESULTS VETC was frequently found in tumors with arterial-phase heterogeneous hyper-enhancement patterns and in tumors with hepatobiliary-phase heterogeneous hyperintense/isointense patterns (HBP-Hetero). AVD and OATP1B3 expression positively correlated with signal intensity in the arterial and hepatobiliary phases, respectively. Intratumor spatial analysis revealed that AVD and OATP1B3 expression were lower in VETC regions than in tumor regions without VETC. Patients with HBP-Hetero tumors had shorter recurrence-free survival. Machine learning models highlighted the importance of serum PIVKA-II, tumor size, and enhancement pattern of arterial and hepatobiliary phase for VETC prediction. CONCLUSIONS VETC is associated with local reductions of both AVD and OATP1B3 expression, likely contributing to heterogeneous enhancement patterns in EOB-MRI. Evaluation of the arterial and hepatobiliary phases of EOB-MRI would enhance the predictability of VETC.
Collapse
Affiliation(s)
- Kosuke Matsuda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Akihisa Ueno
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Junya Tsuzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Masashi Tamura
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Hasegawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- School of Medicine, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
7
|
Lv J, Li X, Mu R, Zheng W, Yang P, Huang B, Liu F, Liu X, Song Z, Qin X, Zhu X. Comparison of the diagnostic efficacy between imaging features and iodine density values for predicting microvascular invasion in hepatocellular carcinoma. Front Oncol 2024; 14:1437347. [PMID: 39469645 PMCID: PMC11513251 DOI: 10.3389/fonc.2024.1437347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
Background In recent years, studies have confirmed the predictive capability of spectral computer tomography (CT) in determining microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). Discrepancies in the predicted MVI values between conventional CT imaging features and spectral CT parameters necessitate additional validation. Methods In this retrospective study, 105 cases of small HCC were reviewed, and participants were divided into MVI-negative (n=53, Male:48 (90.57%); mean age, 59.40 ± 11.79 years) and MVI-positive (n=52, Male:50(96.15%); mean age, 58.74 ± 9.21 years) groups using pathological results. Imaging features and iodine density (ID) obtained from three-phase enhancement spectral CT scans were gathered from all participants. The study evaluated differences in imaging features and ID values of HCC between two groups, assessing their diagnostic accuracy in predicting MVI occurrence in HCC patients. Furthermore, the diagnostic efficacy of imaging features and ID in predicting MVI was compared. Results Significant differences were noted in the presence of mosaic architecture, nodule-in-nodule architecture, and corona enhancement between the groups, all with p-values < 0.001. There were also notable disparities in IDs between the two groups across the arterial phase, portal phase, and delayed phases, all with p-values < 0.001. The imaging features of nodule-in-nodule architecture, corona enhancement, and nonsmooth tumor margin demonstrate significant diagnostic efficacy, with area under the curve (AUC) of 0.761, 0.742, and 0.752, respectively. In spectral CT analysis, the arterial, portal, and delayed phase IDs exhibit remarkable diagnostic accuracy in detecting MVI, with AUCs of 0.821, 0.832, and 0.802, respectively. Furthermore, the combined models of imaging features, ID, and imaging features with ID reveal substantial predictive capabilities, with AUCs of 0.846, 0.872, and 0.904, respectively. DeLong test results indicated no statistically significant differences between imaging features and IDs. Conclusions Substantial differences were noted in imaging features and ID between the MVI-negative and MVI-positive groups in this study. The ID and imaging features exhibited a robust diagnostic precision in predicting MVI. Additionally, our results suggest that both imaging features and ID showed similar predictive efficacy for MVI.
Collapse
Affiliation(s)
- Jian Lv
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xin Li
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ronghua Mu
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Wei Zheng
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Peng Yang
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Bingqin Huang
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
- Graduate School, Guilin Medical University, Guilin, China
| | - Fuzhen Liu
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiaomin Liu
- Philips (China) Investment Co., Ltd., Guangzhou Branch, Guangzhou, China
| | - Zhixuan Song
- Philips (China) Investment Co., Ltd., Guangzhou Branch, Guangzhou, China
| | - Xiaoyan Qin
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiqi Zhu
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Life Science and clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
8
|
Liu Z, Mao Y, Liu L, Li J, Li Q, Zhou Y. Preoperative CT features for characterization of vessels that encapsulate tumor clusters in hepatocellular carcinoma. Eur J Radiol 2024; 179:111681. [PMID: 39142009 DOI: 10.1016/j.ejrad.2024.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE To explore the capability of preoperative CT imaging features, in combination with clinical indicators, for predicting vessels that encapsulate tumor clusters (VETC) pattern and prognosis in hepatocellular carcinoma (HCC). MATERIALS AND METHODS From January 2015 to May 2022, patients with HCC who underwent curative resection and preoperative enhanced CT were retrospectively included. Clinical indicators and imaging featuresassociated with the VETC pattern were determined by logistic regression analyses. The early recurrence (ER) rate was determined using the Kaplan-Meier survival curve. Factors associated with ER after surgical resection were identified by Cox regression analyses. RESULT A total of 243 patients with HCCwere evaluated. The total bilirubin > 17.1 μmol/L (odds ratio [OR] 3.43, 95 % Confidence Interval [CI] 1.70, 6.91, p = 0.001), serum α-fetoprotein > 100 ng/mL (OR 2.41, 95 % CI 1.25, 4.67, p = 0.009), intratumor artery (IA) (OR 2.00, 95 % CI 1.04, 3.86,p = 0.039) and arterial peritumoral enhancement (OR 2.60, 95 % CI 1.13, 5.96, p = 0.025) were independent risk factors for VETC+-HCC. The VETC+status andCT feature ofIA were associated with an increased risk of recurrence, with a shorter median RFS, compared to those without these factors (p < 0.001 and p = 0.019, respectively). In multivariable Cox regression analysis, the VETC+(hazard ratio [HR] 2.60, 95 % CI 1.66, 4.09, p < 0.001), morphological patterns of confluent multinodular growth (HR 1.79, 95 % CI 1.10, 2.91,p = 0.019), the number of the tumors (≥2) (HR 2.69, 95 % CI 1.56, 4.65, p < 0.001), and the IA (HR 1.73, 95 % CI 1.12, 2.66, p = 0.013) were independent predictors of ER in patients with HCC after surgical resection. CONCLUSION Preoperative CT features combined with clinical indicators could predict VETC pattern, and the CT features, along with VETC status, were of prognostic significance for early postoperative recurrence in patients with HCC. CLINICAL RELEVANCE STATEMENT Preoperative CT features combined with clinical indicators could predict VETC pattern, and the CT features, along with VETC status, were of prognostic significance for early recurrence in patients with HCC after surgical resection.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing 400016, PR China.
| | - Yun Mao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing 400016, PR China.
| | - Liu Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing 400016, PR China.
| | - Junjie Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, PR China.
| | - Qingshu Li
- Department of Pathology, School of Basic Medicine, Chongqing Medical University/ Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University/ Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing 400016, PR China.
| | - Yin Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing 400016, PR China.
| |
Collapse
|
9
|
Chen H, Dong H, He R, Gu M, Zhao X, Song K, Zou W, Jia N, Liu W. Optimizing predictions: improved performance of preoperative gadobenate-enhanced MRI hepatobiliary phase features in predicting vessels encapsulating tumor clusters in hepatocellular carcinoma-a multicenter study. Abdom Radiol (NY) 2024; 49:3412-3426. [PMID: 38713432 DOI: 10.1007/s00261-024-04283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Vessels Encapsulating Tumor Clusters (VETC) are now recognized as independent indicators of recurrence and overall survival in hepatocellular carcinoma (HCC) patients. However, there has been limited investigation into predicting the VETC pattern using hepatobiliary phase (HBP) features from preoperative gadobenate-enhanced MRI. METHODS This study involved 252 HCC patients with confirmed VETC status from three different hospitals (Hospital 1: training set with 142 patients; Hospital 2: test set with 64 patients; Hospital 3: validation set with 46 patients). Independent predictive factors for VETC status were determined through univariate and multivariate logistic analyses. Subsequently, these factors were used to construct two distinct VETC prediction models. Model 1 included all independent predictive factors, while Model 2 excluded HBP features. The performance of both models was assessed using the Area Under the Curve (AUC), Decision Curve Analysis, and Calibration Curve. Prediction accuracy between the two models was compared using Net Reclassification Improvement (NRI) and Integrated Discriminant Improvement (IDI). RESULTS CA199, IBIL, shape, peritumoral hyperintensity on HBP, and arterial peritumoral enhancement were independent predictors of VETC. Model 1 showed robust predictive performance, with AUCs of 0.836 (training), 0.811 (test), and 0.802 (validation). Model 2 exhibited moderate performance, with AUCs of 0.813, 0.773, and 0.783 in the respective sets. Calibration and decision curves for both models indicated consistent predictions between predicted and actual VETC, benefiting HCC patients. NRI showed Model 1 increased by 0.326, 0.389, and 0.478 in the training, test, and validation sets compared to Model 2. IDI indicated Model 1 increased by 0.036, 0.028, and 0.025 in the training, test, and validation sets compared to Model 2. CONCLUSION HBP features from preoperative gadobenate-enhanced MRI can enhance the predictive performance of VETC in HCC.
Collapse
Affiliation(s)
- Huilin Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Hui Dong
- Department of Pathology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ruilin He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengting Gu
- Department of Radiology, School of Medicine, Tongji University, Tongji Hospital, Shanghai, China
| | - Xingyu Zhao
- Department of Radiology, School of Medicine, Tongji University, Tongji Hospital, Shanghai, China
| | - Kairong Song
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wenjie Zou
- Department of Radiology, School of Medicine, Tongji University, Tongji Hospital, Shanghai, China
| | - Ningyang Jia
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Wanmin Liu
- Department of Radiology, School of Medicine, Tongji University, Tongji Hospital, Shanghai, China.
| |
Collapse
|
10
|
Qu Q, Liu Z, Lu M, Xu L, Zhang J, Liu M, Jiang J, Gu C, Ma Q, Huang A, Zhang X, Zhang T. Preoperative Gadoxetic Acid-Enhanced MRI Features for Evaluation of Vessels Encapsulating Tumor Clusters and Microvascular Invasion in Hepatocellular Carcinoma: Creating Nomograms for Risk Assessment. J Magn Reson Imaging 2024; 60:1094-1110. [PMID: 38116997 DOI: 10.1002/jmri.29187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Vessels encapsulating tumor cluster (VETC) and microvascular invasion (MVI) have a synergistic effect on prognosis assessment and treatment selection of hepatocellular carcinoma (HCC). Preoperative noninvasive evaluation of VETC and MVI is important. PURPOSE To explore the diagnosis value of preoperative gadoxetic acid (GA)-enhanced magnetic resonance imaging (MRI) features for MVI, VETC, and recurrence-free survival (RFS) in HCC. STUDY TYPE Retrospective. POPULATION 240 post-surgery patients with 274 pathologically confirmed HCC (allocated to training and validation cohorts with a 7:3 ratio) and available tumor marker data from August 2014 to December 2021. FIELD STRENGTH/SEQUENCE 3-T, T1-, T2-, diffusion-weighted imaging, in/out-phase imaging, and dynamic contrast-enhanced imaging. ASSESSMENT Three radiologists subjectively reviewed preoperative MRI, evaluated clinical and conventional imaging features associated with MVI+, VETC+, and MVI+/VETC+ HCC. Regression-based nomograms were developed for HCC in the training cohort. Based on the nomograms, the RFS prognostic stratification system was further. Follow-up occurred every 3-6 months. STATISTICAL TESTS Chi-squared test or Fisher's exact test, Mann-Whitney U-test or t-test, least absolute shrinkage and selection operator-penalized, multivariable logistic regression analyses, receiver operating characteristic analysis, Harrell's concordance index (C-index), Kaplan-Meier plots. Significance level: P < 0.05. RESULTS In the training group, 44 patients with MVI+ and 74 patients with VETC+ were histologically confirmed. Three nomograms showed good performance in the training (C-indices: MVI+ vs. VETC+ vs. MVI+/VETC+, 0.892 vs. 0.848 vs. 0.910) and validation (C-indices: MVI+ vs. VETC+ vs. MVI+/VETC+, 0.839 vs. 0.810 vs. 0.855) cohorts. The median follow-up duration for the training cohort was 43.6 (95% CI, 35.0-52.2) months and 25.8 (95% CI, 16.1-35.6) months for the validation cohort. Patients with either pathologically confirmed or nomogram-estimated MVI, VETC, and MVI+/VETC+ suffered higher risk of recurrence. DATA CONCLUSION GA-enhanced MRI and clinical variables might assist in preoperative estimation of MVI, VETC, and MVI+/VETC+ in HCC. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Qi Qu
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Zixin Liu
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Mengtian Lu
- Nantong University, Nantong, Jiangsu, China
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Lei Xu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Jiyun Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Maotong Liu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Jifeng Jiang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Chunyan Gu
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Qinrong Ma
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Aina Huang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Xueqin Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| | - Tao Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, Jiangsu, China
| |
Collapse
|
11
|
Zhang J, Liu M, Qu Q, Lu M, Liu Z, Yan Z, Xu L, Gu C, Zhang X, Zhang T. Radiomics analysis of gadoxetic acid-enhanced MRI for evaluating vessels encapsulating tumour clusters in hepatocellular carcinoma. Front Oncol 2024; 14:1422119. [PMID: 39193385 PMCID: PMC11347320 DOI: 10.3389/fonc.2024.1422119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose The aim of this study was to develop an integrated model that combines clinical-radiologic and radiomics features based on gadoxetic acid-enhanced MRI for preoperative evaluating of vessels encapsulating tumour clusters (VETC) patterns in hepatocellular carcinoma (HCC). Methods This retrospective study encompassed 234 patients who underwent surgical resection. Among them, 101 patients exhibited VETC-positive HCC, while 133 patients displayed VETC-negative HCC. Volumes of interest were manually delineated for entire tumour regions in the arterial phase (AP), portal phase (PP), and hepatobiliary phase (HBP) images. Independent predictors for VETC were identified through least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression analysis, utilising radiomics-AP, PP, HBP, along with 24 imaging features and 19 clinical characteristics. Subsequently, the clinico-radiologic model, radiomics model, and integrated model were established, with a nomogram visualising the integrated model. The performance for VETC prediction was evaluated using a receiver operating characteristic curve. Results The integrated model, composed of 3 selected traditional imaging features (necrosis or severe ischemia [OR=2.457], peripheral washout [OR=1.678], LLR_AP (Lesion to liver ratio_AP) [OR=0.433] and radiomics-AP [OR=2.870], radiomics-HBP [OR=2.023], radiomics-PP [OR=1.546]), showcased good accuracy in predicting VETC patterns in both the training (AUC=0.873, 95% confidence interval [CI]: 0.821-0.925)) and validation (AUC=0.869, 95% CI:0.789-0.950) cohorts. Conclusion This study established an integrated model that combines traditional imaging features and radiomic features from gadoxetic acid-enhanced MRI, demonstrating good performance in predicting VETC patterns.
Collapse
Affiliation(s)
- Jiyun Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Maotong Liu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Qi Qu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Mengtian Lu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Zixin Liu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Zuyi Yan
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Lei Xu
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Chunyan Gu
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Xueqin Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Tao Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| |
Collapse
|
12
|
Zhang C, Ma LD, Zhang XL, Lei C, Yuan SS, Li JP, Geng ZJ, Li XM, Quan XY, Zheng C, Geng YY, Zhang J, Zheng QL, Hou J, Xie SY, Lu LH, Xie CM. Magnetic Resonance Deep Learning Radiomic Model Based on Distinct Metastatic Vascular Patterns for Evaluating Recurrence-Free Survival in Hepatocellular Carcinoma. J Magn Reson Imaging 2024; 60:231-242. [PMID: 37888871 DOI: 10.1002/jmri.29064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The metastatic vascular patterns of hepatocellular carcinoma (HCC) are mainly microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC). However, most existing VETC-related radiological studies still focus on the prediction of VETC status. PURPOSE This study aimed to build and compare VETC-MVI related models (clinical, radiomics, and deep learning) associated with recurrence-free survival of HCC patients. STUDY TYPE Retrospective. POPULATION 398 HCC patients (349 male, 49 female; median age 51.7 years, and age range: 22-80 years) who underwent resection from five hospitals in China. The patients were randomly divided into training cohort (n = 358) and test cohort (n = 40). FIELD STRENGTH/SEQUENCE 3-T, pre-contrast T1-weighted imaging spoiled gradient recalled echo (T1WI SPGR), T2-weighted imaging fast spin echo (T2WI FSE), and contrast enhanced arterial phase (AP), delay phase (DP). ASSESSMENT Two radiologists performed the segmentation of HCC on T1WI, T2WI, AP, and DP images, from which radiomic features were extracted. The RFS related clinical characteristics (VETC, MVI, Barcelona stage, tumor maximum diameter, and alpha fetoprotein) and radiomic features were used to build the clinical model, clinical-radiomic (CR) nomogram, deep learning model. The follow-up process was done 1 month after resection, and every 3 months subsequently. The RFS was defined as the date of resection to the date of recurrence confirmed by radiology or the last follow-up. Patients were followed up until December 31, 2022. STATISTICAL TESTS Univariate COX regression, least absolute shrinkage and selection operator (LASSO), Kaplan-Meier curves, log-rank test, C-index, and area under the curve (AUC). P < 0.05 was considered statistically significant. RESULTS The C-index of deep learning model achieved 0.830 in test cohort compared with CR nomogram (0.731), radiomic signature (0.707), and clinical model (0.702). The average RFS of the overall patients was 26.77 months (range 1-80 months). DATA CONCLUSION MR deep learning model based on VETC and MVI provides a potential tool for survival assessment. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-di Ma
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Cai Lei
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sha-Sha Yuan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Peng Li
- Department of Radiology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Zhi-Jun Geng
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin-Ming Li
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xian-Yue Quan
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Zheng
- Shukun (Beijing) Technology Co, Ltd., Beijing, China
| | - Ya-Yuan Geng
- Shukun (Beijing) Technology Co, Ltd., Beijing, China
| | - Jie Zhang
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Qiao-Li Zheng
- Department of Pathology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jing Hou
- Department of Radiology, Hunan Cancer Hospital, Guangzhou, China
| | - Shu-Yi Xie
- Department of Radiology, Guangzhou People's Eighth Hospital, Guangzhou, China
| | - Liang-He Lu
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuan-Miao Xie
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
13
|
Chen HL, He RL, Gu MT, Zhao XY, Song KR, Zou WJ, Jia NY, Liu WM. Nomogram prediction of vessels encapsulating tumor clusters in small hepatocellular carcinoma ≤ 3 cm based on enhanced magnetic resonance imaging. World J Gastrointest Oncol 2024; 16:1808-1820. [PMID: 38764811 PMCID: PMC11099422 DOI: 10.4251/wjgo.v16.i5.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Vessels encapsulating tumor clusters (VETC) represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma (HCC). However, it seems that no one have focused on predicting VETC status in small HCC (sHCC). This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC (≤ 3 cm) patients. AIM To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients. METHODS A total of 309 patients with sHCC, who underwent segmental resection and had their VETC status confirmed, were included in the study. These patients were recruited from three different hospitals: Hospital 1 contributed 177 patients for the training set, Hospital 2 provided 78 patients for the test set, and Hospital 3 provided 54 patients for the validation set. Independent predictors of VETC were identified through univariate and multivariate logistic analyses. These independent predictors were then used to construct a VETC prediction model for sHCC. The model's performance was evaluated using the area under the curve (AUC), calibration curve, and clinical decision curve. Additionally, Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence, just as it is with the actual VETC status and early recurrence. RESULTS Alpha-fetoprotein_lg10, carbohydrate antigen 199, irregular shape, non-smooth margin, and arterial peritumoral enhancement were identified as independent predictors of VETC. The model incorporating these predictors demonstrated strong predictive performance. The AUC was 0.811 for the training set, 0.800 for the test set, and 0.791 for the validation set. The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets. Furthermore, the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC. Finally, early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group, regardless of whether considering the actual or predicted VETC status. CONCLUSION Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC (≤ 3 cm) patients, and it holds potential for predicting early recurrence. This model equips clinicians with valuable information to make informed clinical treatment decisions.
Collapse
Affiliation(s)
- Hui-Lin Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Shanghai 200438, China
| | - Rui-Lin He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Meng-Ting Gu
- Department of Radiology, Tongji University Affiliated Tongji Hospital, Shanghai 200065, China
| | - Xing-Yu Zhao
- Department of Radiology, Tongji University Affiliated Tongji Hospital, Shanghai 200065, China
| | - Kai-Rong Song
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Shanghai 200438, China
| | - Wen-Jie Zou
- Department of Radiology, Tongji University Affiliated Tongji Hospital, Shanghai 200065, China
| | - Ning-Yang Jia
- Department of Radiology, The Third Affiliated Hospital of Shanghai Naval Military Medical University, Shanghai 200438, China
| | - Wan-Min Liu
- Department of Radiology, Tongji University Affiliated Tongji Hospital, Shanghai 200065, China
| |
Collapse
|
14
|
Zhang R, Wang Y, Li Z, Shi Y, Yu D, Huang Q, Chen F, Xiao W, Hong Y, Feng Z. Dynamic radiomics based on contrast-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma. BMC Med Imaging 2024; 24:80. [PMID: 38584254 PMCID: PMC11000376 DOI: 10.1186/s12880-024-01258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE To exploit the improved prediction performance based on dynamic contrast-enhanced (DCE) MRI by using dynamic radiomics for microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS We retrospectively included 175 and 75 HCC patients who underwent preoperative DCE-MRI from September 2019 to August 2022 in institution 1 (development cohort) and institution 2 (validation cohort), respectively. Static radiomics features were extracted from the mask, arterial, portal venous, and equilibrium phase images and used to construct dynamic features. The static, dynamic, and dynamic-static radiomics (SR, DR, and DSR) signatures were separately constructed based on the feature selection method of LASSO and classification algorithm of logistic regression. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) were plotted to evaluate and compare the predictive performance of each signature. RESULTS In the three radiomics signatures, the DSR signature performed the best. The AUCs of the SR, DR, and DSR signatures in the training set were 0.750, 0.751 and 0.805, respectively, while in the external validation set, the corresponding AUCs were 0.706, 0756 and 0.777. The DSR signature showed significant improvement over the SR signature in predicting MVI status (training cohort: P = 0.019; validation cohort: P = 0.044). After external validation, the AUC value of the SR signature decreased from 0.750 to 0.706, while the AUC value of the DR signature did not show a decline (AUCs: 0.756 vs. 0.751). CONCLUSIONS The dynamic radiomics had an improved effect on the MVI prediction in HCC, compared with the static DCE MRI-based radiomics models.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Wang
- Department of Ultrasound, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Li
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushu Shi
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danping Yu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Huang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Hong
- College of Mathematical Medicine, Zhejiang Normal University School, Jinhua, China
| | - Zhan Feng
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Zhu Y, Feng B, Cai W, Wang B, Meng X, Wang S, Ma X, Zhao X. Prediction of Microvascular Invasion in Solitary AFP-Negative Hepatocellular Carcinoma ≤ 5 cm Using a Combination of Imaging Features and Quantitative Dual-Layer Spectral-Detector CT Parameters. Acad Radiol 2023; 30 Suppl 1:S104-S116. [PMID: 36958989 DOI: 10.1016/j.acra.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/25/2023]
Abstract
RATIONALE AND OBJECTIVES AFP-negative hepatocellular carcinoma (AFPN-HCC) within 5 cm is a special subgroup of HCC. This study aimed to investigate the value of dual-layer spectral-detector CT (DLCT) and construct a scoring model based on imaging features as well as DLCT for predicting microvascular invasion (MVI) in AFPN-HCC within 5 cm. METHODS This retrospective study enrolled 104 HCC patients who underwent multiphase contrast-enhanced DLCT studies preoperatively. Combined radiological features (CR) and combined DLCT quantitative parameter (CDLCT) were constructed to predict MVI. Multivariable logistic regression was applied to identify potential predictors of MVI. Based on the coefficient of the regression model, a scoring model was developed. The predictive efficacy was assessed through ROC analysis. RESULTS Microvascular invasion (MVI) was found in 28 (26.9%) AFPN-HCC patients. Among single parameters, the effective atomic number in arterial phase demonstrated the best predictive efficiency for MVI with an area under the curve (AUC) of 0.792. CR and CDLCT showed predictive performance with AUCs of 0.848 and 0.849, respectively. A risk score (RS) was calculated using the independent predictors of MVI as follows: RS = 2 × (mosaic architecture) + 2 × (corona enhancement) + 2 × (incomplete tumor capsule) + 2 × (2-trait predictor of venous invasion [TTPVI]) + 3 × (CDLCT > -1.229). Delong's test demonstrated this scoring system could significantly improve the AUC to 0.929 compared with CR (p = 0.016) and CDLCT (p = 0.034). CONCLUSION The scoring model combining radiological features with DLCT provides a promising tool for predicting MVI in solitary AFPN-HCC within 5 cm preoperatively.
Collapse
Affiliation(s)
- Yongjian Zhu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bing Feng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Cai
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing China
| | - Xuan Meng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
16
|
Liu K, Dennis C, Prince DS, Marsh-Wakefield F, Santhakumar C, Gamble JR, Strasser SI, McCaughan GW. Vessels that encapsulate tumour clusters vascular pattern in hepatocellular carcinoma. JHEP Rep 2023; 5:100792. [PMID: 37456680 PMCID: PMC10339254 DOI: 10.1016/j.jhepr.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/13/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023] Open
Abstract
Vessels that encapsulate tumour clusters (VETC) is a distinct histologic vascular pattern associated with a novel mechanism of metastasis. First described in human cancers in 2004, its prevalence and prognostic significance in hepatocellular carcinoma (HCC) has only been appreciated in the past decade with a rapidly increasing body of literature. A robust biomarker of aggressive disease, the VETC pattern is easy to recognise but relies on histologic examination of tumour tissue for its diagnosis. Radiological recognition of the VETC pattern is an area of active research and is becoming increasingly accurate. As a prognostic marker, VETC has consistently proven to be an independent predictor of disease recurrence and overall survival in patients with HCC undergoing resection and liver transplantation. It can also guide treatment by predicting response to other therapies such as transarterial chemoembolisation and sorafenib. Without prospective randomised-controlled trials or routine evaluation of VETC in clinical practice, there are currently no firm treatment recommendations for VETC-positive tumours, although some perspectives are provided in this review based on the latest knowledge of their pathogenesis - a complex interplay between tumour angiogenesis and the immune microenvironment. Nevertheless, VETC has great potential as a future biomarker that could take us one step closer to precision medicine for HCC.
Collapse
Affiliation(s)
- Ken Liu
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
| | - Claude Dennis
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David S. Prince
- Department of Gastroenterology, Liverpool Hospital, Sydney, NSW, Australia
| | - Felix Marsh-Wakefield
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
- Human Immunology Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Cositha Santhakumar
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
- Human Immunology Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Jennifer R. Gamble
- Centre for Endothelium, Vascular Biology Program, Centenary Institute, Sydney, NSW, Australia
| | - Simone I. Strasser
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey W. McCaughan
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia
| |
Collapse
|