1
|
Tsuboyama T, Yanagawa M, Fujioka T, Fujita S, Ueda D, Ito R, Yamada A, Fushimi Y, Tatsugami F, Nakaura T, Nozaki T, Kamagata K, Matsui Y, Hirata K, Fujima N, Kawamura M, Naganawa S. Recent trends in AI applications for pelvic MRI: a comprehensive review. LA RADIOLOGIA MEDICA 2024; 129:1275-1287. [PMID: 39096356 DOI: 10.1007/s11547-024-01861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Magnetic resonance imaging (MRI) is an essential tool for evaluating pelvic disorders affecting the prostate, bladder, uterus, ovaries, and/or rectum. Since the diagnostic pathway of pelvic MRI can involve various complex procedures depending on the affected organ, the Reporting and Data System (RADS) is used to standardize image acquisition and interpretation. Artificial intelligence (AI), which encompasses machine learning and deep learning algorithms, has been integrated into both pelvic MRI and the RADS, particularly for prostate MRI. This review outlines recent developments in the use of AI in various stages of the pelvic MRI diagnostic pathway, including image acquisition, image reconstruction, organ and lesion segmentation, lesion detection and classification, and risk stratification, with special emphasis on recent trends in multi-center studies, which can help to improve the generalizability of AI.
Collapse
Affiliation(s)
- Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe-City, Hyogo, 650-0017, Japan.
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, 565-0871, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo Chuo-ku, Kumamoto, 860-8556, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N15, W5, Kita-ku, Sapporo, 060-8638, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
2
|
Ruby L, Jayaprakasam VS, Fernandes MC, Paroder V. Advances in the Imaging of Esophageal and Gastroesophageal Junction Malignancies. Hematol Oncol Clin North Am 2024; 38:711-730. [PMID: 38575457 DOI: 10.1016/j.hoc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Accurate imaging is key for the diagnosis and treatment of esophageal and gastroesophageal junction cancers . Current imaging modalities, such as computed tomography (CT) and 18F-FDG (2-deoxy-2-[18F]fluoro-D-glucose) positron emission tomography (PET)/CT, have limitations in accurately staging these cancers. MRI shows promise for T staging and residual disease assessment. Novel PET tracers, like FAPI, FLT, and hypoxia markers, offer potential improvements in diagnostic accuracy. 18F-FDG PET/MRI combines metabolic and anatomic information, enhancing disease evaluation. Radiomics and artificial intelligence hold promise for early detection, treatment planning, and response assessment. Theranostic nanoparticles and personalized medicine approaches offer new avenues for cancer therapy.
Collapse
Affiliation(s)
- Lisa Ruby
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Vetri Sudar Jayaprakasam
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maria Clara Fernandes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Viktoriya Paroder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|