1
|
Tokhanbigli S, Alavifard H, Asadzadeh Aghdaei H, Zali MR, Baghaei K. Combination of pioglitazone and dendritic cell to optimize efficacy of immune cell therapy in CT26 tumor models. BIOIMPACTS : BI 2022; 13:333-346. [PMID: 37645031 PMCID: PMC10460770 DOI: 10.34172/bi.2022.24209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/28/2022] [Accepted: 06/20/2022] [Indexed: 08/31/2023]
Abstract
Introduction The maturation faith of dendritic cells is restrained by the inflammatory environment and cytokines, such as interleukin-6 and its downstream component. Therefore, introducing the suitable antigen to dendritic cells is crucial. However, reducing the severity of the suppressive tumor microenvironment is indispensable. The present study examined the combination therapy of lymphocyte antigen 6 family member E (LY6E) pulsed mature dendritic cells (LPMDCs) and pioglitazone against colorectal cancer (CRC) to elevate the effectiveness of cancer treatment through probable role of pioglitazone on inhibiting IL-6/STAT3 pathway. Methods Dendritic cells were generated from murine bone marrow and were pulsed with lymphocyte antigen 6 family member E peptide to assess antigen-specific T-cell proliferation and cytotoxicity assay with Annexin/PI. The effect of pioglitazone on interleukin (IL)-6/STAT3 was evaluated in vitro by real-time polymerase chain reaction (PCR). Afterward, the CRC model was established by subcutaneous injection of CT26, mouse colon carcinoma cell line, in female mice. After treatment, tumor, spleen, and lymph nodes samples were removed for histopathological, ELISA, and real-time PCR analysis. Results In vitro results revealed the potential of lysate-pulsed dendritic cells in the proliferation of double-positive CD3-8 splenocytes and inducing immunogenic cell death responses, whereas pioglitazone declined the expression of IL-6/STAT3 in colorectal cell lines. In animal models, the recipient of LPMDCs combined with pioglitazone demonstrated high tumor-infiltrating lymphocytes. Elevating the IL-12 and interferon-gamma (IFN-γ) levels and prolonged survival in lysate-pulsed dendritic cell and combination groups were observed. Conclusion Pioglitazone could efficiently ameliorate the immunosuppressive feature of the tumor microenvironment, mainly through IL-6. Accordingly, applying this drug combined with LPMDCs provoked substantial CD8 positive responses in tumor-challenged animal models.
Collapse
Affiliation(s)
- Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Shao G, Zhou C, Ma K, Zhao W, Feng G, Xiong Q, Yang L, Yang Z. Dendritic cells transduced with glioma-expressed antigen 2 recombinant adenovirus induces specific cytotoxic lymphocyte response and anti-tumor effect in mice. JOURNAL OF INFLAMMATION-LONDON 2020; 17:3. [PMID: 32021567 PMCID: PMC6995099 DOI: 10.1186/s12950-020-0239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/27/2020] [Indexed: 11/10/2022]
Abstract
Introduction Glioma is an aggressive common cancer with high mortality worldwide. Up to date, the effective medical therapeutical strategy is limited. Numerous previous studies have indicated that glioma-expressed antigen 2 (GLEA2) might be an attractive prognostic glioma biomarker. Methods In this experiment, dendritic cells (DCs) transduced with GLEA2 recombinant adenovirus were utilized to generate cytotoxic lymphocytes (CTLs) in vitro. Additionally, trimera mice were immunized with the transduced DCs to generate CTLs in vivo. Results The data demonstrated that GLEA2 transduced DCs could effectively generate specific CTL response against glioma without lysing autologous lymphocytes. Moreover, GLEA2 transduced DCs significantly attenuated the tumor growth and prolonged the life span of tumor bearing mice. Conclusions These findings suggested that DCs transduced with GLEA2 recombinant adenovirus could generate effective CTL mediated anti-tumor response, and might represent insight in glioma therapy.
Collapse
Affiliation(s)
- Gaohai Shao
- 1Department of orthopedics, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Changlong Zhou
- 2Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Kunlong Ma
- 1Department of orthopedics, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Wang Zhao
- 2Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Guibo Feng
- 2Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Qijiang Xiong
- 2Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Ling Yang
- 2Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Zhao Yang
- 2Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| |
Collapse
|
3
|
Helena De Lorenzo B, De Carvalho Ramos M, Antoniazi Michelin M, Candido Murta EF. Progress in the use of Immunotherapy to Treat Uterine Cervical Cancer. TUMORI JOURNAL 2018; 95:1-7. [DOI: 10.1177/030089160909500101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cervical intraepithelial neoplasia has a high incidence in many of the world's populations, and it has been hypothesized to be a precursor of uterine cervical cancer. Cervical intraepithelial neoplasia also shares similar pathological traits with human papillomavirus infections. Various surgical treatments have been proposed over the years for the treatment of cervical intraepithelial neoplasia, including conization, hysterectomy and, more recently, a loop electrosurgical excisional procedure. However, a higher recurrence rate of the disease has been observed after these procedures. Therefore, immunotherapy has been proposed as a potential treatment to be used in conjunction with surgery, or independently, as treatment for cervical intraepithelial neoplasia. Currently, immunotherapy includes the application of recombinant viral proteins, vaccines, or antibody- and dendritic cell-based therapies. In this review, we summarize the development and testing of these immunotherapy approaches, particularly in regard to their application for the treatment of cervical intraepithelial neoplasia.
Collapse
Affiliation(s)
- Beatriz Helena De Lorenzo
- Research Institute of Oncology (IPON), Discipline of Gynecology and Obstetrics, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Marisa De Carvalho Ramos
- Research Institute of Oncology (IPON), Discipline of Gynecology and Obstetrics, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Márcia Antoniazi Michelin
- Research Institute of Oncology (IPON), Discipline of Gynecology and Obstetrics, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Eddie Fernando Candido Murta
- Research Institute of Oncology (IPON), Discipline of Gynecology and Obstetrics, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brasil
| |
Collapse
|
4
|
Prediction and identification of HLA-A*0201-restricted epitopes from leukemia-associated protein MLAA-22 which elicit cytotoxic T lymphocytes. Med Oncol 2014; 31:293. [PMID: 25355639 DOI: 10.1007/s12032-014-0293-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) play a critical role in the control of leukemia. However, few effective CTL epitopes have been identified to date yet. We previously reported that MLAA-22, a protein composed of 631 amino acid residues, is a novel acute myeloid leukemia (AML)-associated antigen. In the present study, ten high-score 9-mer peptides, which were selected from MLAA-22 by using ProPred1 and SYFPEITHI bioinformatics tools, were screened to identify HLA-A*0201-restricted-specific CTL epitopes. Monocyte-derived dendritic cells were generated in vitro to be used as antigen-presenting cells for the induction of CTLs. We found that peptide MLAA-22(379-387) (LLPNAIYKV) exhibited the highest binding affinity to HLA-A*0201 among all peptide candidates in the peptide-T2 binding assay. The percentage of positive T2 cells treated with MLAA-22(379-387) was about 96.3%, which is even higher than that of the positive control peptide CML28(173-181) (95.1%). MLAA-22(379-387)-induced CTLs showed the most significant cytotoxic activity and apparent killing effects on the cell lines including THP-1 (human acute monocytic leukemia), A549, T2, U937, and MCF-7, and the specific lysis ratios were 83.8, 32.6, 64.4, 64.4, and 32.6%, respectively, when the effector to target ratio (E/T) was 20:1. Specific lysis (%) of MLAA1 was significantly increased (P < 0.05, P < 0.001, respectively) in THP-1 cell than those in other cancer cell lines and were 28.5, 67.8, and 83.8% at ratio 5:1, 10:1, and 20:1, respectively. Hence, MLAA-22(379-387) is a potential tumor-associated antigen target for AML immunotherapy.
Collapse
|
5
|
Lin L, Wei J, Chen Y, Huang A, Li KKW, Zhang W. Induction of antigen-specific immune responses by dendritic cells transduced with a recombinant lentiviral vector encoding MAGE-A3 gene. J Cancer Res Clin Oncol 2014; 140:281-9. [PMID: 24322180 DOI: 10.1007/s00432-013-1552-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/14/2013] [Indexed: 01/17/2023]
Abstract
PURPOSE Melanoma antigen gene A3 (MAGE-A3) is aberrantly expressed in a number of cancer types. Because of its high specificity, MAGE-A3 has shown to be a promising candidate for cancer immunotherapy. Dendritic cells (DCs) have emerged as the natural agents for antigen delivery. DCs transduced with antigen may increase immune response and maintain immune durability. The aim of this study was to investigate the roles of DCs transduced with lentiviral vectors (LVs) encoding full-length MAGE-A3 gene in cancer immunotherapy . METHODS A LV containing full-length MAGE-A3 gene (rLV/MAGE-A3) was constructed. Reverse transcriptase-polymerase chain reaction and direct DNA sequencing were performed to verify the construct. Human DCs derived from umbilical cord blood were then transduced with rLV/MAGE-A3. The potency of rLV/MAGE-A3-transduced DCs was examined by measurement of surface markers and mixed lymphocyte reaction. The MAGE-A3-specific T-cell response induced by DCs was detected using the lactate dehydrogenase release assay. RESULTS rLV/MAGE-A3 was constructed successfully and used to transduce DCs efficiently. DCs transduced with rLV/MAGE-A3 stably expressed MAGE-A3 and yielded high percentage of cells expressing CD80, CD86, and HLA-DR. rLV/MAGE-A3 transduction did not impair DCs viability and maturation at a multiplicity of infection of 30. The rLV/MAGE-A3-transduced DCs induced MAGE-A3-specific T lymphocytes that exhibited a significant lysis activity against MAGE-A3-bearing tumor cell lines (HuH-7 and SGC-7901). CONCLUSIONS DC-directed rLV/MAGE-A3 efficiently induced antigen-specific immune responses, indicating the possibility of DC-based MAGE-A3 antigen vaccine as a promising strategy for treatment of MAGE-A3-associated cancer.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Pathology, Fujian Medical University, 88# Jiao Tong Road, Fuzhou, 350004, Fujian, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Cui H, Zhang W, Hu W, Liu K, Wang T, Ma N, Liu X, Liu Y, Jiang Y. Recombinant mammaglobin A adenovirus-infected dendritic cells induce mammaglobin A-specific CD8+ cytotoxic T lymphocytes against breast cancer cells in vitro. PLoS One 2013; 8:e63055. [PMID: 23650543 PMCID: PMC3641140 DOI: 10.1371/journal.pone.0063055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/30/2013] [Indexed: 12/23/2022] Open
Abstract
Mammaglobin A (MGBA) is a novel breast cancer-associated antigen almost exclusively over-expressed in primary and metastatic human breast cancers, making it a potential therapeutic target for breast cancer. The development of dendritic cell (DC)-induced tumor antigen specific CD8+ cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. In this study we constructed recombinant replication-defective adenoviral (Ad) vectors encoding MGBA and evaluated their ability to trigger anti-tumor immunity in vitro. DCs were isolated from the human peripheral blood monocyte cells (PBMCs) of two HLA-A33+ healthy female volunteers, and infected with adenovirus carrying MGBA cDNA (Ad-MGBA). After that, the Ad-MGBA-infected DCs were used to stimulate CD8+ CTLs in vitro and the latter was used for co-culture with breast cancer cell lines. The data revealed that infection with Ad-MGBA improved DC maturation and up-regulated the expression of co-stimulatory molecules and the secretion of interleukin-12 (IL-12), but down-regulated interleukin-10 (IL-10) secretion from DCs. Ad-MGBA-infected DC-stimulated CD8+CTLs displayed the highest cytotoxicity towards HLA-A33+/MGBA+ breast cancer MDA-MB-415 cells compared with other CD8+CTL populations, and compared with the cytotoxicity towards HLA-A33−/MGBA+ breast cancer HBL-100 cells and HLA-A33−/MGBA− breast cancer MDA-MB 231 cells. In addition, Ad-MGBA-infected DC-stimulated CD8+ CTLs showed a high level of IFNγ secretion when stimulated with HLA-A33+/MGBA+ breast cancer MDA-MB-415 cells, but not when stimulated with HLA-A33−/MGBA+ HBL-100 and HLA-A33−/MGBA−MDA-MB-231 cells. In addition, killing of CD8+CTLs against breast cancer was in a major histocompability complex (MHC)-limited pattern. Finally, the data also determined the importance of TNF-α in activating DCs and T cells. These data together suggest that MGBA recombinant adenovirus-infected DCs could induce specific anti-tumor immunity against MGBA+ breast cancers, which could provide a novel strategy in the immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Huixia Cui
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
- College of Nursing, Liaoning Medical University, Jinzhou, China
| | - Wenlu Zhang
- Department of Oncology, The First Hospital of Liaoning Medical University, Jinzhou, China
| | - Wei Hu
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Kun Liu
- College of Nursing, Liaoning Medical University, Jinzhou, China
| | - Tong Wang
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Nan Ma
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Xiaohui Liu
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Youhong Jiang
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
7
|
Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 2012; 26:2186-96. [PMID: 22652755 DOI: 10.1038/leu.2012.145] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The graft-versus-leukemia effect of allogeneic hematopoietic stem cell transplantation (HSCT) has shown that the immune system is capable of eradicating acute myeloid leukemia (AML). This knowledge, along with the identification of the target antigens against which antileukemia immune responses are directed, has provided a strong impetus for the development of antigen-targeted immunotherapy of AML. The success of any antigen-specific immunotherapeutic strategy depends critically on the choice of target antigen. Ideal molecules for immune targeting in AML are those that are: (1) leukemia-specific; (2) expressed in most leukemic blasts including leukemic stem cells; (3) important for the leukemic phenotype; (4) immunogenic; and (5) clinically effective. In this review, we provide a comprehensive overview on AML-related tumor antigens and assess their applicability for immunotherapy against the five criteria outlined above. In this way, we aim to facilitate the selection of appropriate target antigens, a task that has become increasingly challenging given the large number of antigens identified and the rapid pace at which new targets are being discovered. The information provided in this review is intended to guide the rational design of future antigen-specific immunotherapy trials, which will hopefully lead to new antileukemia therapies with more selectivity and higher efficacy.
Collapse
|
8
|
Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet 2012; 44:704-8. [PMID: 22544365 PMCID: PMC3366034 DOI: 10.1038/ng.2254] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/22/2012] [Indexed: 12/12/2022]
Abstract
RNA exosomes are multi-subunit complexes conserved throughout evolution1 and emerging as the major cellular machinery for processing, surveillance, and turnover of a diverse spectrum of coding and non-coding RNA substrates essential for viability2. By exome sequencing, we discovered recessive mutations in exosome component 3 (EXOSC3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly, and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 [PCH1; OMIM 607596]3–6. We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment with small brain and poor motility, reminiscent of human clinical features and largely rescued by coinjected wildtype but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome gene responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration.
Collapse
|
9
|
Fan X, Ye M, Xue B, Ke Y, Wong CK, Xie Y. Human Dendritic Cells Engineered to Secrete Interleukin-18 Activate MAGE-A3-Specific Cytotoxic T Lymphocytesin vitro. Immunol Invest 2012; 41:469-83. [DOI: 10.3109/08820139.2012.664225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Arbab AS. Cytotoxic T-cells as imaging probes for detecting glioma. World J Clin Oncol 2010; 1:3-11. [PMID: 21603304 PMCID: PMC3095453 DOI: 10.5306/wjco.v1.i1.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/04/2010] [Accepted: 09/11/2010] [Indexed: 02/06/2023] Open
Abstract
Tumor vaccination using tumor-associated antigen-primed dendritic cells (DCs) is in clinical trials. Investigators are using patients’ own immune systems to activate T-cells against recurrent or metastatic tumors. Following vaccination of DCs or attenuated tumor cells, clinical as well as radiological improvements have been noted due to migration and accumulation of cytotoxic T-cells (CTLs). CTLs mediated tumor cell killing resulted in extended survival in clinical trails and in preclinical models. Besides administration of primed DCs or attenuated or killed tumors cells to initiate the generation of CTLs, investigators have started making genetically altered T-cells (CTLs) to target specific tumors and showed in vivo migration and accumulation in the implanted or recurrent tumors using different imaging modalities. Our groups have also showed the utilization of both in vivo and in vitro techniques to make CTLs against glioma and used them as imaging probes to determine the sites of tumors. In this short review, the current status of vaccination therapy against glioma and utilization of CTLs as in vivo imaging probes to determine the sites of tumors and differentiate recurrent glioma from radiation necrosis will be discussed.
Collapse
Affiliation(s)
- Ali Syed Arbab
- Ali Syed Arbab, Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, MI 48202, United States
| |
Collapse
|
11
|
Yang CC, Wang YT, Hsiao YY, Doudeva LG, Kuo PH, Chow SY, Yuan HS. Structural and biochemical characterization of CRN-5 and Rrp46: an exosome component participating in apoptotic DNA degradation. RNA (NEW YORK, N.Y.) 2010; 16:1748-59. [PMID: 20660080 PMCID: PMC2924534 DOI: 10.1261/rna.2180810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/10/2010] [Indexed: 05/24/2023]
Abstract
Rrp46 was first identified as a protein component of the eukaryotic exosome, a protein complex involved in 3' processing of RNA during RNA turnover and surveillance. The Rrp46 homolog, CRN-5, was subsequently characterized as a cell death-related nuclease, participating in DNA fragmentation during apoptosis in Caenorhabditis elegans. Here we report the crystal structures of CRN-5 and rice Rrp46 (oRrp46) at a resolution of 3.9 A and 2.0 A, respectively. We found that recombinant human Rrp46 (hRrp46), oRrp46, and CRN-5 are homodimers, and that endogenous hRrp46 and oRrp46 also form homodimers in a cellular environment, in addition to their association with a protein complex. Dimeric oRrp46 had both phosphorolytic RNase and hydrolytic DNase activities, whereas hRrp46 and CRN-5 bound to DNA without detectable nuclease activity. Site-directed mutagenesis in oRrp46 abolished either its DNase (E160Q) or RNase (K75E/Q76E) activities, confirming the critical importance of these residues in catalysis or substrate binding. Moreover, CRN-5 directly interacted with the apoptotic nuclease CRN-4 and enhanced the DNase activity of CRN-4, suggesting that CRN-5 cooperates with CRN-4 in apoptotic DNA degradation. Taken together all these results strongly suggest that Rrp46 forms a homodimer separately from exosome complexes and, depending on species, is either a structural or catalytic component of the machinery that cleaves DNA during apoptosis.
Collapse
Affiliation(s)
- Che-Chuan Yang
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, 10617 Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Long before the RNA degrading exosome was first described in the yeast Saccharomyces cerevisiae, the use of autoantibodies found in the sera of certain autoimmune patients allowed the identification of a complex of polypeptides which later appeared to be the human exosome. Today, the most extensively documented association of the exosome with disease is still its targeting by the immune system of such patients. The highest frequency of autoantibodies to components of the exosome complex is found in polymyositis-scleroderma overlap patients and therefore the exosome is termed PM/Scl autoantigen in the autoimmune field. More recently, one of the core components of the exosome was identified as a protein associated with chronic myelogenous leukemia. In this chapter we will describe the identification of the PM/Scl autoantigen from a historical perspective, discuss our current knowledge on the occurrence of autoantibodies to exosome components in autoimmune diseases and end with the data that connect the exosome with cancer.
Collapse
|
13
|
Cheung YK, Cheng SCS, Ke Y, Xie Y. Two novel HLA-A*0201 T-cell epitopes in avian H5N1 viral nucleoprotein induced specific immune responses in HHD mice. Vet Res 2009; 41:24. [PMID: 19941812 PMCID: PMC2820229 DOI: 10.1051/vetres/2009071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 11/25/2009] [Indexed: 11/22/2022] Open
Abstract
The influenza A nucleoprotein (NP) is an attractive target for avian flu vaccine development because of its high conversancy in the evolutionary chain of the virus. Here we identified two novel HLA-A*0201 restricted NP epitopes, named H5N1 NP373-381 AMDSNTLEL (NP373) and NP458-466 FQGRGVFEL (NP458), using computational bioinformatic analysis. The NP peptides showed a high binding affinity to HLA-A*0201 on T2 cells, and were able to induce the activation of the cytotoxic T cells in the human peripheral blood mononuclear cells. We examined the potential of using NP373 and NP458 peptide sequences supplemented with a single-chain trimer as potential DNA vaccine candidates in an HHD transgenic mouse model. A gene gun delivery system was used for administrating the vaccine candidates into the animals. The results from cytotoxicity and ELISPOT assays indicated that a significant amount of IFN-γ was secreted by the T cells of the vaccinated mice, and the T cells were able to eliminate the corresponding peptide-loaded T2 cells. The discovery of these novel immunogenic NP peptides provides valuable information for avian flu vaccine design and construction.
Collapse
MESH Headings
- Animals
- Biolistics
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- HLA-A Antigens/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Mice, Transgenic
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Specific Pathogen-Free Organisms
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Nonstructural Proteins/immunology
- Viral Nonstructural Proteins/metabolism
Collapse
|
14
|
Abstract
Vectors based on recombinant adeno-associated viruses (AAVs) are being extensively explored for gene therapy owing to some of their distinguishing characteristicss such as lack of pathogenicity, wide range of infectivity and ability to provide long-term transgene expression. For many of the same reasons, recombinant AAV (rAAV) vectors have also been used as vaccine carriers to elicit immune responses against their transgene products. Extensive studies of rAAV vectors in animal models and in the clinic have revealed some safety concerns relating to their construction and production, adverse events following delivery, potential integration of the vector’s genome into host cell genomes, and the impairment of rAAV-induced CD8+ T-cell responses, which could have dire consequences for rAAV-treated individuals. Further studies to advance our knowledge of the biology of AAV and rAAV vectors are deemed necessary to allow for their more successful application in the clinic.
Collapse
Affiliation(s)
- Shih-Wen Lin
- School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA and, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Hildegund CJ Ertl
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|