1
|
Zhong A, Li S, Zhang J, Zhao J, Yao C. Endogenous micropeptides as potential diagnostic biomarkers and therapeutic drugs. Front Pharmacol 2025; 16:1545575. [PMID: 40264667 PMCID: PMC12011824 DOI: 10.3389/fphar.2025.1545575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
Micropeptides, these small proteins derived from non-coding RNA, typically consist of no more than 100 amino acids in length. Despite the challenges in analysis and identification, their various critical functions within organisms cannot be overlooked. They play a significant role in maintaining energy metabolism balance, regulating the immune system, and influencing the development of tumors, which also gives them a decisive impact on the occurrence and development of various diseases. This review aims to outline the role and potential value of micropeptides, introducing their tissue classification and distribution, biological functions, and mechanisms, with a focus on their potential as diagnostic markers and therapeutic drugs.
Collapse
Affiliation(s)
- Aixi Zhong
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Shuai Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingxuan Zhang
- Zhongshan College of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Chenhui Yao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Camarena ME, Theunissen P, Ruiz M, Ruiz-Orera J, Calvo-Serra B, Castelo R, Castro C, Sarobe P, Fortes P, Perera-Bel J, Albà MM. Microproteins encoded by noncanonical ORFs are a major source of tumor-specific antigens in a liver cancer patient meta-cohort. SCIENCE ADVANCES 2024; 10:eadn3628. [PMID: 38985879 PMCID: PMC11235171 DOI: 10.1126/sciadv.adn3628] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
The expression of tumor-specific antigens during cancer progression can trigger an immune response against the tumor. Here, we investigate if microproteins encoded by noncanonical open reading frames (ncORFs) are a relevant source of tumor-specific antigens. We analyze RNA sequencing data from 117 hepatocellular carcinoma (HCC) tumors and matched healthy tissue together with ribosome profiling and immunopeptidomics data. Combining human leukocyte antigen-epitope binding predictions and experimental validation experiments, we conclude that around 40% of the tumor-specific antigens in HCC are likely to be derived from ncORFs, including two peptides that can trigger an immune response in humanized mice. We identify a subset of 33 tumor-specific long noncoding RNAs expressing novel cancer antigens shared by more than 10% of the HCC samples analyzed, which, when combined, cover a large proportion of the patients. The results of the study open avenues for extending the range of anticancer vaccines.
Collapse
Affiliation(s)
| | - Patrick Theunissen
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Marta Ruiz
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Jorge Ruiz-Orera
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Beatriz Calvo-Serra
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Robert Castelo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carla Castro
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Pablo Sarobe
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Cancer Clinic University of Navarra (CCUN), Pamplona, Spain
| | - Puri Fortes
- Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Cancer Clinic University of Navarra (CCUN), Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Madrid, Spain
| | | | - M Mar Albà
- Hospital del Mar Research Institute, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Dong X, Zhang K, Xun C, Chu T, Liang S, Zeng Y, Liu Z. Small Open Reading Frame-Encoded Micro-Peptides: An Emerging Protein World. Int J Mol Sci 2023; 24:10562. [PMID: 37445739 DOI: 10.3390/ijms241310562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Small open reading frames (sORFs) are often overlooked features in genomes. In the past, they were labeled as noncoding or "transcriptional noise". However, accumulating evidence from recent years suggests that sORFs may be transcribed and translated to produce sORF-encoded polypeptides (SEPs) with less than 100 amino acids. The vigorous development of computational algorithms, ribosome profiling, and peptidome has facilitated the prediction and identification of many new SEPs. These SEPs were revealed to be involved in a wide range of basic biological processes, such as gene expression regulation, embryonic development, cellular metabolism, inflammation, and even carcinogenesis. To effectively understand the potential biological functions of SEPs, we discuss the history and development of the newly emerging research on sORFs and SEPs. In particular, we review a range of recently discovered bioinformatics tools for identifying, predicting, and validating SEPs as well as a variety of biochemical experiments for characterizing SEP functions. Lastly, this review underlines the challenges and future directions in identifying and validating sORFs and their encoded micropeptides, providing a significant reference for upcoming research on sORF-encoded peptides.
Collapse
Affiliation(s)
- Xiaoping Dong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Kun Zhang
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Chengfeng Xun
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Tianqi Chu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Songping Liang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Yong Zeng
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhonghua Liu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Cancer-related micropeptides encoded by ncRNAs: Promising drug targets and prognostic biomarkers. Cancer Lett 2022; 547:215723. [DOI: 10.1016/j.canlet.2022.215723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
|
5
|
The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol 2022; 32:243-258. [PMID: 34844857 PMCID: PMC8934435 DOI: 10.1016/j.tcb.2021.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Omics-based technologies have revolutionized our understanding of the coding potential of the genome. In particular, these studies revealed widespread unannotated open reading frames (ORFs) throughout genomes and that these regions have the potential to encode novel functional (micro-)proteins and/or hold regulatory roles. However, despite their genomic prevalence, relatively few of these noncanonical ORFs have been functionally characterized, likely in part due to their under-recognition by the broader scientific community. The few that have been investigated in detail have demonstrated their essentiality in critical and divergent biological processes. As such, here we aim to discuss recent advances in understanding the diversity of noncanonical ORFs and their roles, as well as detail biologically important examples within the context of the mammalian genome.
Collapse
|
6
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
7
|
Ye M, Zhang J, Wei M, Liu B, Dong K. Emerging role of long noncoding RNA-encoded micropeptides in cancer. Cancer Cell Int 2020; 20:506. [PMID: 33088214 PMCID: PMC7565808 DOI: 10.1186/s12935-020-01589-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence has indicated that long noncoding RNAs (lncRNAs) play various important roles in the development of cancers. The widespread applications of ribosome profiling and ribosome nascent chain complex sequencing revealed that some short open reading frames of lncRNAs have micropeptide-coding potential. The resulting micropeptides have been shown to participate in N6-methyladenosine modification, tumor angiogenesis, cancer metabolism, and signal transduction. This review summarizes current information regarding the reported roles of lncRNA-encoded micropeptides in cancer, and explores the potential clinical value of these micropeptides in the development of anti-cancer drugs and prognostic tumor biomarkers.
Collapse
Affiliation(s)
- Mujie Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, No.399 Wanyuan Road, Minhang District, Shanghai, 201102 China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, 201102 China
| | - Jingjing Zhang
- Department of Medical Imaging, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001 China
| | - Meng Wei
- Department of Pediatric Surgery, Children's Hospital of Fudan University, No.399 Wanyuan Road, Minhang District, Shanghai, 201102 China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, 201102 China
| | - Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, No.399 Wanyuan Road, Minhang District, Shanghai, 201102 China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, 201102 China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, No.399 Wanyuan Road, Minhang District, Shanghai, 201102 China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, 201102 China
| |
Collapse
|
8
|
Charpentier M, Croyal M, Carbonnelle D, Fortun A, Florenceau L, Rabu C, Krempf M, Labarrière N, Lang F. IRES-dependent translation of the long non coding RNA meloe in melanoma cells produces the most immunogenic MELOE antigens. Oncotarget 2018; 7:59704-59713. [PMID: 27486971 PMCID: PMC5312342 DOI: 10.18632/oncotarget.10923] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023] Open
Abstract
MELOE-1 and MELOE-2, two highly specific melanoma antigens involved in T cell immunosurveillance are produced by IRES-dependent translation of the long « non coding » and polycistronic RNA, meloe. In the present study, we document the expression of an additional ORF, MELOE-3, located in the 5' region of meloe. Data from in vitro translation experiments and transfection of melanoma cells with bicistronic vectors documented that MELOE-3 is exclusively translated by the classical cap-dependent pathway. Using a sensitive tandem mass spectrometry technique, we detected the presence of MELOE-3 in total lysates of both melanoma cells and normal melanocytes. This contrasts with our previous observation of the melanoma-restricted expression of MELOE-1 and MELOE-2. Furthermore, in vitro stimulation of PBMC from 6 healthy donors with overlapping peptides from MELOE-1 or MELOE-3 revealed a very scarce MELOE-3 specific T cell repertoire as compared to the abundant repertoire observed against MELOE-1. The poor immunogenicity of MELOE-3 and its expression in melanocytes is consistent with an immune tolerance towards a physiologically expressed protein. In contrast, melanoma-restricted expression of IRES-dependent MELOE-1 may explain its high immunogenicity. In conclusion, within the MELOE family, IRES-dependent antigens represent the best T cell targets for immunotherapy of melanoma.
Collapse
Affiliation(s)
- Maud Charpentier
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Mikael Croyal
- UMR INRA 1280, CHU, Nantes, France.,West Human Nutrition Research Center, CHU, Nantes, France
| | | | - Agnès Fortun
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Laetitia Florenceau
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,CHU, Nantes, France
| | - Catherine Rabu
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Michel Krempf
- UMR INRA 1280, CHU, Nantes, France.,West Human Nutrition Research Center, CHU, Nantes, France.,CHU, Nantes, France
| | - Nathalie Labarrière
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,CHU, Nantes, France
| | - François Lang
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
9
|
A lineage-specific methylation pattern controls the transcription of the polycistronic mRNA coding MELOE melanoma antigens. Melanoma Res 2016; 25:279-83. [PMID: 25968572 DOI: 10.1097/cmr.0000000000000167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We recently characterized two melanoma antigens MELOE-1 and MELOE-2 derived from a polycistronic RNA overexpressed in the melanocytic lineage. This transcription profile was because of hypomethylation of the meloe proximal promoter in melanomas and melanocytes. Here, we investigate whether this demethylation was restricted to the meloe promoter or was linked to a general lack of methylation at the meloe locus in the melanocytic lineage. We establish the methylation pattern of the locus spanning more than 40 kbp, focusing on CpG islands, using DNA bisulfite conversion and pyrosequencing. The study was carried out on cultured cell lines (melanoma, melanocyte, colon cancer, and mesothelioma cell lines), healthy tissues (skin and colon), and melanoma tumors. Demethylation, specifically observed in the melanocytic lineage, involves a large promoter area and not the entire meloe locus. This enables updating a tight regulation of meloe transcription in this lineage, suggesting tissue-specific epigenetic mechanisms. Associated with the previously described translational mechanisms, leading to the specific expression of MELOE-1 and MELOE-2 in melanomas, this makes MELOE-derived antigens a relevant candidate for immunotherapy of melanoma.
Collapse
|
10
|
Carbonnelle D, Vignard V, Sehedic D, Moreau-Aubry A, Florenceau L, Charpentier M, Mikulits W, Labarriere N, Lang F. The melanoma antigens MELOE-1 and MELOE-2 are translated from a bona fide polycistronic mRNA containing functional IRES sequences. PLoS One 2013; 8:e75233. [PMID: 24086473 PMCID: PMC3783476 DOI: 10.1371/journal.pone.0075233] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/08/2013] [Indexed: 11/18/2022] Open
Abstract
Our previous studies on melanoma antigens identified two new polypeptides, named MELOE-1 and MELOE-2, that are involved in immunosurveillance. Intriguingly, these antigens are coded by distinct open reading frames (ORF) of the meloe mRNA which is significantly expressed only in the melanocytic lineage. In addition, MELOE-1 and -2 specific T cell clones recognized melanoma cells but very poorly normal melanocytes suggesting differential translation of meloe in normal vs tumor cells. This prompted us to elucidate the mechanisms of translation of these antigens in melanoma cells. We first demonstrated that no splicing event or cryptic promoter could generate shorter meloe transcripts containing only one of the two ORFs. Triggering meloe RNA degradation with a siRNA close to the ORF coding for MELOE-2 abrogated expression of both MELOE-1 and MELOE-2, thus confirming that the two ORFs are always associated. Next we showed, in a bicistronic reporter system, that IRES activities could be detected upstream of MELOE-1 and MELOE-2 and finally confirmed their translation from full length meloe cDNA in melanoma cells with eGFP constructs. In conclusion, meloe is a polycistronic mRNA that generates both MELOE-1 and MELOE-2 antigens through IRES-dependent translation in melanoma cells and that may explain their tumor specificity.
Collapse
Affiliation(s)
- Delphine Carbonnelle
- Institut National de la Santé et de la Recherche Médicale, U892, Nantes, France
- University of Nantes, Nantes, France
- Centre national de la recherche scientifique, UMR 6299, Nantes, France
| | - Virginie Vignard
- Institut National de la Santé et de la Recherche Médicale, U892, Nantes, France
- University of Nantes, Nantes, France
- Centre national de la recherche scientifique, UMR 6299, Nantes, France
- CHU Nantes, Nantes, France
| | - Delphine Sehedic
- Institut National de la Santé et de la Recherche Médicale, U892, Nantes, France
- University of Nantes, Nantes, France
- Centre national de la recherche scientifique, UMR 6299, Nantes, France
| | - Agnes Moreau-Aubry
- Institut National de la Santé et de la Recherche Médicale, U892, Nantes, France
- University of Nantes, Nantes, France
- Centre national de la recherche scientifique, UMR 6299, Nantes, France
| | - Laetitia Florenceau
- Institut National de la Santé et de la Recherche Médicale, U892, Nantes, France
- University of Nantes, Nantes, France
- Centre national de la recherche scientifique, UMR 6299, Nantes, France
| | - Maud Charpentier
- Institut National de la Santé et de la Recherche Médicale, U892, Nantes, France
- University of Nantes, Nantes, France
- Centre national de la recherche scientifique, UMR 6299, Nantes, France
| | - Wolfgang Mikulits
- Institute of Cancer Research, Comprehensive Cancer Center, Vienna, Austria
| | - Nathalie Labarriere
- Institut National de la Santé et de la Recherche Médicale, U892, Nantes, France
- University of Nantes, Nantes, France
- Centre national de la recherche scientifique, UMR 6299, Nantes, France
| | - François Lang
- Institut National de la Santé et de la Recherche Médicale, U892, Nantes, France
- University of Nantes, Nantes, France
- Centre national de la recherche scientifique, UMR 6299, Nantes, France
| |
Collapse
|
11
|
Overexpression of meloe gene in melanomas is controlled both by specific transcription factors and hypomethylation. PLoS One 2013; 8:e75421. [PMID: 24086527 PMCID: PMC3783405 DOI: 10.1371/journal.pone.0075421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigens MELOE-1 and MELOE-2 are encoded by a messenger, called meloe, overexpressed in melanomas compared with other tumour cell types and healthy tissues. They are both able to elicit melanoma-specific T cell responses in melanoma patients, and MELOE-1-specific CD8 T cells have been involved in melanoma immunosurveillance. With the aim to develop immunotherapies targeting this antigen, we investigated the transcriptional mechanisms leading to the preferential expression of meloe messenger in the melanocytic lineage. We defined the minimal promoter region of meloe gene and identified binding motifs for a set of transcription factors. Using mutagenesis, co-transfection experiments and chromatin immunoprecipitation, we showed that transcription factors involved in meloe promoter activity in melanomas were the melanocytic specific SOX9 and SOX10 proteins together with the activated P-CREB protein. Furthermore, we showed that meloe promoter was hypomethylated in melanomas and melanocytes, and hypermethylated in colon cancer cell lines and mesotheliomas, thus explaining the absence of P-CREB binding in these cell lines. This was a second key to explain the overerexpression of meloe messenger in the melanocytic lineage. To our knowledge, such a dual transcriptional control conferring tissue-specificity has never been described for the expression of tumour antigens.
Collapse
|
12
|
Pleshkan VV, Zinovyeva MV, Sverdlov ED. Melanoma: Surface markers as the first point of targeted delivery of therapeutic genes in multilevel gene therapy. Mol Biol 2011. [DOI: 10.1134/s0026893311030149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Vigneron N, Van den Eynde BJ. Insights into the processing of MHC class I ligands gained from the study of human tumor epitopes. Cell Mol Life Sci 2011; 68:1503-20. [PMID: 21387143 PMCID: PMC11114561 DOI: 10.1007/s00018-011-0658-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/29/2022]
Abstract
The molecular definition of tumor antigens recognized by cytolytic T lymphocytes (CTL) started in the late 1980s, at a time when the MHC class I antigen processing field was in its infancy. Born together, these two fields of science evolved together and provided each other with critical insights. Over the years, stimulated by the potential interest of tumor antigens for cancer immunotherapy, scientists have identified and characterized numerous antigens recognized by CTL on human tumors. These studies have provided a wealth of information relevant to the mode of production of antigenic peptides presented by MHC class I molecules. A number of tumor antigenic peptides were found to result from unusual mechanisms occurring at the level of transcription, translation or processing. Although many of these mechanisms occur in the cell at very low level, they are relevant to the immune system as they determine the killing of tumor cells by CTL, which are sensitive to low levels of peptide/MHC complexes. Moreover, these unusual mechanisms were found to occur not only in tumor cells but also in normal cells. Thereby, the study of tumor antigens has illuminated many aspects of MHC class I processing. We review here those insights into the MHC I antigen processing pathway that result from the characterization of human tumor antigens recognized by CTL.
Collapse
Affiliation(s)
- Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels Branch and de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, UCL 7459, 1200 Brussels, Belgium
| | - Benoît J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels Branch and de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, UCL 7459, 1200 Brussels, Belgium
| |
Collapse
|
14
|
Rogel A, Vignard V, Bobinet M, Labarriere N, Lang F. A long peptide from MELOE-1 contains multiple HLA class II T cell epitopes in addition to the HLA-A*0201 epitope: an attractive candidate for melanoma vaccination. Cancer Immunol Immunother 2011; 60:327-37. [PMID: 21080167 PMCID: PMC11029773 DOI: 10.1007/s00262-010-0938-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
CD4(+) T cells contribute importantly to the antitumor T cell response, and thus, long peptides comprising CD4 and CD8 epitopes may be efficient cancer vaccines. We have previously identified an overexpressed antigen in melanoma, MELOE-1, presenting a CD8(+) T cell epitope, MELOE-1(36-44), in the HLA-A*0201 context. A T cell repertoire against this epitope is present in HLA-A*0201+ healthy subjects and melanoma patients and the adjuvant injection of TIL containing MELOE-1 specific CD8(+) T cells to melanoma patients was shown to be beneficial. In this study, we looked for CD4(+) T cell epitopes in the vicinity of the HLA-A*0201 epitope. Stimulation of PBMC from healthy subjects with MELOE-1(26-46) revealed CD4 responses in multiple HLA contexts and by cloning responsive CD4(+) T cells, we identified one HLA-DRβ1*1101-restricted and one HLA-DQβ1*0603-restricted epitope. We showed that the two epitopes could be efficiently presented to CD4(+) T cells by MELOE-1-loaded dendritic cells but not by MELOE-1+ melanoma cell-lines. Finally, we showed that the long peptide MELOE-1(22-46), containing the two optimal class II epitopes and the HLA-A*0201 epitope, was efficiently processed by DC to stimulate CD4(+) and CD8(+) T cell responses in vitro, making it a potential candidate for melanoma vaccination.
Collapse
Affiliation(s)
- Anne Rogel
- INSERM U892–CRCNA, IRTUN, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
| | - Virginie Vignard
- INSERM U892–CRCNA, IRTUN, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
- CHU of Nantes, 44093 Nantes, France
| | - Mathilde Bobinet
- INSERM U892–CRCNA, IRTUN, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
| | - Nathalie Labarriere
- INSERM U892–CRCNA, IRTUN, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
| | - François Lang
- INSERM U892–CRCNA, IRTUN, 8 Quai Moncousu, BP70721, 44007 Nantes cedex 1, France
- Pharmacology Department, UFR des Sciences Pharmaceutiques, Université de Nantes, 1 rue Gaston Veil, 44035 Nantes, France
| |
Collapse
|
15
|
Current world literature. Curr Opin Oncol 2011; 23:227-34. [PMID: 21307677 DOI: 10.1097/cco.0b013e328344b687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|