1
|
Liang S, Lin X, Liang Y, Song D, Zhang L, Fan X. Killing Effects of IFN R -/- Mouse NK Cells Activated by HN Protein of NDV on Mouse Hepatoma Cells and Possible Mechanism with Syk and NF-κB. Anat Rec (Hoboken) 2019; 302:1718-1725. [PMID: 31120191 PMCID: PMC6771794 DOI: 10.1002/ar.24177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/27/2018] [Accepted: 12/08/2018] [Indexed: 11/07/2022]
Abstract
The objective of this article is to evaluate whether the tumoricidal activity of mouse IFN R-/- nature killer (NK) cells is induced by Newcastle disease virus hemagglutinin-neuraminidase (NDV-HN) stimulation, and to investigate what is the mechanism of the HN-stimulated NK cells to kill mouse hepatoma cell line in vitro. The mouse IFN R-/- NK cells were stimulated for 16 hr with 500 ng/mL NDV-HN in 1640 medium. Quantify the cytotoxic activities of NK cells against mouse hepatoma cells (Hepa1-6) by flow cytometry. Granzymes B (GrB) and Fas/FasL concentrations in the supernatants of IFN R-/- NK cells medium were determined by specific ELISA assay. The expression of cell surface GrB and Fas was determined by Western blot. NDV-HN stimulation enhanced tumoricidal activity of IFN R-/- NK cells toward Hepa1-6 in vitro. Treating with anti-HN neutralizing mAb induced significant decline in the cytotoxicity of IFN R-/- NK cells toward Hepa1-6 cell line (P < 0.05). After treating with anti-HN protein (1 μL/mL), Syk-specific inhibitor Herbimycin A(250 ng/mL) and NF-κB inhibitor PDTC (500 ng/mL) downregulated the tumoricidal activity of HN-stimulated IFN R-/- NK cells (P < 0.05). Moreover, significant suppressions in the production of GrB and Fas/FasL were observed in HN-stimulated IFN R-/- NK cells (P < 0.05). Thus, we concluded that killer activation receptors pathway is involved in the IFN-γ-independent GrB and Fas/FasL expression of NDV-HN-stimulated IFN R-/- NK cells, and these are activated by Syk and NF-κB. Anat Rec, 302:1718-1725, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association for Anatomy.
Collapse
Affiliation(s)
- Shuang Liang
- Department of MicrobiologyThe School of Preclinical Medicine, Guangxi Medical UniversityNanningGuangxiChina
- Department of Pharmaceutical and Medical EquipmentTrading Center of Guangxi Public ResourcesNanningGuangxiChina
| | - Xiao Lin
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality StandardsGuangxi Institute of Traditional Medical and Pharmaceutical SciencesNanningChina
| | - Ying Liang
- Department of MicrobiologyThe School of Preclinical Medicine, Guangxi Medical UniversityNanningGuangxiChina
| | - Dezhi Song
- Department of MicrobiologyThe School of Preclinical Medicine, Guangxi Medical UniversityNanningGuangxiChina
| | - Lei Zhang
- Department of MicrobiologyThe School of Preclinical Medicine, Guangxi Medical UniversityNanningGuangxiChina
| | - Xiaohui Fan
- Department of MicrobiologyThe School of Preclinical Medicine, Guangxi Medical UniversityNanningGuangxiChina
| |
Collapse
|
2
|
Mohebbi A, Ebrahimzadeh MS, Baghban Rahimi S, Saeidi M, Tabarraei A, Mohebbi SR, Shirian S, Gorji A, Ghaemi A. Non-replicating Newcastle Disease Virus as an adjuvant for DNA vaccine enhances antitumor efficacy through the induction of TRAIL and granzyme B expression. Virus Res 2018; 261:72-80. [PMID: 30599161 DOI: 10.1016/j.virusres.2018.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/02/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
The potential of non-replicating Newcastle Disease Virus (NDV) as an adjuvant for DNA vaccination remains to be elucidated. To assess the therapeutic effects of DNA vaccine (HPV-16 E7 gene) adjuvanted with NDV, female C57/BL6 mice were inoculated with murine TC-1 cells of human papillomavirus (HPV)-related carcinoma, expressing human papillomavirus 16 (HPV-16) E6/E7 antigens, and immunized with DNA vaccine alone or pretreated with NDV. One week after third immunization, Cytotoxic T lymphocytes (CTLs), splenocyte proliferation, cytokine balance (IFN-γ, IL-4 and IL-12 secretions) and intratumoral expression of cytotoxicity related proteins in tumor lysates were investigated. The results showed that treatment with non-replicating NDV prior to DNA vaccine induced tumor-specific cytolytic and splenocyte proliferation responses. The levels of cytokines IL-12, IL-4 and IFN-γ after treating with combined E7-DNA -non-replicating NDV (NDV-DNA Vaccine) were significantly higher than those of control groups. The intratumoral granzyme B and Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL)-mediated apoptosis was also significantly increased. Tumor therapeutic experiments showed that the NDV pretreatment could reduce the tumor progression of established E7-expressing TC-tumors. Taken together these data suggest that the significant antitumor responses evidenced during treatment with non-replicating NDV prior to DNA vaccine are due, in part, to strong E7-induced cellular immunity and enhanced expression of cytotoxicity related proteins in the tumor microenvironment. These observations indicated the potential of non-replicating NDV as an adjuvant for enhancing therapeutic DNA vaccines -induced immunity and antitumor responses.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Sanaz Baghban Rahimi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Ali Gorji
- Department of Neurosurgery and Neurology, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27a, 48149, Münster, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran; Infectious Diseases Research Center, Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
3
|
Antitumor effect of the Newcastle disease viral hemagglutinin-neuraminidase gene is expressed through an oncolytic adenovirus effect in osteosarcoma cells. Anticancer Drugs 2018; 29:197-207. [PMID: 29438228 DOI: 10.1097/cad.0000000000000575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Newcastle disease virus (NDV) can specifically kill cancer cells and has less toxicity to normal cells. The hemagglutinin-neuraminidase (HN) protein is an important structural protein in NDV pathogenesis and has been postulated as a promising candidate for antitumor therapy. The aim of this study was to investigate the anticancer potential of recombinant adenovirus Ad-HN-PEG3p-E1a. An MTS assay was performed to determine viral proliferation after viral infection, the data showed that the proliferation ability of osteosarcoma cells decreased, whereas there was no significant change in normal hepatic cells. DAPI and Annexin V experiments showed that osteosarcoma cells were killed because of apoptosis, active oxygen content, and augmented mitochondrial membrane potential loss. Caspase Activity Assay Kits were used to detect the caspase-3 activities of the treated OS-732 for increased expression. Western blot analysis showed that cytochrome C increased significantly and apoptosis of the virus was confirmed in tumor cells. In-vivo experiments show that NDV has an inhibitory effect on tumor growth. The recombinant adenovirus, which is composed of a HN protein and progressive increment promoter PEG3p, could inhibit the growth of OS-732 and promote the apoptosis of tumor cells. However, there was no clear relationship with normal cell (L02) apoptosis.
Collapse
|
4
|
Schwaiger T, Knittler MR, Grund C, Roemer-Oberdoerfer A, Kapp JF, Lerch MM, Mettenleiter TC, Mayerle J, Blohm U. Newcastle disease virus mediates pancreatic tumor rejection via NK cell activation and prevents cancer relapse by prompting adaptive immunity. Int J Cancer 2017; 141:2505-2516. [PMID: 28857157 DOI: 10.1002/ijc.31026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is the 8th most common cause of cancer-related deaths worldwide and the tumor with the poorest prognosis of all solid malignancies. In 1957, it was discovered that Newcastle disease virus (NDV) has oncolytic properties on tumor cells. To study the oncolytic properties of NDV in pancreatic cancer a single dose was administered intravenously in a syngeneic orthotopic tumor model using two different murine pancreatic adenocarcinoma cell lines (DT6606PDA, Panc02). Tumor growth was monitored and immune response was analyzed. A single treatment with NDV inhibited DT6606PDA tumor growth in mice and prevented recurrence for a period of three months. Tumor infiltration and systemic activation of NK cells, cytotoxic and helper T-cells was enhanced. NDV-induced melting of Panc02 tumors until d7 pi, but they recurred displaying unrestricted tumor growth, low immunogenicity and inhibition of tumor-specific immune response. Arrest of DT6606PDA tumor growth and rejection was mediated by activation of NK cells and a specific antitumor immune response via T-cells. Panc02 tumors rapidly decreased until d7 pi, but henceforth tumors characterized by the ability to perform immune-regulatory functions reappeared. Our results demonstrated that NDV-activated immune cells are able to reject tumors provided that an adaptive antitumor immune response can be initiated. However, activated NK cells that are abundant in Panc02 tumors lead to outgrowth of nonimmunogenic tumor cells with inhibitory properties. Our study emphasizes the importance of an adaptive immune response, which is initiated by NDV to mediate long-term tumor surveillance in addition to direct oncolysis.
Collapse
Affiliation(s)
- Theresa Schwaiger
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Michael R Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald-Insel Riems, Germany
| | - Angela Roemer-Oberdoerfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | | - Markus M Lerch
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany.,Medizinische Klinik und Poliklinik II, Klinikum der LMU München-Grosshadern, Munich, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Chen LG, Liu YS, Zheng TH, Chen X, Li P, Xiao CX, Ren JL. Therapeutic targeting of liver cancer with a recombinant DNA vaccine containing the hemagglutinin-neuraminidase gene of Newcastle disease virus via apoptotic-dependent pathways. Oncol Lett 2016; 12:3344-3350. [PMID: 27900002 PMCID: PMC5103948 DOI: 10.3892/ol.2016.5114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
A total of ~38.6 million mortalities occur due to liver cancer annually, worldwide. Although a variety of therapeutic methods are available, the efficacy of treatment at present is extremely limited due to an increased risk of malignancy and inherently poor prognosis of liver cancer. Gene therapy is considered a promising option, and has shown notable potential for the comprehensive therapy of liver cancer, in keeping with advances that have been made in the development of cancer molecular biology. The present study aimed to investigate the synergistic effects of the abilities of the hemagglutinin neuraminidase protein of Newcastle disease virus (NDV), the pro-apoptotic factor apoptin from chicken anaemia virus, and the interferon-γ inducer interleukin-18 (IL-18) in antagonizing liver cancer. Therefore, a recombinant DNA plasmid expressing the three exogenous genes, VP3, IL-18 and hemagglutinin neuraminidase (HN), was constructed. Flow cytometry, acridine orange/ethidium bromide staining and analysis of caspase-3 activity were performed in H22 cell lines transfected with the recombinant DNA plasmid. In addition, 6-week-old C57BL/6 mice were used to establish a H22 hepatoma-bearing mouse model. Mice tumor tissue was analyzed by immunohistochemistry and scanning electron microscopy. The results of the present study revealed that the recombinant DNA vaccine containing the VP3, IL-18 and HN genes inhibited cell proliferation and induced autophagy via the mitochondrial pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Li-Gang Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yuan-Sheng Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Tang-Hui Zheng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Xu Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Ping Li
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Chuan-Xing Xiao
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
6
|
Rajmani RS, Gupta SK, Singh PK, Gandham RK, Sahoo AP, Chaturvedi U, Tiwari AK. HN protein of Newcastle disease virus sensitizes HeLa cells to TNF-α-induced apoptosis by downregulating NF-κB expression. Arch Virol 2016; 161:2395-405. [PMID: 27294845 DOI: 10.1007/s00705-016-2923-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022]
Abstract
Hemagglutinin neuraminidase (HN) is a membrane protein of Newcastle disease virus (NDV) with the ability to induce apoptosis in many transformed cell lines. TNF-α is a multi-factorial protein that regulates cell survival, differentiation and apoptosis. In a previous study, we reported that HN protein induces apoptosis by downregulating NF-κB expression. Further, we speculated that downregulation of NF-κB expression might sensitize HeLa cells to TNF-α-mediated apoptosis. Therefore, the present study was undertaken to investigate if HN protein could sensitize HeLa cells to TNF-α and to examine the apoptotic potential of the HN protein and TNF-α in combination. The results revealed that the pro-apoptotic effects were more pronounced with the combination of HN and TNF-α than with HN or TNF-α alone, which indicates that the HN protein indeed sensitized the HeLa cells to TNF-α-induced cell death. The results of the study provide a mechanistic insight into the apoptotic action of HN protein along with TNF-α, which could be valuable in treating tumor types that are naturally resistant to TNF-α.
Collapse
Affiliation(s)
- R S Rajmani
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India.,Centre for Infectious Disease Research, IISc, Bangalore, 560012, India
| | - Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Prafull Kumar Singh
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - A P Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Uttara Chaturvedi
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Ashok K Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India.
| |
Collapse
|
7
|
Lee SR, Park YK, Shin BA, Park HR. Effects of tumor vaccine expressing Granulocyte-Macrophage Colony Stimulating Factor and interleukin-18 fusion on cancer cells and its possible application for cancer immunotherapy. Cytokine 2016; 89:143-154. [PMID: 26868088 DOI: 10.1016/j.cyto.2016.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
To access antitumor effects of a combined Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) and interleukin-18 (IL-18), cDNA fusion of murine GM-CSF and mature IL-18 (GMIL-18) was constructed and transfected in mammalian cells. GMIL-18 fusion protein was highly secreted and displayed bifunctional activities, possessing immune response initiation and cytokine roles, including IFN-γ induction in mouse splenocytes and increased proliferation of GM-CSF-dependent cells, M-NSF-60. The GMIL-18 secreting tumor vaccine was generated and it strongly stimulated differentiation of dendrite cells (DCs) and effusive CD8+ and CD4+ cell infiltration into tumor mice. Moreover, growth of CT26 mouse colon cancer cells was significantly retarded by GMIL-18 (CT26GMIL-18), but not by CT26GM-CSF- or CT26IL-18. The efficiency of prophylactic vaccination was greater than that of therapeutic vaccination in terms of tumor size and its inhibitory role in proliferation. In micrometastasis analysis of tumor models, γ-ray irradiated GMIL-18 tumor vaccine showed a smaller number of liver-meta tumor nodules in mouse liver cells. We concluded that bifunctional GMIL-18 fusion protein could be applied as an immune therapy for cancer treatments.
Collapse
Affiliation(s)
- Sang Rok Lee
- Department of Molecular Medicine, Chonnam National University, Gwangju 501-757, Republic of Korea
| | - Young Kyu Park
- Department of Surgery, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Boo Ahn Shin
- Deprtment of Microbiology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Hae-Ryoung Park
- Division of Liberal Arts & Teacher Training, Kwangju Women's University, Gwangju 506-713, Republic of Korea.
| |
Collapse
|
8
|
Zhang CX, Ye LW, Liu Y, Xu XY, Li DR, Yang YQ, Sun LL, Yuan J. Antineoplastic activity of Newcastle disease virus strain D90 in oral squamous cell carcinoma. Tumour Biol 2015; 36:7121-31. [PMID: 25877754 DOI: 10.1007/s13277-015-3433-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/07/2015] [Indexed: 01/27/2023] Open
Abstract
Newcastle disease virus (NDV), an avian paramyxovirus, possesses the ability to kill tumor cells. Here, we report the effects of NDV strain D90, which was isolated in China, against oral squamous cell carcinoma (OSCC) cells. In this study, we showed that the cell death induced by D90 was apoptotic. Furthermore, the apoptosis induced by D90 was dependent on the mitochondrial pathway, and the death receptor pathway may be not involved. Bax and Bcl-2 also played a role in the apoptosis induced by D90. Lymph node metastasis is a serious problem for oral cancer; we therefore evaluated the impact of D90 on the migration and invasion of OSCC cells. NDV D90 affected microtubules and microfilaments to inhibit the motility of OSCC prior to apoptosis. The effects of D90 on the migration and invasion rates of OSCC cells were evaluated by migration and invasion assays. Subsequently, the changes in sp1, RECK, MMP-2, and MMP-9 induced by a low concentration of D90 were detected by western blot and gelatin zymography. D90 significantly inhibited the invasion and metastasis of OSCC cells by decreasing the expression of sp1 and increasing the expression of RECK to suppress the expression and activity of MMP-2 and MMP-9.
Collapse
Affiliation(s)
- Chun-Xiao Zhang
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Long-Wei Ye
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ying Liu
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xiao-Ya Xu
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Dan-Rui Li
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yan-Qing Yang
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Lu-Lu Sun
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jie Yuan
- Department of Oral Health Sciences, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
9
|
Rajmani RS, Gandham RK, Gupta SK, Sahoo AP, Singh PK, Kumar R, Saxena S, Chaturvedi U, Tiwari AK. HN Protein of Newcastle Disease Virus Induces Apoptosis Through SAPK/JNK Pathway. Appl Biochem Biotechnol 2015; 177:940-56. [DOI: 10.1007/s12010-015-1788-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023]
|
10
|
Bai FL, Yu YH, Tian H, Ren GP, Wang H, Zhou B, Han XH, Yu QZ, Li DS. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy. Cancer Biol Ther 2014; 15:1226-38. [PMID: 24971746 DOI: 10.4161/cbt.29686] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recombinant Newcastle disease virus (rNDV) have shown oncolytic therapeutic efficacy in preclinical studies and are currently in clinical trials. In this study, we have evaluated the possibility to enhance the cancer therapeutic potential of NDV by means of inserting both interleukin-2 (IL-2) and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) delivered by rNDV. We demonstrated that rNDV expressing TRAIL (rNDV-TRAIL) or both human IL-2 and TRAIL (rNDV-IL-2-TRAIL) significantly enhanced inherent anti-neoplastic of rNDV by inducing apoptosis. And we showed that apoptosis-related genes mRNA expression was increased after treated with rNDV-TRAIL or rNDV-IL-2-TRAIL compared with rNDV and rNDV-IL-2. We also demonstrated that both rNDV-IL-2 and rNDV-IL-2-TRAIL induced proliferation of the CD4(+) and CD8(+) in treated mice and elicited expression of TNF-α and IFN-γ antitumor cytokines. These mice treated with oncolytic agents exhibited significant reduction in tumor development compared with mice treated with the parental virus. In addition, experiments in both hepatocellular carcinoma and melanoma-bearing mice demonstrated that the genetically engineered rNDV-IL-2-TRAIL exhibited prolonged animals' survival compared with rNDV, rNDV-IL-2, and rNDV-TRAIL. In conclusion, the immunotherapy and oncolytic virotherapy properties of NDV can be enhanced by the introduction of IL-2 and TRAIL genes, whose products initiated a broad cascade of immunological affects and induced tumor cells apoptosis in the microenvironment of the immune system.
Collapse
Affiliation(s)
- Fu-Liang Bai
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Yin-Hang Yu
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Hui Tian
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Gui-Ping Ren
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Hui Wang
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Bing Zhou
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Xiao-Hui Han
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| | - Qing-Zhong Yu
- USDA-ARS; Southeast Poultry Research Laboratory; Athens, GA USA
| | - De-Shan Li
- Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China; Biopharmaceutical Teaching and Research Department; College of Life Science; Northeast Agricultural University; Harbin, China
| |
Collapse
|
11
|
Ghrici M, El Zowalaty M, Omar AR, Ideris A. Induction of apoptosis in MCF-7 cells by the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus Malaysian strain AF2240. Oncol Rep 2013; 30:1035-44. [PMID: 23807159 PMCID: PMC3783058 DOI: 10.3892/or.2013.2573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/10/2013] [Indexed: 12/11/2022] Open
Abstract
Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.
Collapse
Affiliation(s)
- Mohamed Ghrici
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | | | | | | |
Collapse
|
12
|
Zamarin D, Palese P. Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 2012; 7:347-67. [PMID: 22393889 DOI: 10.2217/fmb.12.4] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Newcastle disease virus (NDV) is an avian paramyxovirus, which has been demonstrated to possess significant oncolytic activity against mammalian cancers. This review summarizes the research leading to the elucidation of the mechanisms of NDV-mediated oncolysis, as well as the development of novel oncolytic agents through the use of genetic engineering. Clinical trials utilizing NDV strains and NDV-based autologous tumor cell vaccines will expand our knowledge of these novel anticancer strategies and will ultimately result in the successful use of the virus in the clinical setting.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|