1
|
Massariol Pimenta T, Carlos de Souza J, da Silva Martins B, Silva Butzene SM, Simões Padilha JM, Ganho Marçal M, Dos Santos Elias G, Rangel LBA. Emerging strategies to overcome ovarian cancer: advances in immunotherapy. Front Pharmacol 2024; 15:1490896. [PMID: 39564107 PMCID: PMC11573523 DOI: 10.3389/fphar.2024.1490896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Ovarian cancer is the second most common malignant neoplasm of gynecological origin and the leading cause of death from cancer in the female reproductive system worldwide. This scenario is largely due to late diagnoses, often in advanced stages, and the development of chemoresistance by cancer cells. These challenges highlight the need for alternative treatments, with immunotherapy being a promising option. Cancer immunotherapy involves triggering an anti-tumor immune response and developing immunological memory to eliminate malignant cells, prevent recurrence, and inhibit metastasis. Some ongoing research investigate potentially immunological advancements in the field of cancer vaccines, immune checkpoint blockade, CAR-T cell, and other strategies.
Collapse
Affiliation(s)
- Tatiana Massariol Pimenta
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Josiany Carlos de Souza
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Bárbara da Silva Martins
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Solenny Maria Silva Butzene
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - José Matheus Simões Padilha
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Milleny Ganho Marçal
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Guilherme Dos Santos Elias
- Biochemistry Program, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Leticia Batista Azevedo Rangel
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Biochemistry Program, Health Sciences Center, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
2
|
Shi G, Synowiec J, Singh J, Heller R. Modification of the tumor microenvironment enhances immunity with plasmid gene therapy. Cancer Gene Ther 2024; 31:641-648. [PMID: 38337037 PMCID: PMC11702831 DOI: 10.1038/s41417-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Local intratumor delivery with electroporation of low levels of plasmids encoding molecules, induces an antitumor effect without causing systemic toxicity. However, previous studies have predominately focused on the function of the delivered molecule encoded within the plasmid, and ignored the plasmid vector. In this study, we found vectors pUMVC3 and pVax1 induced upregulation of MHC class I (MHC-I) and PD-L1 on tumor cell surface. These molecules participate in a considerable number of immunoregulatory functions through their interactions with and activating inhibitory immune cell receptors. MHC molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells and tumor cells. Increased PD-L1 expression on tumor cells is an important monitor of tumor growth and the effectiveness of immune inhibitor therapy. Results from flow cytometry confirmed increased expression of MHC-I and PDL-1 on B16F10, 4T1, and KPC tumor cell lines. Preliminary animal data from tumor-bearing models, B16F10 melanoma, 4T1 breast cancer and KPC pancreatic cancer mouse models showed that tumor growth was attenuated after pUMVC3 intratumoral electroporation. Our data also documented that pSTAT1 signaling pathway might not be associated with plasmid vectors' function of upregulating MHC-I, PD-L1 on tumor cells.
Collapse
Affiliation(s)
- Guilan Shi
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Jody Synowiec
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Julie Singh
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Dhall A, Patiyal S, Kaur H, Raghava GPS. Risk assessment of cancer patients based on HLA-I alleles, neobinders and expression of cytokines. Comput Biol Med 2023; 167:107594. [PMID: 37918263 DOI: 10.1016/j.compbiomed.2023.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Advancements in cancer immunotherapy have shown significant outcomes in treating cancers. To design effective immunotherapy, it's important to understand immune response of a patient based on its genomic profile. However, analyses to do that requires proficiency in the bioinformatic methods. Swiftly growing sequencing technologies and statistical methods create a blockage for the scientists who want to find the biomarkers for different cancers but don't have detailed knowledge of coding or tool. Here, we are providing a web-based resource that gives scientists with no bioinformatics expertise, the ability to obtain the prognostic biomarkers for different cancer types at different levels. We computed prognostic biomarkers from 8346 cancer patients for twenty cancer types. These biomarkers were computed based on i) presence of 352 Human leukocyte antigen class-I, ii) 660959 tumor-specific HLA1 neobinders, and iii) expression profile of 153 cytokines. It was observed that survival risk of cancer patients depends on presence of certain type of HLA-I alleles; for example, liver hepatocellular carcinoma patients with HLA-A*03:01 are at lower risk. Our analysis indicates that neobinders of HLA-I alleles have high correlation with overall survival of certain type of cancer patients. For example, HLA-B*07:02 binders have 0.49 correlation with survival of lung squamous cell carcinoma and -0.77 with kidney chromophobe patients. Additionally, we computed prognostic biomarkers based on cytokine expressions. Higher expression of few cytokines is survival favorable like IL-2 for bladder urothelial carcinoma, whereas IL-5R is survival unfavorable for kidney chromophobe patients. Freely accessible to public, CancerHLA-I maintains raw and analysed data (https://webs.iiitd.edu.in/raghava/cancerhla1/).
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Harpreet Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
4
|
Stokidis S, Baxevanis CN, Fortis SP. The Prognostic Significance of Selected HLA Alleles on Prostate Cancer Outcome. Int J Mol Sci 2023; 24:14454. [PMID: 37833904 PMCID: PMC10572221 DOI: 10.3390/ijms241914454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, we have shown that HLA-A*02:01 and HLA-A*24:02 in de novo metastatic prostate cancer (MPCa) have an important role in disease progression. Since de novo MPCa represents a small group among patients diagnosed with prostate cancer (PCa), it was obvious to try to extend the validity of our results to larger cohorts of PCa patients. Herein, we analyzed patients irrespective of their disease status at diagnosis to include, besides patients with MPCa, those with localized PCa (LPCa). Our goal was to specify the prognostic value of HLA-A*02:01 and HLA-A*24:02 for overall survival (OS) prospectively and for early biochemical recurrence (BCR) and castrate resistance (CR) as additional clinical endpoints in a prospective/retrospective manner, to improve clinical decisions for patients covering all stages of PCa. On univariate analysis, HLA-A alleles were significantly associated as prognostic biomarkers with early BCR (p = 0.028; HR = 1.822), OS (p = 0.013; HR = 1.547) and showed a trend for CR (p = 0.150; HR = 1.239). On multivariate analysis, HLA-A alleles proved to be independent prognosticators for early BCR (p = 0.017; HR = 2.008), CR (p = 0.005; HR = 1.615), and OS (p = 0.002; HR = 2.063). Kaplan-Meier analyses revealed that patients belonging to the HLA-A*02:01+HLA-A*24:02- group progressed much faster to BCR and CR and had also shorter OS compared to HLA-A*24:02+ patients. Patients being HLA-A*02:01-HLA-A*24:02- exhibited varying clinical outcomes, pointing to the presence of additional HLA-A alleles with potential prognostic value. Our data underline the HLA-A alleles as valuable prognostic biomarkers for PCa that may assist with the appropriate treatment and follow-up schedule based on the risk for disease progression to avoid over-diagnosis and over-treatment.
Collapse
Affiliation(s)
| | | | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece; (S.S.); (C.N.B.)
| |
Collapse
|
5
|
Wen C, Zhang L, Yang Y, Jin Y, Ren D, Zhang Z, Zou S, Li F, Sun H, Jin J, Lu X, Xie J, Cheng D, Xu Z, Chen H, Mao B, Zhang J, Wang J, Deng X, Peng C, Li H, Jiang C, Lin L, Zhang H, Chen H, Shen B, Zhan Q. Specific human leukocyte antigen class I genotypes predict prognosis in resected pancreatic adenocarcinoma: a retrospective cohort study. Int J Surg 2023; 109:1941-1952. [PMID: 37026827 PMCID: PMC10389500 DOI: 10.1097/js9.0000000000000264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/26/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Patients with resected pancreatic adenocarcinoma (PAAD) often experience short-term relapse and dismal survival, suggesting an urgent need to develop predictive and/or prognostic biomarkers for these populations. Given the potential associations of the human leukocyte antigen class I ( HLA -I) genotype with oncogenic mutational profile and immunotherapy efficacy, we aimed to assess whether differential HLA -I genotype could predict the postoperative outcomes in resected PAAD patients. MATERIALS AND METHODS HLA -I ( A , B , and C ) genotyping and somatic variants of 608 Chinese PAAD patients were determined by targeted next-generation sequencing of matched blood cells and tumor tissues. HLA - A / B alleles were classified with the available definition of 12 supertypes. The Kaplan-Meier curves of disease-free survival (DFS) and multivariable Cox proportional-hazards regression analyses were performed to determine the survival difference in 226 selected patients with radical resection. Early-stage (I-II) patients constituted the majority (82%, 185/226) and some stage I-II individuals with high-quality tumor samples were analyzed by RNA-sequencing to examine immunophenotypes. RESULTS Patients with HLA-A02 + B62 + B44 - had significantly shorter DFS (median, 239 vs. 410 days; hazard ratio=1.65, P =0.0189) than patients without this genotype. Notably, stage I-II patients carrying HLA-A02 + B62 + B44 - had sharply shorter DFS than those without HLA-A02 + B62 + B44 - (median, 237 vs. 427 days; hazard ratio=1.85, P =0.007). Multivariate analysis revealed that HLA-A02 + B62 + B44 - was associated with significantly inferior DFS ( P =0.014) in stage I-II patients but not in stage III patients. Mechanistically, HLA-A02 + B62 + B44 - patients were associated with a high rate of KRAS G12D and TP53 mutations, lower HLA-A expression, and less inflamed T-cell infiltration. CONCLUSION The current results suggest that a specific combination of germline HLA-A02/B62/B44 supertype, HLA-A02 + B62 + B44 - , was a potential predictor for DFS in early-stage PAAD patients after surgery.
Collapse
Affiliation(s)
- Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Lei Zhang
- Genecast Biotechnology Co. Ltd, Wuxi, Jiangsu Province
| | - Ying Yang
- Genecast Biotechnology Co. Ltd, Wuxi, Jiangsu Province
| | - Yangbing Jin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Dandan Ren
- Genecast Biotechnology Co. Ltd, Wuxi, Jiangsu Province
| | - Zehui Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Huaibo Sun
- Genecast Biotechnology Co. Ltd, Wuxi, Jiangsu Province
| | - Jiabin Jin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Xiongxiong Lu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Junjie Xie
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Dongfeng Cheng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Huan Chen
- Genecast Biotechnology Co. Ltd, Wuxi, Jiangsu Province
| | - Beibei Mao
- Genecast Biotechnology Co. Ltd, Wuxi, Jiangsu Province
| | - Jun Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Jiancheng Wang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Hongwei Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Henghui Zhang
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
- State Key Laboratory of Oncogenes and Related Genes, National Research Center for Translational Medicine (Shanghai), Shanghai
| |
Collapse
|
6
|
Xu C, Wang Y, Hong Y, Yao R, Wu L, Shen X, Qu Y, Zhang Z, Zhu W, Yang Y, Chen W, Zhou Y, Liang Z. Identification of genetic and immune signatures for the recurrence of HER2-positive breast cancer after trastuzumab-based treatment. Breast Cancer Res Treat 2023; 199:603-615. [PMID: 37084155 DOI: 10.1007/s10549-023-06931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE To determine the genetic and immune features associated with the recurrence of human epidermal growth factor receptor2-positive (HER2 +) breast cancer (BC) after trastuzumab-based treatment. METHODS A retrospective cohort study of 48 patients who received trastuzumab-based treatment was divided into recurrent and non-recurrent groups according to clinical follow-up. Baseline samples from all 48 patients were analyzed for genetic variation, HLA allele type, gene expression, and immune features, which were linked to HER2 + BC recurrence. Statistics included logistic regression models, Kaplan-Meier plots, and Univariate Cox proportional hazards models. RESULTS Compared with the non-recurrent group, the extracellular matrix-related pathway and 3 Hallmark gene sets were enriched in the recurrent group. The infiltration levels of immature B cells and activated B cells were significantly increased in the non-recurrent group, which correlated remarkably with improved overall survival (OS) in two other published gene expression datasets, including TCGA and METABRIC. In the TCGA cohort (n = 275), activated B cells (HR 0.23, 95%CI 0.13-0.43, p < 0.0001), and immature B cells (HR 0.26, 95%CI 0.12-0.59, p < 0.0001). In the METABRIC cohort (n = 236), activated B cells (HR 0.60, 95%CI 0.43-0.83, p = 0.002), and immature B cells (HR 0.65, 95%CI 0.47-0.91, p = 0.011). Cox regression suggested that immature B cells and activated B cells were protective factors for outcome OS. CONCLUSIONS Aberrant activation of multiple pathways and low baseline tumor-infiltrating B cells are related to HER2 + BC trastuzumab-based recurrence, which primarily affects the antitumor activity of trastuzumab.
Collapse
Affiliation(s)
- Chi Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yahui Wang
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Yuanyuan Hong
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Ru Yao
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Wu
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Xi Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Qu
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Zhang
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Wei Zhu
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Ying Yang
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Weizhi Chen
- Genecast Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
8
|
James LM, Georgopoulos AP. Immunogenetic Profiles and Associations of Breast, Cervical, Ovarian, and Uterine Cancers. Cancer Inform 2023; 22:11769351221148588. [PMID: 36684415 PMCID: PMC9846304 DOI: 10.1177/11769351221148588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
It is increasingly recognized that the human immune response influences cancer risk, progression, and survival; consequently, there is growing interest in the role of human leukocyte antigen (HLA), genes that play a critical role in initiating the immune response, on cancer. Recent evidence documented clustering of cancers based on immunogenetic profiles such that breast and ovarian cancers clustered together as did uterine and cervical cancers. Here we extend that line of research to evaluate the HLA profile of those 4 cancers and their associations. Specifically, we evaluated the associations between the frequencies of 127 HLA alleles and the population prevalences of breast, ovarian, cervical, and uterine cancer in 14 countries in Continental Western Europe. Factor analysis and hierarchical clustering were used to evaluate groupings of cancers based on their immunogenetic profiles. The results documented highly similar immunogenetic profiles for breast and ovarian cancers that were characterized predominantly by protective HLA effects. In addition, highly similar immunogenetic profiles for cervical and uterine cancers were observed that were, conversely, characterized by susceptibility effects. In light of the role of HLA in host immune system protection against non-self antigens, these findings suggest that certain cancers may be associated with similar contributory factors such as viral oncoproteins or neoantigens.
Collapse
Affiliation(s)
- Lisa M James
- Department of Veterans Affairs Health
Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN,
USA,Department of Neuroscience, University
of Minnesota Medical School, Minneapolis, MN, USA,Department of Psychiatry, University of
Minnesota Medical School, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Department of Veterans Affairs Health
Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN,
USA,Department of Neuroscience, University
of Minnesota Medical School, Minneapolis, MN, USA,Department of Psychiatry, University of
Minnesota Medical School, Minneapolis, MN, USA,Department of Neurology, University of
Minnesota Medical School, Minneapolis, MN, USA,Apostolos P Georgopoulos, Department of
Neuroscience, University of Minnesota Medical School, Brain Sciences Center
(11B), Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN 55417, USA.
| |
Collapse
|
9
|
Sun T, Li Y, Wu J, Cao Y, Yang Y, He Y, Huang W, Liu B, Yang W. Downregulation of exosomal MHC-I promotes glioma cells escaping from systemic immunosurveillance. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102605. [PMID: 36113830 DOI: 10.1016/j.nano.2022.102605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/10/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Tumor-derived exosomes are capable of inducing immune dysfunction and favoring the formation and progression of tumor. The major histocompatibility complex class I (MHC-I) plays a key role in antitumor immune responses by presenting tumor antigens to cytotoxic T lymphocytes. However, the role of tumor-derived circulating exosomal MHC-I on immune system activation remains unclear. We demonstrated that low level of glioma cells-derived exosomal MHC-I was associated with the dysfunction of CD8+ T cells in immune activation and cytotoxicity. MHC-I upregulation in exosomes restored antigen presentation of glioma cells and activated CD8+ T cells to exert robust antitumor immune response in combination with immune checkpoint blockade. Collectively, these data provided evidences for an important interplay between exosomal MHC-I and CD8+ T cells to activate systemic antitumor immune response, and interpreted how glioma cells evaded immunosurveillance, induced immunosuppression and were resistant to immunotherapy from the perspective of systemic immunity.
Collapse
Affiliation(s)
- Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yanyan Li
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jie Wu
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yufei Cao
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Yuping He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Wenpeng Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Bin Liu
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
10
|
Hong KU, Gardner JQ, Doll MA, Stepp MW, Wilkey DW, Benz FW, Cai J, Merchant ML, Hein DW. Proteomic analysis of arylamine N-acetyltransferase 1 knockout breast cancer cells: Implications in immune evasion and mitochondrial biogenesis. Toxicol Rep 2022; 9:1566-1573. [PMID: 36158865 PMCID: PMC9500399 DOI: 10.1016/j.toxrep.2022.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 02/08/2023] Open
Abstract
Previous studies have shown that inhibition or depletion of N-acetyltransferase 1 (NAT1) in breast cancer cell lines leads to growth retardation both in vitro and in vivo, suggesting that NAT1 contributes to rapid growth of breast cancer cells. To understand molecular and cellular processes that NAT1 contributes to and generate novel hypotheses in regard to NAT1's role in breast cancer, we performed an unbiased analysis of proteomes of parental MDA-MB-231 breast cancer cells and two separate NAT1 knockout (KO) cell lines. Among 4890 proteins identified, 737 proteins were found significantly (p < 0.01) upregulated, and 651 proteins were significantly (p < 0.01) downregulated in both NAT1 KO cell lines. We performed enrichment analyses to identify Gene Ontology biological processes, molecular functions, and cellular components that were enriched in each data set. Among the proteins upregulated in NAT1 KO cells, pathways associated with MHC (major histocompatibility complex) I-mediated antigen presentation were significantly enriched. This raises an interesting and new hypothesis that upregulation of NAT1 in breast cancer cells may aid them evade immune detection. Multiple pathways involved in mitochondrial functions were collectively downregulated in NAT1 KO cells, including multiple subunits of mitochondrial ATP synthase (Complex V of the electron transport chain). This was accompanied by a reduction in cell cycle-associated proteins and an increase in pro-apoptotic pathways in NAT1 KO cells, consistent with reported observations that NAT1 KO cells exhibit a slower growth rate both in vitro and in vivo. Thus, mitochondrial dysfunction in NAT1 KO cells likely contributes to growth retardation.
Collapse
Affiliation(s)
- Kyung U. Hong
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Jonathan Q. Gardner
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Mark A. Doll
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Marcus W. Stepp
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel W. Wilkey
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Frederick W. Benz
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Jian Cai
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Michael L. Merchant
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - David W. Hein
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA,Correspondence to: Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY 40202, USA.
| |
Collapse
|
11
|
Ding J, Zhang Q, Chen S, Huang H, He L. Construction of a new tumor immunity-related signature to assess and classify the prognostic risk of ovarian cancer. Aging (Albany NY) 2020; 12:21316-21328. [PMID: 33154188 PMCID: PMC7695433 DOI: 10.18632/aging.103868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Ovarian cancer is associated with a high mortality rate. In this study, we established a new immune-related signature that can stratify ovarian cancer patients. First, we obtained immune-related genes through IMMUPORT, and DEGs (Differential Expression Genes) by analyzing the GSE26712 dataset. The APP (Antigen Processing and Presentation) and DEG signatures were established using univariate and multivariate Cox models. Kaplan-Meier analysis revealed the signatures' prognostic value in training and validation cohorts (HR: 0.379 VS. 0.450; 0.333 VS. 0.327). Nomogram analysis was used to assess the signatures' ability to predict the 30-month prognosis, which was evaluated using the calibration curve and time-dependent ROC curve (30-month AUC: 0.665 VS. 0.743). Time-dependent ROC, Decision Curve Analysis (DCA) and Integrated discrimination improvement (IDI) was used to compare the new model to previously published gene signatures. 30-month AUC composite variable (0.736) was higher than 9-gene signature (0.657), and composite variable had a larger net benefit and a higher IDI (+2.436%) relative to the 9-gene signature. Tumor immune infiltration and tumor microenvironment scores of the 2 groups separated by APP signature were compared. GSEA was used to identify enriched KEGG pathways. Conclusively, the proposed signature can stratify ovarian cancer patients by risk-score and guide clinical decisions.
Collapse
Affiliation(s)
- Jiashan Ding
- Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Qiaoling Zhang
- Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Shichao Chen
- Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Huikai Huang
- Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Linsheng He
- Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Lazaridou MF, Massa C, Handke D, Mueller A, Friedrich M, Subbarayan K, Tretbar S, Dummer R, Koelblinger P, Seliger B. Identification of microRNAs Targeting the Transporter Associated with Antigen Processing TAP1 in Melanoma. J Clin Med 2020; 9:jcm9092690. [PMID: 32825219 PMCID: PMC7563967 DOI: 10.3390/jcm9092690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
The underlying molecular mechanisms of the aberrant expression of components of the HLA class I antigen processing and presentation machinery (APM) in tumors leading to evasion from T cell-mediated immune surveillance could be due to posttranscriptional regulation mediated by microRNAs (miRs). So far, some miRs controlling the expression of different APM components have been identified. Using in silico analysis and an miR enrichment protocol in combination with small RNA sequencing, miR-26b-5p and miR-21-3p were postulated to target the 3′ untranslated region (UTR) of the peptide transporter TAP1, which was confirmed by high free binding energy and dual luciferase reporter assays. Overexpression of miR-26b-5p and miR-21-3p in melanoma cells downregulated the TAP1 protein and reduced expression of HLA class I cell surface antigens, which could be reverted by miR inhibitors. Moreover, miR-26b-5p overexpression induced a decreased T cell recognition. Furthermore, an inverse expression of miR-26b-5p and miR-21-3p with TAP1 was found in primary melanoma lesions, which was linked with the frequency of CD8+ T cell infiltration. Thus, miR-26-5p and miR-21-3p are involved in the HLA class I-mediated immune escape and might be used as biomarkers or therapeutic targets for HLA class Ilow melanoma cells.
Collapse
Affiliation(s)
- Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Sandy Tretbar
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Reinhard Dummer
- Institute of Dermatology, University Hospital Zürich, 8091 Zürich, Switzerland;
| | - Peter Koelblinger
- Department of Dermatology and Allergology, University Hospital Salzburg, 5020 Salzburg, Austria;
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
- Correspondence: ; Tel.: +49-(0)-345-557-4054
| |
Collapse
|
13
|
MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071760. [PMID: 32630675 PMCID: PMC7409324 DOI: 10.3390/cancers12071760] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, major advances have been made in cancer immunotherapy. This has led to significant improvement in prognosis of cancer patients, especially in the hematological setting. Nonetheless, translation of these successes to solid tumors was found difficult. One major mechanism through which solid tumors can avoid anti-tumor immunity is the downregulation of major histocompatibility complex class I (MHC-I), which causes reduced recognition by- and cytotoxicity of CD8+ T-cells. Downregulation of MHC-I has been described in 40-90% of human tumors, often correlating with worse prognosis. Epigenetic and (post-)transcriptional dysregulations relevant in the stabilization of NFkB, IRFs, and NLRC5 are often responsible for MHC-I downregulation in cancer. The intrinsic reversible nature of these dysregulations provides an opportunity to restore MHC-I expression and facilitate adaptive anti-tumor immunity. In this review, we provide an overview of the mechanisms underlying reversible MHC-I downregulation and describe potential strategies to counteract this reduction in MHC-I antigen presentation in cancer.
Collapse
|
14
|
Hirbod-Mobarakeh A, Shabani M, Keshavarz-Fathi M, Delavari F, Amirzargar AA, Nikbin B, Kutikhin A, Rezaei N. Immunogenetics of Cancer. CANCER IMMUNOLOGY 2020:417-478. [DOI: 10.1007/978-3-030-30845-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Gao Q, Xiang SD, Wilson K, Madondo M, Stephens AN, Plebanski M. Sperm Protein 17 Expression by Murine Epithelial Ovarian Cancer Cells and Its Impact on Tumor Progression. Cancers (Basel) 2018; 10:cancers10080276. [PMID: 30127274 PMCID: PMC6115966 DOI: 10.3390/cancers10080276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The cancer testis antigen sperm protein 17 (Sp17) is a promising antigenic target in epithelial ovarian cancer (EOC) vaccine development. However, its role in ovarian cancer is unclear. We isolated and expanded Sp17+ and Sp17− clones from the murine EOC cell line ID8, and compared their in-vitro cell growth characteristics and in-vivo tumorigenicity. We also examined the potential co-expression of molecules that may influence cancer cell survival and interaction with immune cells. These include stimulatory and immunosuppressive molecules, such as major histocompatibility class I molecules (MHC I), MHC II, cytotoxic T lymphocyte associated antigen-4 (CTLA-4), CD73, CD39, tumor necrosis factor receptor II (TNFRII), signal transducer and activator of transcription 3 (STAT3) and programmed death-ligand 1 (PD-L1). Whilst the presence of Sp17 was not correlated with the ID8 cell proliferation/growth capacity in vitro, it was critical to enable progressive tumor formation in vivo. Flow cytometry revealed that Sp17+ ID8 cells displayed higher expression of both STAT3 and PD-L1, whilst MHC II expression was lower. Moreover, Sp17high (PD-L1+MHCII−) cell populations showed significantly enhanced resistance to Paclitaxel-induced cell death in vitro compared to Sp17low (PD-L1−MHCII+) cells, which was associated in turn with increased STAT3 expression. Together, the data support Sp17 as a factor associated with in-vivo tumor progression and chemo-resistance, validating it as a suitable target for vaccine development.
Collapse
Affiliation(s)
- Qian Gao
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Sue D Xiang
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia.
| | - Kirsty Wilson
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
| | - Mutsa Madondo
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
| | - Andrew N Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia.
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
16
|
Jackson DO, Trappey FA, Clifton GT, Vreeland TJ, Peace KM, Hale DF, Litton JK, Murray JL, Perez SA, Papamichail M, Mittendorf EA, Peoples GE. Effects of HLA status and HER2 status on outcomes in breast cancer patients at risk for recurrence - Implications for vaccine trial design. Clin Immunol 2018; 195:28-35. [PMID: 30025819 DOI: 10.1016/j.clim.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/29/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy, using peptide-based cancer vaccines is being studied to assess its potential in breast cancer. Trials of HLA-restricted peptide vaccines have been difficult to enroll given HLA subtype restrictions. It is necessary to determine the prognostic significance of HLA-status in breast cancer if patients who are ineligible to receive a vaccine due to their HLA-status are used as controls. The impact of targeted tumor associated antigen expression, when it effects eligibility is also important. We examined control patients from two randomized phase II trials that tested HER2-peptide vaccines to determine the effect of HLA-A2 status and HER2 expression on disease-free survival. The analysis showed that HLA-A2-status does not affect disease-free survival, regardless of HER2 expression suggesting that HLA-A2 negative patients can be used as control patients. Additionally, HER2 over-expression was associated with a better disease-free survival in this population, underscoring the need for additional therapies in HER2 low-expressing breast cancer. ClinicalTrials.gov Identifier: NCT00524277.
Collapse
Affiliation(s)
- Doreen O Jackson
- Department of Surgery, San Antonio Military Medical Center, 3551 Roger Brooke Drive, San Antonio 78234, TX, United States.
| | - Francois A Trappey
- Department of Surgery, San Antonio Military Medical Center, 3551 Roger Brooke Drive, San Antonio 78234, TX, United States.
| | - G Travis Clifton
- Department of Surgery, San Antonio Military Medical Center, 3551 Roger Brooke Drive, San Antonio 78234, TX, United States.
| | - Timothy J Vreeland
- Department of Surgery, San Antonio Military Medical Center, 3551 Roger Brooke Drive, San Antonio 78234, TX, United States.
| | - Kaitlin M Peace
- Department of Surgery, San Antonio Military Medical Center, 3551 Roger Brooke Drive, San Antonio 78234, TX, United States.
| | - Diane F Hale
- Department of Surgery, San Antonio Military Medical Center, 3551 Roger Brooke Drive, San Antonio 78234, TX, United States.
| | - Jennifer K Litton
- Department of Hematology and Oncology, MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, 77030, TX, United States.
| | - James L Murray
- Department of Medical Oncology, MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, 77030, TX, United States.
| | - Sonia A Perez
- Cancer Immunology Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, Athens 115-22, Greece.
| | - Michael Papamichail
- Cancer Immunology Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, Athens 115-22, Greece.
| | - Elizabeth A Mittendorf
- Department of Surgical Oncology, MD Anderson Cancer Center, 171 Alexandras Avenue, Houston 115-22 77030, TX, United States.
| | - George E Peoples
- Cancer Vaccine Development Program, Metis Foundation, San Antonio 300 Convent Street Suite 1330, 78205, TX, United States
| |
Collapse
|
17
|
Zhu X, Cai H, Zhao L, Ning L, Lang J. CAR-T cell therapy in ovarian cancer: from the bench to the bedside. Oncotarget 2017; 8:64607-64621. [PMID: 28969098 PMCID: PMC5610030 DOI: 10.18632/oncotarget.19929] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy and is responsible for most gynecological cancer deaths. Apart from conventional surgery, chemotherapy, and radiotherapy, chimeric antigen receptor-modified T (CAR-T) cells as a representative of adoptive cellular immunotherapy have received considerable attention in the research field of cancer treatment. CARs combine antigen specificity and T-cell-activating properties in a single fusion molecule. Several preclinical experiments and clinical trials have confirmed that adoptive cell immunotherapy using typical CAR-engineered T cells for OC is a promising treatment approach with striking clinical efficacy; moreover, the emerging CAR-Ts targeting various antigens also exert great potential. However, such therapies have side effects and toxicities, such as cytokine-associated and "on-target, off-tumor" toxicities. In this review, we systematically detail and highlight the present knowledge of CAR-Ts including the constructions, vectors, clinical applications, development challenges, and solutions of CAR-T-cell therapy for OC. We hope to provide new insight into OC treatment for the future.
Collapse
Affiliation(s)
- Xinxin Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Obstetrics and Gynecology, Institute for Wound Research, University of Florida, Gainesville, Florida, USA
| | - Han Cai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Zhao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Ning
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Doorduijn EM, Sluijter M, Querido BJ, Oliveira CC, Achour A, Ossendorp F, van der Burg SH, van Hall T. TAP-independent self-peptides enhance T cell recognition of immune-escaped tumors. J Clin Invest 2016; 126:784-94. [PMID: 26784543 DOI: 10.1172/jci83671] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/12/2015] [Indexed: 01/11/2023] Open
Abstract
Tumor cells frequently escape from CD8+ T cell recognition by abrogating MHC-I antigen presentation. Deficiency in processing components, like the transporter associated with antigen processing (TAP), results in strongly decreased surface display of peptide/MHC-I complexes. We previously identified a class of hidden self-antigens known as T cell epitopes associated with impaired peptide processing (TEIPP), which emerge on tumor cells with such processing defects. In the present study, we analyzed thymus selection and peripheral behavior of T cells with specificity for the prototypic TEIPP antigen, the "self" TRH4 peptide/Db complex. TEIPP T cells were efficiently selected in the thymus, egressed with a naive phenotype, and could be exploited for immunotherapy against immune-escaped, TAP-deficient tumor cells expressing low levels of MHC-I (MHC-Ilo). In contrast, overt thymus deletion and functionally impaired TEIPP T cells were observed in mice deficient for TAP1 due to TEIPP antigen presentation on all body cells in these mice. Our results strongly support the concept that TEIPPs derive from ubiquitous, nonmutated self-antigens and constitute a class of immunogenic neoantigens that are unmasked during tumor immune evasion. These data suggest that TEIPP-specific CD8+ T cells are promising candidates in the treatment of tumors that have escaped from conventional immunotherapies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/immunology
- Animals
- Antigen Presentation
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Autoantigens/genetics
- Autoantigens/immunology
- Cell Line, Tumor
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Mice
- Mice, Knockout
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Peptides/genetics
- Peptides/immunology
- Tumor Escape
Collapse
|
19
|
L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice. PLoS One 2016; 11:e0146885. [PMID: 26761817 PMCID: PMC4711972 DOI: 10.1371/journal.pone.0146885] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/24/2015] [Indexed: 01/01/2023] Open
Abstract
New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR)-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM) were then genetically modified to express an anti-L1-CAM CAR (CE7R), which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p.) administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.
Collapse
|
20
|
Patterson AM, Kaabinejadian S, McMurtrey CP, Bardet W, Jackson KW, Zuna RE, Husain S, Adams GP, MacDonald G, Dillon RL, Ames H, Buchli R, Hawkins OE, Weidanz JA, Hildebrand WH. Human Leukocyte Antigen-Presented Macrophage Migration Inhibitory Factor Is a Surface Biomarker and Potential Therapeutic Target for Ovarian Cancer. Mol Cancer Ther 2015; 15:313-22. [PMID: 26719579 DOI: 10.1158/1535-7163.mct-15-0658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/07/2015] [Indexed: 01/08/2023]
Abstract
T cells recognize cancer cells via HLA/peptide complexes, and when disease overtakes these immune mechanisms, immunotherapy can exogenously target these same HLA/peptide surface markers. We previously identified an HLA-A2-presented peptide derived from macrophage migration inhibitory factor (MIF) and generated antibody RL21A against this HLA-A2/MIF complex. The objective of the current study was to assess the potential for targeting the HLA-A2/MIF complex in ovarian cancer. First, MIF peptide FLSELTQQL was eluted from the HLA-A2 of the human cancerous ovarian cell lines SKOV3, A2780, OV90, and FHIOSE118hi and detected by mass spectrometry. By flow cytometry, RL21A was shown to specifically stain these four cell lines in the context of HLA-A2. Next, partially matched HLA-A*02:01+ ovarian cancer (n = 27) and normal fallopian tube (n = 24) tissues were stained with RL21A by immunohistochemistry to assess differential HLA-A2/MIF complex expression. Ovarian tumor tissues revealed significantly increased RL21A staining compared with normal fallopian tube epithelium (P < 0.0001), with minimal staining of normal stroma and blood vessels (P < 0.0001 and P < 0.001 compared with tumor cells) suggesting a therapeutic window. We then demonstrated the anticancer activity of toxin-bound RL21A via the dose-dependent killing of ovarian cancer cells. In summary, MIF-derived peptide FLSELTQQL is HLA-A2-presented and recognized by RL21A on ovarian cancer cell lines and patient tumor tissues, and targeting of this HLA-A2/MIF complex with toxin-bound RL21A can induce ovarian cancer cell death. These results suggest that the HLA-A2/MIF complex should be further explored as a cell-surface target for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- Andrea M Patterson
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Saghar Kaabinejadian
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Curtis P McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Pure MHC LLC, Oklahoma City, Oklahoma
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ken W Jackson
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rosemary E Zuna
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sanam Husain
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | - Harold Ames
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, Texas
| | | | - Oriana E Hawkins
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, Texas
| | - Jon A Weidanz
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, Texas
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Pure MHC LLC, Oklahoma City, Oklahoma.
| |
Collapse
|
21
|
Anastasopoulou EA, Voutsas IF, Keramitsoglou T, Gouttefangeas C, Kalbacher H, Thanos A, Papamichail M, Perez SA, Baxevanis CN. A pilot study in prostate cancer patients treated with the AE37 Ii-key-HER-2/neu polypeptide vaccine suggests that HLA-A*24 and HLA-DRB1*11 alleles may be prognostic and predictive biomarkers for clinical benefit. Cancer Immunol Immunother 2015; 64:1123-36. [PMID: 26026288 PMCID: PMC11028543 DOI: 10.1007/s00262-015-1717-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/19/2015] [Indexed: 01/22/2023]
Abstract
Recently, several types of immunotherapies have been shown to induce encouraging clinical results, though in a restricted number of patients. Consequently, there is a need to identify immune biomarkers to select patients who will benefit from such therapies. Such predictive biomarkers may be also used as surrogates for overall survival (OS). We have recently found correlations between immunologic parameters and clinical outcome in prostate cancer patients who had been vaccinated with a HER-2/neu hybrid polypeptide vaccine (AE37) and received one booster 6 months post-primary vaccinations. Herein, we aimed to expand these retrospective analyses by studying the predictive impact of HLA-A*24 and HLA-DRB1*11 alleles, which are expressed at high frequencies among responders in our vaccinated patients, for clinical and immunological responses to AE37 vaccination. Our data show an increased OS of patients expressing the HLA-DRB1*11 or HLA-A*24 alleles, or both. Vaccine-induced immunological responses, measured as interferon γ (IFN-γ) responses in vitro or delayed-type hypersensitivity reactions in vivo, were also higher in these patients and inversely correlated with suppressor elements. Preexisting (i.e., before vaccinations with AE37) levels of vaccine-specific IFN-γ immunity and plasma TGF-β, among the HLA-A*24 and/or HLA-DRB1*11 positive patients, were strong indicators for immunological responses to AE37 treatment. These data suggest that HLA-DRB1*11 and HLA-A*24 are likely to be predictive factors for immunological and clinical responses to vaccination with AE37, though prospective validation in larger cohorts is needed.
Collapse
Affiliation(s)
- Eleftheria A. Anastasopoulou
- Cancer Immunology and Immunotherapy Center, “Saint Savas” Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | - Ioannis F. Voutsas
- Cancer Immunology and Immunotherapy Center, “Saint Savas” Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | | | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, Eberhard-Karls University, Tübingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, Eberhard-Karls University, Tübingen, Germany
| | | | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, “Saint Savas” Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | - Sonia A. Perez
- Cancer Immunology and Immunotherapy Center, “Saint Savas” Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, “Saint Savas” Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| |
Collapse
|
22
|
Koelzer VH, Dawson H, Andersson E, Karamitopoulou E, Masucci GV, Lugli A, Zlobec I. Active immunosurveillance in the tumor microenvironment of colorectal cancer is associated with low frequency tumor budding and improved outcome. Transl Res 2015; 166:207-17. [PMID: 25797890 DOI: 10.1016/j.trsl.2015.02.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 02/02/2023]
Abstract
Tumor budding (single tumor cells or small tumor cell clusters) at the invasion front of colorectal cancer (CRC) is an adverse prognostic indicator linked to epithelial-mesenchymal transition. This study characterized the immunogenicity of tumor buds by analyzing the expression of the major histocompatibility complex (MHC) class I in the invasive tumor cell compartment. We hypothesized that maintenance of a functional MHC-I antigen presentation pathway, activation of CD8+ T-cells, and release of antitumoral effector molecules such as cytotoxic granule-associated RNA binding protein (TIA1) in the tumor microenvironment can counter tumor budding and favor prolonged patient outcome. Therefore, a well-characterized multipunch tissue microarray of 220 CRCs was profiled for MHC-I, CD8, and TIA1 by immunohistochemistry. Topographic expression analysis of MHC-I was performed using whole tissue sections (n = 100). Kirsten rat sarcoma viral oncogene homolog (KRAS) and B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations, mismatch repair (MMR) protein expression, and CpG-island methylator phenotype (CIMP) were investigated. Our results demonstrated that membranous MHC-I expression is frequently down-regulated in the process of invasion. Maintained MHC-I at the invasion front strongly predicted low-grade tumor budding (P = 0.0004). Triple-positive MHC-I/CD8/TIA1 in the tumor microenvironment predicted early T-stage (P = 0.0031), absence of lymph node metastasis (P = 0.0348), lymphatic (P = 0.0119) and venous invasion (P = 0.006), and highly favorable 5-year survival (90.9% vs 39.3% in triple-negative patients; P = 0.0032). MHC-I loss was frequent in KRAS-mutated, CD8+ CRC (P = 0.0228). No relationship was observed with CIMP, MMR, or BRAF mutation. In conclusion, tumor buds may evade immune recognition through downregulation of membranous MHC-I. A combined profile of MHC-I/CD8/TIA1 improves the prognostic value of antitumoral effector cells and should be preferred to a single marker approach.
Collapse
Affiliation(s)
- Viktor H Koelzer
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Heather Dawson
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Emilia Andersson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Karamitopoulou
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Giuseppe V Masucci
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Lugli
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
23
|
Andersson E, Poschke I, Villabona L, Carlson JW, Lundqvist A, Kiessling R, Seliger B, Masucci GV. Non-classical HLA-class I expression in serous ovarian carcinoma: Correlation with the HLA-genotype, tumor infiltrating immune cells and prognosis. Oncoimmunology 2015; 5:e1052213. [PMID: 26942060 PMCID: PMC4760332 DOI: 10.1080/2162402x.2015.1052213] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 11/30/2022] Open
Abstract
In our previous studies, we have shown that patients with serous ovarian carcinoma in advanced surgical stage disease have a particularly poor prognosis if they carry the HLA-A*02 genotype. This represent a stronger prognostic factor than loss or downregulation of the MHC class I heavy chain (HC) on tumor cells. In this study, we investigated the expression of the non-classical, immune tolerogenic HLA -G and -E on the tumor cells along with the infiltration of immune cells in the tumor microenvironment. FFPE primary tumors from 72 patients with advanced stages of serous adenocarcinoma and metastatic cells present in ascites fluid from 8 additional patients were included in this study. Both expression of HLA-G and aberrant expression of HLA-E were correlated to a significant worse prognosis in patients with HLA-A*02, but not with different HLA genotypes. Focal cell expression of HLA-G correlated to a site-specific downregulation of classical MHC class I HC products and aberrant HLA-E expression, showing a poor survival. HLA-G was more frequently expressed in metastatic cells than in primary tumor lesions and the expression of HLA-G inversely correlated with the frequency of tumor infiltrating immune cells. All these parameters can contribute together to identify and discriminate subpopulations of patients with extremely poor prognosis and can give them the opportunity to receive, and benefit of individually tailored treatments.
Collapse
Affiliation(s)
- Emilia Andersson
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| | - Isabel Poschke
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital; Stockholm, Sweden; Division of Molecular Oncology of Gastrointestinal Tumors; German Cancer Research Center; Heidelberg, Germany
| | - Lisa Villabona
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| | - Joseph W Carlson
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| | - Andreas Lundqvist
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| | - Rolf Kiessling
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| | - Barbara Seliger
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg ; Halle/Saale, Germany
| | - Giuseppe V Masucci
- Department Oncology-Pathology; Karolinska Institutet; Karolinska University Hospital ; Stockholm, Sweden
| |
Collapse
|
24
|
Hirbod-Mobarakeh A, Amirzargar AA, Nikbin B, Nicknam MH, Kutikhin A, Rezaei N. Immunogenetics of Cancer. CANCER IMMUNOLOGY 2015:295-341. [DOI: 10.1007/978-3-662-44006-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Liu T, Qin W, Hou L, Huang Y. MicroRNA-17 promotes normal ovarian cancer cells to cancer stem cells development via suppression of the LKB1-p53-p21/WAF1 pathway. Tumour Biol 2014; 36:1881-93. [PMID: 25510663 DOI: 10.1007/s13277-014-2790-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/29/2014] [Indexed: 01/06/2023] Open
Abstract
The mechanism underlying the development of human ovarian cancer is poorly understood. The liver kinase protein, LKB1, is hypothesized to play a pivotal role in tumor cell proliferation and invasion capacity through regulation of p53 and p21/WAF1 expression. Previous studies suggest LKB1 may, in turn, be regulated by microRNA-17. Here, we examined the role of miR-17 in the expression of LKB1 and the downstream effects on proliferation and invasion capacity of normal ovarian cancer cells (OCCs) and ovarian stem cells. In this study, both the mRNA and protein expression levels of LKB1, p53, and p21 decreased in OCCs following transfection with a miR-17 expression plasmid. MiR-17 expression affected cell cycle regulation and stimulated the proliferation and invasion capacity of OCCs in vitro. ChIP assays indicated that the binding efficiency of p53 to the p21/WAF1 gene promoter was much lower in miR-17 transfected OCCs than in OCCs transfected with a mutated miR-17. Co-immunoprecipitation and western blotting showed significantly lower levels of p53 and p53 Ser15-pho in the miR-17 transfected OCCs as compared to the mutant miR-17 transfected OCCs. Xenograft experiments confirmed that suppression of tumor growth in vivo occurred in the absence of functional miR-17. These findings suggest that mature miR-17 expression may have an important role in the pathogenesis of human ovarian tumors through its interference with the LKB1-p53-p21/WAF1 pathway expression by epigenetic modification. These findings are of potential importance in the identification of novel therapeutic targets in human ovarian cancer.
Collapse
Affiliation(s)
- Te Liu
- Shanghai Tenth People's Hospital, Medical School, Tongji University, Shanghai, 200072, China,
| | | | | | | |
Collapse
|
26
|
Abstract
Chronic lymphocytic leukemia (CLL) displays remarkable ethnic predisposition for whites, with relative sparing of African-American and Asian populations. In addition, CLL displays among the highest familial predispositions of all hematologic malignancies, yet the genetic basis for these differences is not clearly defined. The highly polymorphic HLA genes of the major histocompatibility complex play a central role in immune surveillance and confer risk for autoimmune and infectious diseases and several different cancers, the role for which in the development of CLL has not been extensively investigated. The National Marrow Donor Program/Be The Match has collected HLA typing from CLL patients in need of allogeneic hematopoietic stem cell transplant and has recruited millions of volunteers to potentially donate hematopoietic stem cells. HLA genotypes for 3491 US white, 397 African-American, and 90 Hispanic CLL patients were compared with 50 000 controls per population from the donor registry. We identified several HLA alleles associated with CLL susceptibility in each population, reconfirming predisposing roles of HLA-A*02:01 and HLA-DRB4*01:01 in whites. Associations for haplotype DRB4*01:01∼DRB1*07:01∼DQB1*03:03 were replicated across all 3 populations. These findings provide a comprehensive assessment of the role of HLA in the development of severe CLL.
Collapse
|
27
|
A novel approach for HLA-A typing in formalin-fixed paraffin-embedded-derived DNA. Mod Pathol 2014; 27:1296-305. [PMID: 24504073 DOI: 10.1038/modpathol.2013.210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 10/01/2013] [Accepted: 10/06/2013] [Indexed: 12/16/2022]
Abstract
The aim of this study was to establish a novel approach for human leukocyte antigen (HLA)-typing from formalin-fixed paraffin-embedded-derived DNA. HLAs can be a prognostic factor in cancer and have an extensive polymorphism. This polymorphism is predominantly restricted to exons, which encode the peptide-binding domain of the protein. Formalin-fixed paraffin-embedded material is routinely collected in the clinic and therefore a great source of DNA for genetic analyses. However, its low quality due to fragmentation and nucleotide changes has often created obstacles in designing genetic assays. In this study, we amplified the most polymorphic exons of the HLA-A gene, exons 2, 3, and 4, in 16 formalin-fixed paraffin-embedded samples >10 years old. These tissue samples belonged to patients already HLA-typed by peripheral blood samples at the routine laboratory. Acquired amplification products were used for sequencing, which provided enough information to establish an HLA allele. The same method was applied to DNA extracted from peripheral blood from a healthy volunteer with known HLA type. Of the samples, 14/16 (88%) were successfully typed, in one sample only one of the alleles could be determined, and in one sample no allele could be determined. The amplification of the most polymorphic exons of HLA-A was a successful alternative when DNA quality prevented positive results with previously described methods. The method is usable when an HLA type is needed but the patients are deceased and/or no whole blood samples can be collected. It has thus potential to be used in several fields such as the clinic, research, and forensic science.
Collapse
|
28
|
Liu S, Qi L, Yu Q, Song Y, Han W, Zu X, Jiang S, Yuan J, Zeng F, Xie Y. Survivin and HLA-I expression predicts survival of patients with clear cell renal cell carcinoma. Tumour Biol 2014; 35:8281-8. [PMID: 24852427 DOI: 10.1007/s13277-014-2058-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/06/2014] [Indexed: 02/01/2023] Open
Abstract
Altered expression of survivin and leukocyte antigen class I (HLA-I) proteins is associated with tumor progression. This study investigated their expressions in clear cell renal cell carcinoma (ccRCC) tissues for association with a clinical significance of ccRCC patients. Ninety ccRCC and 20 normal tissue samples (i.e., control) were immunohistochemically stained for survivin and HLA-I expression for an association with clinicopathological data and survival of ccRCC patients. Survivin protein was expressed in 82.2 % (74/90) of ccRCC tissue samples compared to 0 % in the normal tissues, and HLA-I protein was expressed in 90 % (18/20) of the normal tissues vs. 67.8 % (61/90) in ccRCC samples. Survivin expression was associated with tumor grade, stage, and lymph node metastasis (p = 0.000, p = 0.016, and p = 0.001, respectively). Conversely, lost HLA-I expression did not have any associations with clinicopathological data (p > 0.05). Survivin-negative patients had a higher tumor-free survival rate than patients with survivin expression (p = 0.037). Patients with normal HLA-I levels had a higher tumor-free survival rate than those with reduced HLA-I levels (p = 0.02). The uni- and multivariate analyses indicated that expression of survivin and HLA-I, individually and in combination, was an independent predictor for survival of ccRCC patients. Overexpression of survivin but reduced HLA-I expression is useful in the prediction of tumor-free survival of ccRCC patients.
Collapse
Affiliation(s)
- Sulai Liu
- Department of Urology, Xiangya Hospital, The Central South University, 87 Xiangya Road, 410008, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Baxevanis CN, Papamichail M, Perez SA. Immunologic biomarkers in prostate cancer: the AE37 paradigm. Hum Vaccin Immunother 2014; 10:1244-7. [PMID: 24552987 DOI: 10.4161/hv.28032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
One major achievement in cancer therapy is to select patients who will most likely benefit from a specific treatment. Predictive biomarkers play an important role in this respect being already useful in management of breast cancer and melanoma. For example, HER-2/neu (HER-2) overexpression selects for breast cancer patients to be treated with trastuzumab, and BRAFV600E mutations select for melanoma patients to be treated with vemurafenib. Identification of factors associated with T cell responsiveness to vaccination remains critical. Pre-existent immunity and circulating suppressor cells may regulate the levels of vaccine-specific T cell immunity after vaccination. The identification of immunologic endpoints to immunotherapy would thus considerably help guide the development of immunotherapy-based clinical trials. This commentary is based on a retrospective analysis we performed of data from prostate cancer patients vaccinated and boosted with the AE37 vaccine. The aim of these exploratory analyses was to identify factors useful in predicting which patients are more likely to respond to the treatment under study. The issue we are addressing here is to which extent common variables used pre- and/or following vaccinations with AE37 to assess the immune response status of the prostate cancer patients, may predict overall survival.
Collapse
Affiliation(s)
| | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center; Saint Savas Cancer Hospital; Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center; Saint Savas Cancer Hospital; Athens, Greece
| |
Collapse
|
30
|
Genotyping of human leukocyte antigen (HLA) ancestral haplotypes as prognostic marker in cancer using PCR analysis. Methods Mol Biol 2014; 1102:353-66. [PMID: 24258987 DOI: 10.1007/978-1-62703-727-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The major histocompatibility complex (MHC) comprises a set of genes that are essential to immunity and surveillance against neoplastic transformation. MHC antigens not only regulate antitumor immune responses in experimental animal models but also directly correlate with survival and prognosis of patients with various types of cancers. Effective recognition of tumor cells by effector T cells may be affected by the genotype and the extent of expression of human leukocyte antigen (HLA)-peptide complexes. Therefore, MHC antigens may serve as potential biomarkers for prognosis and allow selection of cancer patients for specific therapy. We describe PCR-based method to determine the HLA genotype in healthy individuals and patients using blood and tumor tissue as DNA source.
Collapse
|
31
|
Näsman A, Andersson E, Marklund L, Tertipis N, Hammarstedt-Nordenvall L, Attner P, Nyberg T, Masucci GV, Munck-Wikland E, Ramqvist T, Dalianis T. HLA class I and II expression in oropharyngeal squamous cell carcinoma in relation to tumor HPV status and clinical outcome. PLoS One 2013; 8:e77025. [PMID: 24130830 PMCID: PMC3794938 DOI: 10.1371/journal.pone.0077025] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/26/2013] [Indexed: 01/01/2023] Open
Abstract
HPV-DNA positive (HPVDNA+) oropharyngeal squamous cell carcinoma (OSCC) has better clinical outcome than HPV-DNA negative (HPVDNA-) OSCC. Current treatment may be unnecessarily extensive for most HPV+ OSCC, but before de-escalation, additional markers are needed together with HPV status to better predict treatment response. Here the influence of HLA class I/HLA class II expression was explored. Pre-treatment biopsies, from 439/484 OSCC patients diagnosed 2000-2009 and treated curatively, were analyzed for HLA I and II expression, p16(INK4a) and HPV DNA. Absent/weak as compared to high HLA class I intensity correlated to a very favorable disease-free survival (DFS), disease-specific survival (DSS) and overall survival (OS) in HPVDNA+ OSCC, both in univariate and multivariate analysis, while HLA class II had no impact. Notably, HPVDNA+ OSCC with absent/weak HLA class I responded equally well when treated with induction-chemo-radiotherapy (CRT) or radiotherapy (RT) alone. In patients with HPVDNA- OSCC, high HLA class I/class II expression correlated in general to a better clinical outcome. p16(INK4a) overexpression correlated to a better clinical outcome in HPVDNA+ OSCC. Absence of HLA class I intensity in HPVDNA+ OSCC suggests a very high survival independent of treatment and could possibly be used clinically to select patients for randomized trials de-escalating therapy.
Collapse
Affiliation(s)
- Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Emilia Andersson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Marklund
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nikolaos Tertipis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lalle Hammarstedt-Nordenvall
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Attner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy Nyberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva Munck-Wikland
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Yuan J, Liu S, Yu Q, Lin Y, Bi Y, Wang Y, An R. Down-regulation of human leukocyte antigen class I (HLA-I) is associated with poor prognosis in patients with clear cell renal cell carcinoma. Acta Histochem 2013; 115:470-4. [PMID: 23245688 DOI: 10.1016/j.acthis.2012.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 01/22/2023]
Abstract
Human leukocyte antigen class I (HLA-I) molecules are transmembrane glycoproteins that have been reported to be down-regulated in multiple types of human malignancies, including clear cell renal cell carcinoma (CCRCC). However, only one study has investigated its prognostic value in CCRCC. In the present study, HLA-I protein expression was analyzed in 120 archived, paraffin-embedded CCRCC samples and 10 adjacent normal tissues using immunohistochemistry. The correlation between HLA-I expression and clinicopathological factors was evaluated by the χ(2) test. Patients' overall survival was analyzed by the Kaplan-Meier method. HLA-I down-regulation was observed in 38.3% (46/120) of renal tumor samples, but only in 10% (1/10) of adjacent normal tissues. Statistical analysis showed a significant correlation of HLA-I expression with TNM stage, lymph node metastasis, and Fuhrman grade. Patients with tumors displaying down-regulation of HLA-I showed significantly shorter overall survival (P=0.021, log-rank test). More importantly, multivariate analysis indicated that down-regulation of HLA-I was an independent prognostic factor for CCRCC patients (P=0.033). Overall, our data suggest that HLA-I down-regulation is associated with tumor progression and a poor prognosis in CCRCC patients, and emphasize the importance of HLA-I in natural and therapeutic immune surveillance of patients with CCRCC.
Collapse
Affiliation(s)
- Jinyang Yuan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J 2012; 279:2047-59. [PMID: 22498306 DOI: 10.1111/j.1742-4658.2012.08589.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In ovarian cancer, CD44(+) /CD117(+) stem cells, also known as cancer-initiating cells (CICs), are highly proliferative, have a low degree of differentiation, and are resistant to chemotherapeutics. Therefore, the CD44(+) /CD117(+) subpopulation is thought to be an important target for novel therapeutic strategies. In this study, we investigated the role of microRNA-199a (miR-199a) in ovarian cancer stem cells. Luciferase reporter gene assays confirmed that miR-199a targets CD44 via an miR-199a-binding site in the 3'-UTR. CD44(+) /CD117(+) ovarian CICs were enriched from human primary ovarian tumor tissues and confirmed by flow cytometric sorting. miR-199a was cloned and transfected into ovarian CICs. CD44 mRNA and protein expression was significantly decreased in miR-199a-transfected ovarian CICs as compared with miR-199a mutant-transfected and untransfected cells. Cell cycle analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide proliferation assays, the colony formation assay and the transwell migration assay indicated that miR-199a significantly affected cell cycle regulation and suppressed the proliferation and invasive capacity of ovarian CICs in vitro. miR-199a significantly increased the chemosensitivity of ovarian CICs to cisplatin, pacitaxel, and adriamycin, and reduced mRNA expression of the multidrug resistance gene ABCG2 as compared with miR-199a mutant-transfected and untransfected cells. The expression of stemness markers was also significantly reduced in miR-199a-transfected CICs as compared with miR-199a mutant-transfected and untransfected ovarian cells. Furthermore, xenograft experiments confirmed that miR-199a suppressed the growth of xenograft tumors formed by ovarian CICs in vivo. Thus, expression of endogenous mature miR-199a may prevent tumorigenesis in human ovarian cancer by regulating expression of its target gene CD44.
Collapse
Affiliation(s)
- Weiwei Cheng
- International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, China
| | | | | | | | | |
Collapse
|