1
|
Lee-Chang C, Miska J, Hou D, Rashidi A, Zhang P, Burga RA, Jusué-Torres I, Xiao T, Arrieta VA, Zhang DY, Lopez-Rosas A, Han Y, Sonabend AM, Horbinski CM, Stupp R, Balyasnikova IV, Lesniak MS. Activation of 4-1BBL+ B cells with CD40 agonism and IFNγ elicits potent immunity against glioblastoma. J Exp Med 2021; 218:152130. [PMID: 32991668 PMCID: PMC7527974 DOI: 10.1084/jem.20200913] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of many tumors. However, most glioblastoma (GBM) patients have not, so far, benefited from such successes. With the goal of exploring ways to boost anti-GBM immunity, we developed a B cell-based vaccine (BVax) that consists of 4-1BBL+ B cells activated with CD40 agonism and IFNγ stimulation. BVax migrates to key secondary lymphoid organs and is proficient at antigen cross-presentation, which promotes both the survival and the functionality of CD8+ T cells. A combination of radiation, BVax, and PD-L1 blockade conferred tumor eradication in 80% of treated tumor-bearing animals. This treatment elicited immunological memory that prevented the growth of new tumors upon subsequent reinjection in cured mice. GBM patient-derived BVax was successful in activating autologous CD8+ T cells; these T cells showed a strong ability to kill autologous glioma cells. Our study provides an efficient alternative to current immunotherapeutic approaches that can be readily translated to the clinic.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Rachel A Burga
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ignacio Jusué-Torres
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Neurological Surgery, Loyola University Chicago Stritch School of Medicine, Chicago, IL
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Victor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Plan de Estudios Combinados en Medicina, National Autonomous University of Mexico, Mexico City, Mexico
| | - Daniel Y Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
2
|
Karachi A, Yang C, Dastmalchi F, Sayour EJ, Huang J, Azari H, Long Y, Flores C, Mitchell DA, Rahman M. Modulation of temozolomide dose differentially affects T-cell response to immune checkpoint inhibition. Neuro Oncol 2020; 21:730-741. [PMID: 30668768 DOI: 10.1093/neuonc/noz015] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The changes induced in host immunity and the tumor microenvironment by chemotherapy have been shown to impact immunotherapy response in both a positive and a negative fashion. Temozolomide is the most common chemotherapy used to treat glioblastoma (GBM) and has been shown to have variable effects on immune response to immunotherapy. Therefore, we aimed to determine the immune modulatory effects of temozolomide that would impact response to immune checkpoint inhibition in the treatment of experimental GBM. METHODS Immune function and antitumor efficacy of immune checkpoint inhibition were tested after treatment with metronomic dose (MD) temozolomide (25 mg/kg × 10 days) or standard dose (SD) temozolomide (50 mg/kg × 5 days) in the GL261 and KR158 murine glioma models. RESULTS SD temozolomide treatment resulted in an upregulation of markers of T-cell exhaustion such as LAG-3 and TIM-3 in lymphocytes which was not seen with MD temozolomide. When temozolomide treatment was combined with programmed cell death 1 (PD-1) antibody therapy, the MD temozolomide/PD-1 antibody group demonstrated a decrease in exhaustion markers in tumor infiltrating lymphocytes that was not observed in the SD temozolomide/PD-1 antibody group. Also, the survival advantage of PD-1 antibody therapy in a murine syngeneic intracranial glioma model was abrogated by adding SD temozolomide to treatment. However, when MD temozolomide was added to PD-1 inhibition, it preserved the survival benefit that was seen by PD-1 antibody therapy alone. CONCLUSION The peripheral and intratumoral immune microenvironments are distinctively affected by dose modulation of temozolomide.
Collapse
Affiliation(s)
- Aida Karachi
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Changlin Yang
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Farhad Dastmalchi
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Elias J Sayour
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Jianping Huang
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Hassan Azari
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Yu Long
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Catherine Flores
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Duane A Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Maryam Rahman
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Rahman M, Dastmalchi F, Karachi A, Mitchell D. The role of CMV in glioblastoma and implications for immunotherapeutic strategies. Oncoimmunology 2018; 8:e1514921. [PMID: 30546954 PMCID: PMC6287786 DOI: 10.1080/2162402x.2018.1514921] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022] Open
Abstract
Controversy surrounds the role of cytomegalovirus (CMV) in glioblastoma (GBM). However, several studies have shown that CMV nucleic acids and proteins are present within GBM tumor tissue. CMV has been implicated in GBM pathogenesis by affecting tumor stem cell factors, angiogenesis and immune pathways. Anti-viral therapy has not been found to definitively improve outcomes for patients with GBM. Several studies have leveraged CMV by targeting CMV antigens using ex-vivo expanded T cells or dendritic cell vaccines. The initial results from these studies are promising and larger studies are underway.
Collapse
Affiliation(s)
- Maryam Rahman
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Farhad Dastmalchi
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Aida Karachi
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Duane Mitchell
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Swartz AM, Shen SH, Salgado MA, Congdon KL, Sanchez-Perez L. Promising vaccines for treating glioblastoma. Expert Opin Biol Ther 2018; 18:1159-1170. [PMID: 30281978 DOI: 10.1080/14712598.2018.1531846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Conventional therapies for glioblastoma (GBM) typically fail to provide lasting antitumor benefits, owing to their inability to specifically eliminate all malignant cells. Cancer vaccines are currently being evaluated as a means to direct the adaptive immune system to target residual GBM cells that remain following standard-of-care treatment. AREAS COVERED In this review, we provide an overview of the more noteworthy cancer vaccines that are under investigation for the treatment of GBM, as well as potential future directions that may enhance GBM-vaccine effectiveness. EXPERT OPINION To date, no cancer vaccines have been proven effective against GBM; however, only a few have reached phase III clinical testing. Clinical immunological monitoring data suggest that GBM vaccines are capable of stimulating immune responses reactive to GBM antigens, but whether these responses have an appreciable antitumor effect on GBM is still uncertain. Nevertheless, there have been several promising outcomes in early phase clinical trials, which lend encouragement to this area of study. Further studies with GBM vaccines are, therefore, warranted.
Collapse
Affiliation(s)
- Adam M Swartz
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Steven H Shen
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Miguel A Salgado
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,d Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA
| | - Kendra L Congdon
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,d Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA
| | - Luis Sanchez-Perez
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b The Preston Robert Tisch Brain Tumor Center , Duke University Medical Center , Durham , NC , USA.,d Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
5
|
Grippin AJ, Sayour EJ, Mitchell DA. Translational nanoparticle engineering for cancer vaccines. Oncoimmunology 2017; 6:e1290036. [PMID: 29123947 PMCID: PMC5665077 DOI: 10.1080/2162402x.2017.1290036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 01/03/2023] Open
Abstract
Conventional cancer treatments remain insufficient to treat many therapy-resistant tumors.1 Cancer vaccines attempt to overcome this resistance by activating the patient's immune system to eliminate tumor cells without the toxicity of systemic chemotherapy and radiation. Nanoparticles (NPs) are promising as customizable, immunostimulatory carriers to protect and deliver antigen. Although many NP vaccines have been investigated in preclinical settings, a few have advanced into clinical application, and still fewer have demonstrated clinical benefit. This review incorporates observations from NP vaccines that have been evaluated in early phase clinical trials to make recommendations for the next generation of NP-based cancer vaccines.
Collapse
Affiliation(s)
- Adam J Grippin
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA
| | - Elias J Sayour
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Duane A Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Hodges TR, Ferguson SD, Heimberger AB. Immunotherapy in glioblastoma: emerging options in precision medicine. CNS Oncol 2016; 5:175-86. [PMID: 27225028 DOI: 10.2217/cns-2016-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy for glioblastoma (GBM) provides a unique opportunity for targeted therapies for each patient, addressing individual variability in genes, tumor biomarkers and clinical profile. As immunotherapy has the potential to specifically target tumor cells with minimal risk to normal tissue, several immunotherapeutic strategies are currently being evaluated in clinical trials in GBM. With the Precision Medicine Initiative being announced in the President's State of the Union Address in 2016, GBM immunotherapy provides a useful platform for changing the landscape in treating patients with difficult disease.
Collapse
Affiliation(s)
- Tiffany R Hodges
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Serum elevation of B lymphocyte stimulator does not increase regulatory B cells in glioblastoma patients undergoing immunotherapy. Cancer Immunol Immunother 2016; 65:205-11. [PMID: 26759007 DOI: 10.1007/s00262-015-1784-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
Regulatory B cells that secrete IL-10 (IL-10(+) Bregs) represent a suppressive subset of the B cell compartment with prominent anti-inflammatory capacity, capable of suppressing cellular and humoral responses to cancer and vaccines. B lymphocyte stimulator (BLyS) is a key regulatory molecule in IL-10(+) Breg biology with tightly controlled serum levels. However, BLyS levels can be drastically altered upon chemotherapeutic intervention. We have previously shown that serum BLyS levels are elevated, and directly associated, with increased antigen-specific antibody titers in patients with glioblastoma (GBM) undergoing lymphodepletive temozolomide chemotherapy and vaccination. In this study, we examined corresponding IL-10(+) Breg responses within this patient population and demonstrate that the IL-10(+) Breg compartment remains constant before and after administration of the vaccine, despite elevated BLyS levels in circulation. IL-10(+) Breg frequencies were not associated with serum BLyS levels, and ex vivo stimulation with a physiologically relevant concentration of BLyS did not increase IL-10(+) Breg frequency. However, BLyS stimulation did increase the frequency of the overall B cell compartment and promoted B cell proliferation upon B cell receptor engagement. Therefore, using BLyS as an adjuvant with therapeutic peptide vaccination could promote humoral immunity with no increase in immunosuppressive IL-10(+) Bregs. These results have implications for modulating humoral responses in human peptide vaccine trials in patients with GBM.
Collapse
|
8
|
Sayour EJ, Sanchez-Perez L, Flores C, Mitchell DA. Bridging infectious disease vaccines with cancer immunotherapy: a role for targeted RNA based immunotherapeutics. J Immunother Cancer 2015; 3:13. [PMID: 25901285 PMCID: PMC4404652 DOI: 10.1186/s40425-015-0058-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/18/2015] [Indexed: 01/05/2023] Open
Abstract
Tumor-specific immunotherapy holds the promise of eradicating malignant tumors with exquisite precision without additional toxicity to standard treatments. Cancer immunotherapy has conventionally relied on cell-mediated immunity while successful infectious disease vaccines have been shown to induce humoral immunity. Efficacious cancer immunotherapeutics likely require both cellular and humoral responses, and RNA based cancer vaccines are especially suited to stimulate both arms of the immune system. RNA is inherently immunogenic, inducing innate immune responses to initiate cellular and humoral adaptive immunity, but has limited utility based on its poor in vivo stability. Early work utilized ‘naked’ RNA vaccines, whereas more recent efforts have attempted to encapsulate RNA thereby protecting it from degradation. However, feasibility has been limited by a lack of defined and safe targeting mechanisms for the in vivo delivery of stabilized RNA. As new cancer antigens come to the forefront with novel RNA encapsulation and targeting techniques, RNA vaccines may prove to be a vital, safe and robust method to initiate patient-specific anti-tumor efficacy.
Collapse
Affiliation(s)
- Elias J Sayour
- Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, Fl USA ; Department of Pathology, Duke University Medical Center, Durham, NC USA
| | - Luis Sanchez-Perez
- Division of Neurosurgery, Department of Surgery, Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Durham, NC USA
| | - Catherine Flores
- Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, Fl USA
| | - Duane A Mitchell
- Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, Fl USA
| |
Collapse
|
9
|
Kibe S, Yutani S, Motoyama S, Nomura T, Tanaka N, Kawahara A, Yamaguchi T, Matsueda S, Komatsu N, Miura M, Hinai Y, Hattori S, Yamada A, Kage M, Itoh K, Akagi Y, Sasada T. Phase II study of personalized peptide vaccination for previously treated advanced colorectal cancer. Cancer Immunol Res 2014; 2:1154-62. [PMID: 25351849 DOI: 10.1158/2326-6066.cir-14-0035] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prognosis of advanced colorectal cancer (aCRC) remains poor, and development of new therapeutic approaches, including immunotherapy, is needed urgently. Herein we report on our phase II study of personalized peptide vaccination (PPV) in 60 previously treated patients with aCRC, who had failed at least one regimen of standard chemotherapy and/or targeted therapy. For PPV, a maximum of four HLA-matched peptides were individually selected from a pool of 31 different peptide candidates based on preexisting host immunity, and administered subcutaneously without severe adverse events. Boosting of IgG and cytotoxic T lymphocyte (CTL) responses specific to the administered peptides was observed in 49% and 63%, respectively, of the patients, who completed the first cycles of six vaccinations. Median overall survival (OS) time was 498 days, with 1- and 2-year survival rates of 53% and 22%, respectively. Multivariate Cox regression analysis of prevaccination factors showed that plasma IL6, IP-10, and BAFF levels were significantly prognostic for OS [hazard ratio (HR), 1.508, P = 0.043; HR, 1.579, P = 0.024; HR, 0.509, P = 0.002, respectively]. In addition, increased peptide-specific CTL responses after vaccination were significantly predictive of favorable OS (HR, 0.231; P = 0.021), suggesting a causal relationship between biologic and clinical efficacy of PPV. On the basis of the safety profile and potential clinical efficacy, we believe that clinical trials of PPV would be warranted for previously treated patients with aCRC.
Collapse
Affiliation(s)
- Shiro Kibe
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | | | - Satoru Motoyama
- Department of Surgery and Comprehensive Cancer Control, Akita University Graduate School of Medicine, Akita, Japan
| | | | - Natsuki Tanaka
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Tomohiko Yamaguchi
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | | | - Nobukazu Komatsu
- Department of Immunology and Immunotherapy, Kurume University School of Medicine, Kurume, Japan
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Yudai Hinai
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | | | - Akira Yamada
- Research Center of Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Masayoshi Kage
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan. Research Center of Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University, Kurume, Japan
| | - Yoshito Akagi
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Tetsuro Sasada
- Cancer Vaccine Center, Kurume University, Kurume, Japan. Department of Immunology and Immunotherapy, Kurume University School of Medicine, Kurume, Japan.
| |
Collapse
|
10
|
Sanchez-Perez L, Suryadevara CM, Choi BD, Reap EA, Sampson JH. Leveraging chemotherapy-induced lymphopenia to potentiate cancer immunotherapy. Oncoimmunology 2014; 3:e944054. [PMID: 25610727 DOI: 10.4161/21624011.2014.944054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/05/2014] [Indexed: 01/10/2023] Open
Abstract
First-line chemotherapy to combat primary malignant brain cancer is often accompanied by lymphopenic immunologic deficiency. Although counterintuitive, chemotherapy-induced lymphopenia can provide excellent host conditioning that may actually be leveraged to potentiate antitumor immunotherapy. We discuss here our preclinical and clinical experiences applying immunotherapy against glioblastoma, the most common and lethal primary malignant brain tumor, as well as the use of immunotherapeutics in the setting of standard-of-care temozolomide chemotherapy.
Collapse
Affiliation(s)
- Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program; Division of Neurosurgery; Department of Surgery; Duke University Medical Center ; Durham, NC USA ; The Preston Robert Tisch Brain Tumor Center at Duke; Duke University Medical Center ; Durham, NC USA
| | - Carter M Suryadevara
- Duke Brain Tumor Immunotherapy Program; Division of Neurosurgery; Department of Surgery; Duke University Medical Center ; Durham, NC USA ; Department of Pathology, Duke University ; Durham, NC USA ; The Preston Robert Tisch Brain Tumor Center at Duke; Duke University Medical Center ; Durham, NC USA
| | - Bryan D Choi
- Department of Neurosurgery; Massachusetts General Hospital and Harvard Medical School ; Boston, MA USA
| | - Elizabeth A Reap
- Duke Brain Tumor Immunotherapy Program; Division of Neurosurgery; Department of Surgery; Duke University Medical Center ; Durham, NC USA ; The Preston Robert Tisch Brain Tumor Center at Duke; Duke University Medical Center ; Durham, NC USA
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program; Division of Neurosurgery; Department of Surgery; Duke University Medical Center ; Durham, NC USA ; Department of Pathology, Duke University ; Durham, NC USA ; The Preston Robert Tisch Brain Tumor Center at Duke; Duke University Medical Center ; Durham, NC USA
| |
Collapse
|
11
|
Castro MG, Candolfi M, Wilson TJ, Calinescu A, Paran C, Kamran N, Koschmann C, Moreno-Ayala MA, Assi H, Lowenstein PR. Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin Biol Ther 2014; 14:1241-57. [PMID: 24773178 DOI: 10.1517/14712598.2014.915307] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Maria G Castro
- University of Michigan Medical School, Department of Neurosurgery , 4570 MSRB II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 , USA +734 764 0850 ; +734 764 7051 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Castro MG, Candolfi M, Wilson TJ, Calinescu A, Paran C, Kamran N, Koschmann C, Moreno-Ayala MA, Assi H, Lowenstein PR. Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin Biol Ther 2014. [PMID: 24773178 DOI: 10.1517/14712598.2014.91530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and it carries a dismal prognosis. Adenoviral vector (Ad)-mediated gene transfer is being developed as a promising therapeutic strategy for GBM. Preclinical studies have demonstrated safety and efficacy of adenovirus administration into the brain and tumor mass in rodents and into the non-human primates' brain. Importantly, Ads have been safely administered within the tumor resection cavity in humans. AREAS COVERED This review gives background on GBM and Ads; we describe gene therapy strategies for GBM and discuss the value of combination approaches. Finally, we discuss the results of the human clinical trials for GBM that have used Ads. EXPERT OPINION The transduction characteristics of Ads, and their safety profile, added to their capacity to achieve high levels of transgene expression have made them powerful vectors for the treatment of GBM. Recent gene therapy successes in the treatment of retinal diseases and systemic brain metabolic diseases encourage the development of gene therapy for malignant glioma. Exciting clinical trials are currently recruiting patients; although, it is the large randomized Phase III controlled clinical trials that will provide the final decision on the success of gene therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Maria G Castro
- University of Michigan Medical School, Department of Neurosurgery , 4570 MSRB II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 , USA +734 764 0850 ; +734 764 7051 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sampson JH, Vlahovic G. Editorial on "heat shock protein peptide complex-96 (HSPPC-96) vaccination for recurrent glioblastoma: a phase II, single arm trial". Neuro Oncol 2014; 16:169-170. [PMID: 24443362 PMCID: PMC3895395 DOI: 10.1093/neuonc/not311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
|