1
|
Hepatocyte-specific TAK1 deficiency drives RIPK1 kinase-dependent inflammation to promote liver fibrosis and hepatocellular carcinoma. Proc Natl Acad Sci U S A 2020; 117:14231-14242. [PMID: 32513687 DOI: 10.1073/pnas.2005353117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor β-activated kinase1 (TAK1) encoded by the gene MAP3K7 regulates multiple important downstream effectors involved in immune response, cell death, and carcinogenesis. Hepatocyte-specific deletion of TAK1 in Tak1 ΔHEP mice promotes liver fibrosis and hepatocellular carcinoma (HCC) formation. Here, we report that genetic inactivation of RIPK1 kinase using a kinase dead knockin D138N mutation in Tak1 ΔHEP mice inhibits the expression of liver tumor biomarkers, liver fibrosis, and HCC formation. Inhibition of RIPK1, however, has no or minimum effect on hepatocyte loss and compensatory proliferation, which are the recognized factors important for liver fibrosis and HCC development. Using single-cell RNA sequencing, we discovered that inhibition of RIPK1 strongly suppresses inflammation induced by hepatocyte-specific loss of TAK1. Activation of RIPK1 promotes the transcription of key proinflammatory cytokines, such as CCL2, and CCR2+ macrophage infiltration. Our study demonstrates the role and mechanism of RIPK1 kinase in promoting inflammation, both cell-autonomously and cell-nonautonomously, in the development of liver fibrosis and HCC, independent of cell death, and compensatory proliferation. We suggest the possibility of inhibiting RIPK1 kinase as a therapeutic strategy for reducing liver fibrosis and HCC development by inhibiting inflammation.
Collapse
|
2
|
Velázquez KT, Enos RT, McClellan JL, Cranford TL, Chatzistamou I, Singh UP, Nagarkatti M, Nagarkatti PS, Fan D, Murphy EA. MicroRNA-155 deletion promotes tumorigenesis in the azoxymethane-dextran sulfate sodium model of colon cancer. Am J Physiol Gastrointest Liver Physiol 2016; 310:G347-58. [PMID: 26744471 PMCID: PMC4796295 DOI: 10.1152/ajpgi.00326.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/30/2015] [Indexed: 01/31/2023]
Abstract
Clinical studies have linked microRNA-155 (miR-155) expression in the tumor microenvironment to poor prognosis. However, whether miR-155 upregulation is predictive of a pro- or antitumorigenic response is unclear, as the limited preclinical data available remain controversial. We examined miR-155 expression in tumor tissue from colon cancer patients. Furthermore, we investigated the role of this microRNA in proliferation and apoptosis, inflammatory processes, immune cell populations, and transforming growth factor-β/SMAD signaling in a chemically induced (azoxymethane-dextran sulfate sodium) mouse model of colitis-associated colon cancer. We found a higher expression of miR-155 in the tumor region than in nontumor colon tissue of patients with colon cancer. Deletion of miR-155 in mice resulted in a greater number of polyps/adenomas, an increased symptom severity score, a higher grade of epithelial dysplasia, and a decrease in survival. Surprisingly, these findings were associated with an increase in apoptosis in the normal mucosa, but there was no change in proliferation. The protumorigenic effects of miR-155 deletion do not appear to be driven solely by dysregulation of inflammation, as both genotypes had relatively similar levels of inflammatory mediators. The enhanced tumorigenic response in miR-155(-/-) mice was associated with alterations in macrophages and neutrophils, as markers for these populations were decreased and increased, respectively. Furthermore, we demonstrated a greater activation of the transforming growth factor-β/SMAD pathway in miR-155(-/-) mice, which was correlated with the increased tumorigenesis. Given the multiple targets of miR-155, careful evaluation of its role in tumorigenesis is necessary prior to any consideration of its potential as a biomarker and/or therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Kandy T. Velázquez
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Reilly T. Enos
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Jamie L. McClellan
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Taryn L. Cranford
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Ioulia Chatzistamou
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; ,3Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Udai P. Singh
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Mitzi Nagarkatti
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Prakash S. Nagarkatti
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina;
| | - Daping Fan
- 2Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - E. Angela Murphy
- 1Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; ,3Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| |
Collapse
|