1
|
Gao S, Li X, Han B. Bacterial and bacterial derivatives-based drug delivery systems: a novel approach for treating central nervous system disorders. Expert Opin Drug Deliv 2025; 22:163-180. [PMID: 39688950 DOI: 10.1080/17425247.2024.2444364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Bacteria and their derivatives show great potential as drug delivery systems due to their unique chemotaxis, biocompatibility, and targeting abilities. In CNS disease treatment, bacterial carriers can cross the blood-brain barrier (BBB) and deliver drugs precisely, overcoming limitations of traditional methods. Advances in genetic engineering, synthetic biology, and nanotechnology have transformed these systems into multifunctional platforms for personalized CNS treatment. AREAS COVERED This review examines the latest research on bacterial carriers for treating ischemic brain injury, neurodegenerative diseases, and gliomas. Bacteria efficiently cross the blood-brain barrier via active targeting, endocytosis, paracellular transport, and the nose-to-brain route for precise drug delivery. Various bacterial drug delivery systems, such as OMVs and bacterial ghosts, are explored for their design and application. Databases were searched in Google Scholar for the period up to December 2024. EXPERT OPINION Future developments in bacterial drug delivery will rely on AI-driven design and high-throughput engineering, enhancing treatment precision. Personalized medicine will further optimize bacterial carriers for individual patients, but challenges such as biosafety, immune rejection, and scalability must be addressed. As multimodal diagnostic and therapeutic strategies advance, bacterial carriers are expected to play a central role in CNS disease treatment, offering novel precision medicine solutions.
Collapse
Affiliation(s)
- Shizhu Gao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| | - Xin Li
- Orthopedic Medical Center, 2nd hospital of Jilin University, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
2
|
Dentovskaya SV, Vagaiskaya AS, Trunyakova AS, Kartseva AS, Ivashchenko TA, Gerasimov VN, Platonov ME, Firstova VV, Anisimov AP. Genetically Engineered Bacterial Ghosts as Vaccine Candidates Against Klebsiella pneumoniae Infection. Vaccines (Basel) 2025; 13:59. [PMID: 39852838 PMCID: PMC11768506 DOI: 10.3390/vaccines13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives Bacterial ghosts (BGs), non-living empty envelopes of bacteria, are produced either through genetic engineering or chemical treatment of bacteria, retaining the shape of their parent cells. BGs are considered vaccine candidates, promising delivery systems, and vaccine adjuvants. The practical use of BGs in vaccine development for humans is limited because of concerns about the preservation of viable bacteria in BGs. Methods: To increase the efficiency of Klebsiella pneumoniae BG formation and, accordingly, to ensure maximum killing of bacteria, we exploited previously designed plasmids with the lysis gene E from bacteriophage φX174 or with holin-endolysin systems of λ or L-413C phages. Previously, this kit made it possible to generate bacterial cells of Yersinia pestis with varying degrees of hydrolysis and variable protective activity. Results: In the current study, we showed that co-expression of the holin and endolysin genes from the L-413C phage elicited more rapid and efficient K. pneumoniae lysis than lysis mediated by only single gene E or the low functioning holin-endolysin system of λ phage. The introduction of alternative lysing factors into K. pneumoniae cells instead of the E protein leads to the loss of the murein skeleton. The resulting frameless cell envelops are more reminiscent of bacterial sacs or bacterial skins than BGs. Although such structures are less naive than classical bacterial ghosts, they provide effective protection against infection by a hypervirulent strain of K. pneumoniae and can be recommended as candidate vaccines. For our vaccine candidate generated using the O1:K2 hypervirulent K. pneumoniae strain, both safety and immunogenicity aspects were evaluated. Humoral and cellular immune responses were significantly increased in mice that were intraperitoneally immunized compared with subcutaneously vaccinated animals (p < 0.05). Conclusions: Therefore, this study presents novel perspectives for future research on K. pneumoniae ghost vaccines.
Collapse
Affiliation(s)
- Svetlana V. Dentovskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (S.V.D.); (A.S.V.); (A.S.T.); (M.E.P.)
| | - Anastasia S. Vagaiskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (S.V.D.); (A.S.V.); (A.S.T.); (M.E.P.)
| | - Alexandra S. Trunyakova
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (S.V.D.); (A.S.V.); (A.S.T.); (M.E.P.)
| | - Alena S. Kartseva
- Laboratory of Molecular Biology, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.K.); (T.A.I.); (V.V.F.)
| | - Tatiana A. Ivashchenko
- Laboratory of Molecular Biology, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.K.); (T.A.I.); (V.V.F.)
| | - Vladimir N. Gerasimov
- Department of Disinfectology, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia;
| | - Mikhail E. Platonov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (S.V.D.); (A.S.V.); (A.S.T.); (M.E.P.)
| | - Victoria V. Firstova
- Laboratory of Molecular Biology, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.K.); (T.A.I.); (V.V.F.)
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (S.V.D.); (A.S.V.); (A.S.T.); (M.E.P.)
| |
Collapse
|
3
|
Shah S, Nag A, Lucke-Wold B. Autologous tumor lysate-loaded dendritic cell vaccination in glioblastoma patients: a systematic review of literature. Clin Transl Oncol 2024:10.1007/s12094-024-03830-9. [PMID: 39714754 DOI: 10.1007/s12094-024-03830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Glioblastoma (GBM) is one of the most common primary malignant brain tumors. Annually, there are about six instances recorded per 100,000 inhabitants. Treatment for GB has not advanced all that much. Novel medications have been investigated recently for the management of newly diagnosed and recurring instances of GBM. For GBM, surgery, radiation therapy, and alkylating chemotherapy are often used therapies. Immunotherapies, which use the patient's immune reaction against tumors, have long been seen as a potential cancer treatment. One such treatment is the dendritic cell (DC) vaccine. This cell-based vaccination works by stimulating the patient's own dendritic cells' antigenic repertoire, therefore inducing a polyclonal T-cell response. Systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used to search, and the articles published in peer-reviewed scientific journals were associated with brain GBM, cancer, and Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination. Selected 90 articles were used in this manuscript, of which 30 articles were clinical trials. Compared to shared tumor antigen peptide vaccines, autologous cancer DCs have a greater ability to stimulate the immune system, which is why dendritic cell fusion vaccines have shown early promise in several clinical studies. Survival rates for vaccinated patients were notably better compared to matched or historical controls. For newly diagnosed patients, the median overall survival (mOS) ranged from 15 to 41.4 months, while the progression-free survival (PFS) ranged from 6 to 25.3 months. We discovered through this analysis that autologous multiomics analysis of DC vaccines showed enhanced antitumor immunity with a focus on using activated, antigen-loaded donor DCs to trigger T-cell responses against cancer, particularly in glioblastoma. It also showed improved patient survival, especially when combined with standard chemoradiotherapy. DC vaccines show promise in treating GBM by enhancing survival and reducing tumor recurrence. However, challenges in vaccine production, antigen selection, and tumor heterogeneity highlight the need for continued research and optimization to improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Siddharth Shah
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA.
| | - Aiswarya Nag
- Sri Ramachandra University Medical College: Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Brandon Lucke-Wold
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA
| |
Collapse
|
4
|
Zheng J, Chen H. Effects of intratumoral microbiota on tumorigenesis, anti-tumor immunity, and microbe-based cancer therapy. Front Oncol 2024; 14:1429722. [PMID: 39391251 PMCID: PMC11464362 DOI: 10.3389/fonc.2024.1429722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Intratumoral microbiota (IM) has emerged as a significant component of the previously thought sterile tumor microenvironment (TME), exerting diverse functions in tumorigenesis and immune modulation. This review outlines the historical background, classification, and diversity of IM, elucidating its pivotal roles in oncogenicity, cancer development, and progression, alongside its influence on anti-tumor immunity. The signaling pathways through which IM impacts tumorigenesis and immunity, including reactive oxygen species (ROS), β-catenin, stimulator of interferon genes (STING), and other pathways [NF-κB, Toll-like receptor (TLR), complement, RhoA/ROCK, PKR-like ER kinase (PERK)], are discussed comprehensively. Furthermore, we briefly introduce the clinical implications of IM, emphasizing its potential as a target for novel cancer therapies, diagnostic biomarkers, and prognostic indicators. Notably, microbe-based therapeutic strategies such as fecal microbiome transplantation (FMT), probiotics regulation, bacteriotherapy, bacteriophage therapy, and oncolytic virotherapy are highlighted. These strategies hold promise for enhancing the efficacy of current cancer treatments and warrant further exploration in clinical settings.
Collapse
Affiliation(s)
| | - Hao Chen
- Department of Pathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
5
|
Aarthi Y, Anjana A, Tejal G, Shanmugaraja M, Ramadevi S, Princess R. A Simple and Rapid Method of Probiotic Bacterial Ghost Cell Preparation to Deliver Mycobacterium tuberculosis Antigen. Mol Biotechnol 2024:10.1007/s12033-024-01260-0. [PMID: 39162910 DOI: 10.1007/s12033-024-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/29/2024] [Indexed: 08/21/2024]
Abstract
A bacterial ghost cell is an empty cell envelope of bacteria lacking cytoplasmic content. Bacterial ghost cells (BGs) can be used for various applications such as vaccines, adjuvants, and drug delivery systems. Since BGs offer many advantages over classically prepared vaccines, developing novel methods for the preparation of high-quality BGs remains to be an interesting field of study by various research groups. Several novel methodologies have been reported that involve the biological (gene E mediated) and combination of various chemicals such as NaOH, SDS, H2O2, CaCO3, and ethanol, non-detergent method using Tween80, limulus antimicrobial peptide, and high hydrostatic pressure method, the porcine myeloid antimicrobial peptide (PMPA) 36-lysozyme fusion method, NaOH-Penicillin/Streptolysin combination method. In this study, we have reported a novel methodology that combines the action of chemical and physical factors to produce ghost cells from gram-negative bacteria, the probiotic E.coli Nissle 1917. The mild detergent Triton X-100 and NaCl alter the permeability of the cell membrane which is further amplified by heat shock induction. This enables the cell to expel its cytoplasmic components without affecting the external morphology. The efficiency of this method was analyzed based on viability assay, cell leakage assay, live-dead cell assay, and scanning electron microscopic analysis. Moreover, the protein loading capacity was optimized for Mycobacterium tuberculosis antigen namely, ESAT-6.
Collapse
Affiliation(s)
- Yesupatham Aarthi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Aravindha Anjana
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, 626005, India
| | - Glaudia Tejal
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, 626005, India
| | - Meenakshi Shanmugaraja
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, 626005, India.
| | - S Ramadevi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - R Princess
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, 626005, India
| |
Collapse
|
6
|
Cho YS, Han K, Xu J, Moon JJ. Novel strategies for modulating the gut microbiome for cancer therapy. Adv Drug Deliv Rev 2024; 210:115332. [PMID: 38759702 PMCID: PMC11268941 DOI: 10.1016/j.addr.2024.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Recent advancements in genomics, transcriptomics, and metabolomics have significantly advanced our understanding of the human gut microbiome and its impact on the efficacy and toxicity of anti-cancer therapeutics, including chemotherapy, immunotherapy, and radiotherapy. In particular, prebiotics, probiotics, and postbiotics are recognized for their unique properties in modulating the gut microbiota, maintaining the intestinal barrier, and regulating immune cells, thus emerging as new cancer treatment modalities. However, clinical translation of microbiome-based therapy is still in its early stages, facing challenges to overcome physicochemical and biological barriers of the gastrointestinal tract, enhance target-specific delivery, and improve drug bioavailability. This review aims to highlight the impact of prebiotics, probiotics, and postbiotics on the gut microbiome and their efficacy as cancer treatment modalities. Additionally, we summarize recent innovative engineering strategies designed to overcome challenges associated with oral administration of anti-cancer treatments. Moreover, we will explore the potential benefits of engineered gut microbiome-modulating approaches in ameliorating the side effects of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 21009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 21009, China
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Zhao L, Chen J, Bai B, Song G, Zhang J, Yu H, Huang S, Wang Z, Lu G. Topical drug delivery strategies for enhancing drug effectiveness by skin barriers, drug delivery systems and individualized dosing. Front Pharmacol 2024; 14:1333986. [PMID: 38293666 PMCID: PMC10825035 DOI: 10.3389/fphar.2023.1333986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Topical drug delivery is widely used in various diseases because of the advantages of not passing through the gastrointestinal tract, avoiding gastrointestinal irritation and hepatic first-pass effect, and reaching the lesion directly to reduce unnecessary adverse reactions. The skin helps the organism to defend itself against a huge majority of external aggressions and is one of the most important lines of defense of the body. However, the skin's strong barrier ability is also a huge obstacle to the effectiveness of topical medications. Allowing the bioactive, composition in a drug to pass through the stratum corneum barrier as needed to reach the target site is the most essential need for the bioactive, composition to exert its therapeutic effect. The state of the skin barrier, the choice of delivery system for the bioactive, composition, and individualized disease detection and dosing planning influence the effectiveness of topical medications. Nowadays, enhancing transdermal absorption of topically applied drugs is the hottest research area. However, enhancing transdermal absorption of drugs is not the first choice to improve the effectiveness of all drugs. Excessive transdermal absorption enhances topical drug accumulation at non-target sites and the occurrence of adverse reactions. This paper introduces topical drug delivery strategies to improve drug effectiveness from three perspectives: skin barrier, drug delivery system and individualized drug delivery, describes the current status and shortcomings of topical drug research, and provides new directions and ideas for topical drug research.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bai Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guili Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Ling D, Jia X, Wang K, Yan Q, Yuan B, Du L, Li M, Jin Y. Cancer cell membrane-coated bacterial ghosts for highly efficient paclitaxel delivery against metastatic lung cancer. Acta Pharm Sin B 2024; 14:365-377. [PMID: 38261850 PMCID: PMC10792973 DOI: 10.1016/j.apsb.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/02/2023] [Accepted: 07/15/2023] [Indexed: 01/25/2024] Open
Abstract
Chemotherapy is one of the major approaches for the treatment of metastatic lung cancer, although it is limited by the low tumor delivery efficacy of anticancer drugs. Bacterial therapy is emerging for cancer treatment due to its high immune stimulation effect; however, excessively generated immunogenicity will cause serious inflammatory response syndrome. Here, we prepared cancer cell membrane-coated liposomal paclitaxel-loaded bacterial ghosts (LP@BG@CCM) by layer-by-layer encapsulation for the treatment of metastatic lung cancer. The preparation processes were simple, only involving film formation, electroporation, and pore extrusion. LP@BG@CCM owned much higher 4T1 cancer cell toxicity than LP@BG due to its faster fusion with cancer cells. In the 4T1 breast cancer metastatic lung cancer mouse models, the remarkably higher lung targeting of intravenously injected LP@BG@CCM was observed with the almost normalized lung appearance, the reduced lung weight, the clear lung tissue structure, and the enhanced cancer cell apoptosis compared to its precursors. Moreover, several major immune factors were improved after administration of LP@BG@CCM, including the CD4+/CD8a+ T cells in the spleen and the TNF-α, IFN-γ, and IL-4 in the lung. LP@BG@CCM exhibits the optimal synergistic chemo-immunotherapy, which is a promising medication for the treatment of metastatic lung cancer.
Collapse
Affiliation(s)
- Dandan Ling
- Anhui Medical University, Hefei 230032, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xueli Jia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ke Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qiucheng Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Anhui Medical University, Hefei 230032, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
9
|
Gurunathan S, Ajmani A, Kim JH. Extracellular nanovesicles produced by Bacillus licheniformis: A potential anticancer agent for breast and lung cancer. Microb Pathog 2023; 185:106396. [PMID: 37863272 DOI: 10.1016/j.micpath.2023.106396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Cancer is a major public burden and leading cause of death worldwide; furthermore, it is a significant barrier to increasing life expectancy in most countries of the world. Among various types of cancers, breast and lung cancers lead to significant mortality in both males and females annually. Bacteria-derived products have been explored for their use in cancer therapy. Although bacteria contain significant amounts of anticancer substances, attenuated bacteria may still pose a potential risk for infection owing to the variety of immunomodulatory molecules present in the parental bacteria; therefore, non-cellular bacterial extracellular vesicles (BEVs), which are naturally non-replicating, safer, and are considered to be potential anticancer agents, are preferred for cancer therapy. Gram-positive bacteria actively secrete cytoplasmic membrane vesicles that are spherical and vary between 10 and 400 nm in size. However, no studies have considered cytoplasmic membrane vesicles derived from Bacillus licheniformisin cancer treatment. In this study, we investigated the potential use of B. licheniformis extracellular nanovesicles (BENVs) as therapeutic agents to treat cancer. Purified BENVs from the culture supernatant of B. licheniformis using ultracentrifugation and ExoQuick were characterized using a series of analytical techniques. Human breast cancer cells (MDA-MB-231) and lung cancer cells (A549) were treated with different concentrations of purified BENVs, which inhibited the cell viability and proliferation, and increased cytotoxicity in a dose-dependent manner. To elucidate the mechanism underlying the anticancer activity of BENVs, the oxidative stress markers such as reactive oxygen species (ROS) and glutathione (GSH) levels were measured. The ROS levels were significantly higher in BENV-treated cells, whereas the GSH levels were markedly reduced. Cells treated with BENVs, doxorubicin (DOX), or a combination of BENVs and DOX showed significantly increased expression of p53, p21, caspase-9/3, and Bax, and concomitantly decreased expression of Bcl-2. The combination of BENVs and doxorubicin enhanced mitochondrial dysfunction, DNA damage, and apoptosis. To our knowledge, this is the first study to determine the anticancer properties of BENVs derived from industrially significant probacteria on breast and lung cancer cells.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, RathinamTechzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India.
| | - Abhishek Ajmani
- Institute of Advanced Virology, Thiruvananthapuram, 695014, Kerala, India
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
10
|
Zong R, Ruan H, Liu C, Fan S, Li J. Bacteria and Bacterial Components as Natural Bio-Nanocarriers for Drug and Gene Delivery Systems in Cancer Therapy. Pharmaceutics 2023; 15:2490. [PMID: 37896250 PMCID: PMC10610331 DOI: 10.3390/pharmaceutics15102490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria and bacterial components possess multifunctional properties, making them attractive natural bio-nanocarriers for cancer diagnosis and targeted treatment. The inherent tropic and motile nature of bacteria allows them to grow and colonize in hypoxic tumor microenvironments more readily than conventional therapeutic agents and other nanomedicines. However, concerns over biosafety, limited antitumor efficiency, and unclear tumor-targeting mechanisms have restricted the clinical translation and application of natural bio-nanocarriers based on bacteria and bacterial components. Fortunately, bacterial therapies combined with engineering strategies and nanotechnology may be able to reverse a number of challenges for bacterial/bacterial component-based cancer biotherapies. Meanwhile, the combined strategies tend to enhance the versatility of bionanoplasmic nanoplatforms to improve biosafety and inhibit tumorigenesis and metastasis. This review summarizes the advantages and challenges of bacteria and bacterial components in cancer therapy, outlines combinatorial strategies for nanocarriers and bacterial/bacterial components, and discusses their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
11
|
Gurunathan S, Kim JH. Bacterial extracellular vesicles: Emerging nanoplatforms for biomedical applications. Microb Pathog 2023; 183:106308. [PMID: 37595812 DOI: 10.1016/j.micpath.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Bacterial extracellular vesicles (BEVs) are nanosized lipid bilayers generated from membranes that are filled with components derived from bacteria. BEVs are important for the physiology, pathogenicity, and interactions between bacteria and their hosts as well. BEVs represent an important mechanism of transport and interaction between cells. Recent advances in biomolecular nanotechnology have enabled the desired properties to be engineered on the surface of BEVs and decoration with desired and diverse biomolecules and nanoparticles, which have potential biomedical applications. BEVs have been the focus of various fields, including nanovaccines, therapeutic agents, and drug delivery vehicles. In this review, we delineate the fundamental aspects of BEVs, including their biogenesis, cargo composition, function, and interactions with host cells. We comprehensively summarize the factors influencing the biogenesis of BEVs. We further highlight the importance of the isolation, purification, and characterization of BEVs because they are essential processes for potential benefits related to host-microbe interactions. In addition, we address recent advancements in BEVs in biomedical applications. Finally, we provide conclusions and future perspectives as well as highlight the remaining challenges of BEVs for different biomedical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Rathinam Techzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
12
|
Zhou M, Tang Y, Xu W, Hao X, Li Y, Huang S, Xiang D, Wu J. Bacteria-based immunotherapy for cancer: a systematic review of preclinical studies. Front Immunol 2023; 14:1140463. [PMID: 37600773 PMCID: PMC10436994 DOI: 10.3389/fimmu.2023.1140463] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has been emerging as a powerful strategy for cancer management. Recently, accumulating evidence has demonstrated that bacteria-based immunotherapy including naive bacteria, bacterial components, and bacterial derivatives, can modulate immune response via various cellular and molecular pathways. The key mechanisms of bacterial antitumor immunity include inducing immune cells to kill tumor cells directly or reverse the immunosuppressive microenvironment. Currently, bacterial antigens synthesized as vaccine candidates by bioengineering technology are novel antitumor immunotherapy. Especially the combination therapy of bacterial vaccine with conventional therapies may further achieve enhanced therapeutic benefits against cancers. However, the clinical translation of bacteria-based immunotherapy is limited for biosafety concerns and non-uniform production standards. In this review, we aim to summarize immunotherapy strategies based on advanced bacterial therapeutics and discuss their potential for cancer management, we will also propose approaches for optimizing bacteria-based immunotherapy for facilitating clinical translation.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yucheng Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yongjiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Si Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|
13
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
14
|
Feng C, Tan P, Nie G, Zhu M. Biomimetic and bioinspired nano-platforms for cancer vaccine development. EXPLORATION (BEIJING, CHINA) 2023; 3:20210263. [PMID: 37933383 PMCID: PMC10624393 DOI: 10.1002/exp.20210263] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2023]
Abstract
The advent of immunotherapy has revolutionized the treating modalities of cancer. Cancer vaccine, aiming to harness the host immune system to induce a tumor-specific killing effect, holds great promises for its broad patient coverage, high safety, and combination potentials. Despite promising, the clinical translation of cancer vaccines faces obstacles including the lack of potency, limited options of tumor antigens and adjuvants, and immunosuppressive tumor microenvironment. Biomimetic and bioinspired nanotechnology provides new impetus for the designing concepts of cancer vaccines. Through mimicking the stealth coating, pathogen recognition pattern, tissue tropism of pathogen, and other irreplaceable properties from nature, biomimetic and bioinspired cancer vaccines could gain functions such as longstanding, targeting, self-adjuvanting, and on-demand cargo release. The specific behavior and endogenous molecules of each type of living entity (cell or microorganism) offer unique features to cancer vaccines to address specific needs for immunotherapy. In this review, the strategies inspired by eukaryotic cells, bacteria, and viruses will be overviewed for advancing cancer vaccine development. Our insights into the future cancer vaccine development will be shared at the end for expediting the clinical translation.
Collapse
Affiliation(s)
- Chenchao Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Peng Tan
- Klarman Cell ObservatoryBroad Institute of MIT and HarvardCambridgeUSA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
- GBA Research Innovation Institute for NanotechnologyGuangzhouChina
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
| |
Collapse
|
15
|
Ayodele S, Kumar P, van Eyk A, Choonara YE. Advances in immunomodulatory strategies for host-directed therapies in combating tuberculosis. Biomed Pharmacother 2023; 162:114588. [PMID: 36989709 DOI: 10.1016/j.biopha.2023.114588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Tuberculosis (TB) maintains its infamous status regarding its detrimental effect on global health, causing the highest mortality by a single infectious agent. The presence of resistance and immune compromising disease favours the disease in maintaining its footing in the health care burden despite various anti-TB drugs used to fight it. Main factors contributing to resistance and difficulty in treating disease include prolonged treatment duration (at least 6 months) and severe toxicity, which further leads to patient non-compliance, and thus a ripple effect leading to therapeutic non-efficacy. The efficacy of new regimens demonstrates that targeting host factors concomitantly with the Mycobacterium tuberculosis (M.tb) strain is urgently required. Due to the huge expenses and time required of up to 20 years for new drug research and development, drug repurposing may be the most economical, circumspective, and conveniently faster journey to embark on. Host-directed therapy (HDT) will dampen the burden of the disease by acting as an immunomodulator, allowing it to defend the body against antibiotic-resistant pathogens whilst minimizing the possibility of developing new resistance to susceptible drugs. Repurposed drugs in TB act as host-directed therapies, acclimatizing the host immune cell to the presence of TB, improving its antimicrobial activity and time taken to get rid of the disease, whilst minimizing inflammation and tissue damage. In this review, we, therefore, explore possible immunomodulatory targets, HDT immunomodulatory agents, and their ability to improve clinical outcomes whilst minimizing the risk of drug resistance, through various pathway targeting and treatment duration reduction.
Collapse
|
16
|
Liu H, Zhang H, Han Y, Hu Y, Geng Z, Su J. Bacterial extracellular vesicles-based therapeutic strategies for bone and soft tissue tumors therapy. Theranostics 2022; 12:6576-6594. [PMID: 36185613 PMCID: PMC9516228 DOI: 10.7150/thno.78034] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Bone and soft tissue tumors are complex mesenchymal neoplasms that seriously endanger human health. Over the past decade, the relationship between microorganisms and human health and diseases is getting more attention. The extracellular vesicles derived from bacteria have been shown to regulate bacterial-host cell communication by transferring their contents, including nucleic acids, proteins, metabolites, lipopolysaccharides, and peptidoglycans. Bacteria extracellular vesicles (BEVs) are promising lipid-bilayer nanocarriers for the treatment of many diseases due to their low toxicity, drug loading capacity, ease of modification and industrialization. Specially, BEVs-based cancer therapy has attracted much attention because of their ability to effectively stimulate immune responses. In this review, we provide an overview of the biogenesis, composition, isolation, classification, and internalization of BEVs. We then comprehensively summarize the sources of BEVs in cancer therapy and the BEVs-related cancer treatment strategies. We further highlight the great potential of BEVs in bone and soft tissue tumors. Finally, we conclude the major advantages and challenges of BEVs-based cancer therapy. We believe that the comprehensive understanding of BEVs in the field of cancer therapy will generate innovative solutions to bone and soft tissue tumors and achieve clinical applications.
Collapse
Affiliation(s)
- Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
17
|
Li S, Yue H, Wang S, Li X, Wang X, Guo P, Ma G, Wei W. Advances of bacteria-based delivery systems for modulating tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114444. [PMID: 35817215 DOI: 10.1016/j.addr.2022.114444] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
The components and hospitable properties of tumor microenvironment (TME) are associated with tumor progression. Recently, TME modulating vectors and strategies have garnished significant attention in cancer therapy. Although a pilot work has reviewed TME regulation via nanoparticle-based delivery systems, there is no systematical review that summarizes the natural bacteria-based anti-tumor system to modulate TME. In this review, we conclude the strategies of bacterial carriers (including whole bacteria, bacterial skeleton and bacterial components) to regulate TME from the perspective of TME components and hospitable properties, and the clinical trials of bacteria-mediated cancer therapy. Current challenges and future prospects for the design of bacteria-based carriers are also proposed that provide critical insights into this natural delivery system and related translation from the bench to the clinic.
Collapse
Affiliation(s)
- Shuping Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
18
|
Pathological features-based targeted delivery strategies in IBD therapy: A mini review. Biomed Pharmacother 2022; 151:113079. [PMID: 35605297 DOI: 10.1016/j.biopha.2022.113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is characterized by a complex and dysfunctional immune response. Currently, IBD is incurable, and patients with IBD often need to take drugs for life. However, as the traditional systemic treatment strategies for IBD do not target the site of inflammation, only limited efficacy can be obtained from them. Moreover, the possibility of serious side effects stemming from the systemic administration or redistribution of drugs in the body is high when conventional drug formulations are used. Therefore, a targeted drug-delivery system for IBD should be considered. Based on the pathological features related to IBD, the new targeted drug-delivery strategy can directly transfer the drug to the inflammatory site, thus enhancing the accumulation of the drugs and reducing side effects. This article reviews the pathological features of IBD and the application of the IBD-targeted delivery system based on different pathological features, and discusses the challenges and new prospects in this field.
Collapse
|
19
|
Krishnan N, Kubiatowicz LJ, Holay M, Zhou J, Fang RH, Zhang L. Bacterial membrane vesicles for vaccine applications. Adv Drug Deliv Rev 2022; 185:114294. [PMID: 35436569 DOI: 10.1016/j.addr.2022.114294] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022]
Abstract
Vaccines have been highly successful in the management of many diseases. However, there are still numerous illnesses, both infectious and noncommunicable, for which there are no clinically approved vaccine formulations. While there are unique difficulties that must be overcome in the case of each specific disease, there are also a number of common challenges that have to be addressed for effective vaccine development. In recent years, bacterial membrane vesicles (BMVs) have received increased attention as a potent and versatile vaccine platform. BMVs are inherently immunostimulatory and are able to activate both innate and adaptive immune responses. Additionally, BMVs can be readily taken up and processed by immune cells due to their nanoscale size. Finally, BMVs can be modified in a variety of ways, including by genetic engineering, cargo loading, and nanoparticle coating, in order to create multifunctional platforms that can be leveraged against different diseases. Here, an overview of the interactions between BMVs and immune cells is provided, followed by discussion on the applications of BMV vaccine nanotechnology against bacterial infections, viral infections, and cancers.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Luke J Kubiatowicz
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Chen H, Ji H, Kong X, Lei P, Yang Q, Wu W, Jin L, Sun D. Bacterial Ghosts-Based Vaccine and Drug Delivery Systems. Pharmaceutics 2021; 13:1892. [PMID: 34834306 PMCID: PMC8622331 DOI: 10.3390/pharmaceutics13111892] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial ghosts (BGs) are empty bacterial envelopes of Gram-negative bacteria produced by controlled expressions of cloned gene E, forming a lysis tunnel structure within the envelope of the living bacteria. Globally, BGs have been used as vaccine delivery systems and vaccine adjuvants. There is an increasing interest in the development of novel delivery systems that are based on BGs for biomedical applications. Due to intact reservation of bacterial cell membranes, BGs have an inherent immunogenicity, which enables targeted drug delivery and controlled release. As carrier vehicles, BGs protect drugs from interference by external factors. In recent years, there has been an increasing interest in BG-based delivery systems against tumors, inflammation, and infection, among others. Herein, we reviewed the preparation methods for BGs, interactions between BGs and the host, and further highlighted research progress in BG development.
Collapse
Affiliation(s)
- Haojie Chen
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Hao Ji
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Xiangjun Kong
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Pengyu Lei
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Wei Wu
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
- Key Laboratory for Biorheological Science and Technology of Ministry of Education & State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| |
Collapse
|
21
|
Zai W, Kang L, Dong T, Wang H, Yin L, Gan S, Lai W, Ding Y, Hu Y, Wu J. E. coli Membrane Vesicles as a Catalase Carrier for Long-Term Tumor Hypoxia Relief to Enhance Radiotherapy. ACS NANO 2021; 15:15381-15394. [PMID: 34520168 DOI: 10.1021/acsnano.1c07621] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hypoxia is one of the most important factors that limit the effect of radiotherapy, and the abundant H2O2 in tumor tissues will also aggravate hypoxia-induced radiotherapy resistance. Delivering catalase to decompose H2O2 into oxygen is an effective strategy to relieve tumor hypoxia and radiotherapy resistance. However, low stability limits catalase's in vivo application, which is one of the most common limitations for almost all proteins' internal utilization. Here, we develop catalase containing E. coli membrane vesicles (EMs) with excellent protease resistance to relieve tumor hypoxia for a long time. Even treated with 100-fold of protease, EMs showed higher catalase activity than free catalase. After being injected into tumors post 12 h, EMs maintained their hypoxia relief ability while free catalase lost its activity. Our results indicate that EMs might be an excellent catalase delivery for tumor hypoxia relief. Combined with their immune stimulation features, EMs could enhance radiotherapy and induce antitumor immune memory effectively.
Collapse
Affiliation(s)
- Wenjing Zai
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Tiejun Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Haoran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lining Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Shaoju Gan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenjia Lai
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yibing Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
22
|
Abstract
The natural world has provided a host of materials and inspiration for the field of nanomedicine. By taking design cues from naturally occurring systems, the nanoengineering of advanced biomimetic platforms has significantly accelerated over the past decade. In particular, the biomimicry of bacteria, with their motility, taxis, immunomodulation, and overall dynamic host interactions, has elicited substantial interest and opened up exciting avenues of research. More recently, advancements in genetic engineering have given way to more complex and elegant systems with tunable control characteristics. Furthermore, bacterial derivatives such as membrane ghosts, extracellular vesicles, spores, and toxins have proven advantageous for use in nanotherapeutic applications, as they preserve many of the features from the original bacteria while also offering distinct advantages. Overall, bacteria-inspired nanomedicines can be employed in a range of therapeutic settings, from payload delivery to immunotherapy, and have proven successful in combatting both cancer and infectious disease.
Collapse
Affiliation(s)
- Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica Pihl
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiyoung Heo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Abstract
INTRODUCTION Bacterial ghosts are intact bacterial cell envelopes that are emptied of their content by gentle biological or chemical poring methods. Ghost techniques increase the safety of the killed vaccines, while maintaining their antigenicity due to mild preparation procedures. Moreover, ghost-platforms may express and/or carry several antigens or plasmid-DNA encoding for protein epitopes. AREAS COVERED In this review, the development in ghost-vaccine production over the last 30 years is classified and discussed. The different applications of ghost-vaccines, how they trigger the immune system, their advantages and limitations are displayed. The phage-mediated lysis, molecular manipulation of the lysis-genes, and the biotechnological production of ghosts are described. The trials are classified according to the pattern of lysis and to the type of bacteria. Further subdivision includes chronological ordered application of the ghost as alternative-killed vaccine, recombinant antigen platform, plasmid DNA carrier, adjuvants, and dendritic cell inducer. Particular trials for specific pathogens or from distinct research schools are gathered. EXPERT OPINION Ghosts are highly qualified to act as immune-presenting platforms that express and/or carry several recombinant and DNA vaccines, as well as, being efficient alternative-killed vaccines. The coming years will show more molecular advances to develop ghost-production and to express more antigens.
Collapse
Affiliation(s)
- Ali M Batah
- Tropical Disease Research Center, University of Science and Technology , Sana'a, Yemen
| | - Tarek A Ahmad
- Morehouse School of Medicine , Atlanta, GA, USA.,Library Sector, Bibliotheca Alexandrina , Alexandria, Egypt
| |
Collapse
|
24
|
Lim J, Koh VHQ, Cho SSL, Periaswamy B, Choi DPS, Vacca M, De Sessions PF, Kudela P, Lubitz W, Pastorin G, Alonso S. Harnessing the Immunomodulatory Properties of Bacterial Ghosts to Boost the Anti-mycobacterial Protective Immunity. Front Immunol 2019; 10:2737. [PMID: 31824511 PMCID: PMC6883722 DOI: 10.3389/fimmu.2019.02737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) pathogenesis is characterized by inadequate immune cell activation and delayed T cell response in the host. Recent immunotherapeutic efforts have been directed at stimulating innate immunity and enhancing interactions between antigen presenting cells and T cells subsets to improve the protective immunity against TB. In this study, we investigated the immunostimulatory properties of bacterial ghosts (BG) as a novel approach to potentiate the host immunity against mycobacterial infection. BG are intact cytoplasm-free Escherichia coli envelopes and have been developed as bacterial vaccines and adjuvant/delivery system in cancer immunotherapy. However, BG have yet to be exploited as immunopotentiators in the context of infectious diseases. Here, we showed that BG are potent inducers of dendritic cells (DC), which led to enhanced T cell proliferation and differentiation into effector cells. BG also induced macrophage activation, which was associated with enhanced nitric oxide production, a key anti-mycobacterial weapon. We further demonstrated that the immunostimulatory capability of BG far exceeds that of LPS and involves both TLR4-dependent and independent pathways. Consistently, BG treatment, but not LPS treatment, reduced the bacterial burden in infected mice, which correlated with increased influx of innate and adaptive effector immune cells and increased production of key cytokines in the lungs. Finally and importantly, enhanced bacilli killing was seen in mice co-administered with BG and second-line TB drugs bedaquiline and delamanid. Overall, this work paves the way for BG as potent immunostimulators that may be harnessed to improve mycobacteria killing at the site of infection.
Collapse
Affiliation(s)
- Jieling Lim
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vanessa Hui Qi Koh
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sharol Su Lei Cho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Balamurugan Periaswamy
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Dawn Poh Sum Choi
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Maurizio Vacca
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Paola Florez De Sessions
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Pavol Kudela
- Biotech Innovation Research Development & Consulting (BIRD-C), Vienna, Austria
| | - Werner Lubitz
- Biotech Innovation Research Development & Consulting (BIRD-C), Vienna, Austria
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Muhammad A, Kassmannhuber J, Rauscher M, Falcon AA, Wheeler DW, Zhang AA, Lubitz P, Lubitz W. Subcutaneous Immunization of Dogs With Bordetella bronchiseptica Bacterial Ghost Vaccine. Front Immunol 2019; 10:1377. [PMID: 31293571 PMCID: PMC6603212 DOI: 10.3389/fimmu.2019.01377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/31/2019] [Indexed: 11/15/2022] Open
Abstract
The Bordetella species are Gram-negative bacterial pathogens that colonizes mammalian respiratory tract causing respiratory diseases in humans and animals. B. bronchiseptica causes clinical conditions in many mammals including immunocompromised humans. Using the dog model of respiratory infection, it has been shown in this study that a newly developed B. bronchiseptica Bacterial Ghost (BbBG) vaccine exhibited significant protection in the face of a severe pathogenic bacterial challenge in seronegative dogs. The protein E-specific lysis mechanism was used to produce BbBGs. Bacterial Ghosts (BGs) are the empty cell envelope of Gram-negative bacterium. They are genetically processed to form a microscopic hole in their membrane, through which all the cytoplasmic contents are expelled leaving behind intact empty bacterial shells. Due to the intact surface structures of BGs, they offer the safety of inactivated but efficacy of live attenuated vaccines. In this study, seronegative dogs were vaccinated subcutaneously (s/c) with two different doses of a newly developed BbBG vaccine [lower 10∧5 (BbBG – 5) and higher 10∧7 (BbBG – 7)] on day 0 and 21. The animals were challenged (by aerosol) with virulent live B. bronchiseptica strains 41 days after first vaccination. The dogs vaccinated s/c with BbBG – 7 vaccine had significantly lower spontaneous coughing scores (P = 0.0001) than dogs in negative control group. Furthermore, the tested BbBG – 7 vaccine was equivalent to the positive control vaccine Bronchicine CAe in terms of safety and efficacy. For the first time, we report the successful use of liquid formulated BGs vaccines in animal studies. Earlier reported studies using BGs vaccines were performed with resuspended freeze-dried BGs preparations.
Collapse
Affiliation(s)
| | - Johannes Kassmannhuber
- BIRD-C GmbH & Co KG, Vienna, Austria.,Centre of Molecular Biology, University of Vienna, Vienna, Austria
| | - Mascha Rauscher
- BIRD-C GmbH & Co KG, Vienna, Austria.,Centre of Molecular Biology, University of Vienna, Vienna, Austria
| | | | | | - Alan A Zhang
- ELANCO Animal Health, Greenfield, IN, United States
| | | | | |
Collapse
|
26
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
27
|
Dobrovolskienė N, Pašukonienė V, Darinskas A, Kraśko JA, Žilionytė K, Mlynska A, Gudlevičienė Ž, Mišeikytė-Kaubrienė E, Schijns V, Lubitz W, Kudela P, Strioga M. Tumor lysate-loaded Bacterial Ghosts as a tool for optimized production of therapeutic dendritic cell-based cancer vaccines. Vaccine 2018; 36:4171-4180. [PMID: 29895501 DOI: 10.1016/j.vaccine.2018.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy with dendritic cell (DC)-based vaccines has been used to treat various malignancies for more than two decades, however generally showed a limited clinical success. Among various factors responsible for their modest clinical activity is the lack of universally applied, standardized protocols for the generation of clinical-grade DC vaccines, capable of inducing effective anti-tumor immune responses. We investigated Bacterial Ghosts (BGs) - empty envelopes of Gram-negative bacteria - as a tool for optimized production of DC vaccines. BGs possess various intact cell surface structures, exhibiting strong adjuvant properties required for the induction of DC maturation, whereas their empty internal space can be easily filled with a source tumor antigens, e.g. tumor lysate. Hence BGs emerge as an excellent platform for both the induction of immunogenic DC maturation and loading with tumor antigens in a single-step procedure. We compared the phenotype, cytokine secretion profile, functional activity and ability to induce immunogenic T-cell responses in vitro of human monocyte-derived DCs generated using BG platform and DCs matured with widely used lipopolysaccharide (LPS) plus interferon-γ cocktail and loaded with tumor lysate. Both approaches induced DC maturation, however BG-based protocol was superior to LPS-based protocol in terms of the ability to induce DCs with a lower tolerogenic potential, resulting in a more robust CD8+ T cell activation and their functional activity as well as significantly lower induction of regulatory T cells. These superior parameters are attributed, at least in part, to the ability of BG-matured DCs to resist potential immunosuppressive and pro-tolerogenic activity of various tumor cell lysates, including melanoma, renal carcinoma and glioblastoma.
Collapse
Affiliation(s)
- N Dobrovolskienė
- National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania.
| | - V Pašukonienė
- National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania.
| | - A Darinskas
- National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania; JSC "Froceth", Linkmenų g. 28, LT-08217 Vilnius, Lithuania
| | - J A Kraśko
- National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania; JSC "Froceth", Linkmenų g. 28, LT-08217 Vilnius, Lithuania.
| | - K Žilionytė
- National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania.
| | - A Mlynska
- National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania.
| | - Ž Gudlevičienė
- National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania.
| | - E Mišeikytė-Kaubrienė
- National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania; Faculty of Medicine, Vilnius University, M.K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - V Schijns
- Cell Biology and Immunology, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands; Epitopoietic Research Corporation (ERC), ERC-The Netherlands, 5374 RE Schaijk, The Netherlands.
| | - W Lubitz
- BIRD-C GmbH & Co KG, Dr. Bohrgasse 2-8/14/1, A-1030 Vienna, Austria.
| | - P Kudela
- BIRD-C GmbH & Co KG, Dr. Bohrgasse 2-8/14/1, A-1030 Vienna, Austria
| | - M Strioga
- National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania; Faculty of Medicine, Vilnius University, M.K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania.
| |
Collapse
|
28
|
Groza D, Gehrig S, Kudela P, Holcmann M, Pirker C, Dinhof C, Schueffl HH, Sramko M, Hoebart J, Alioglu F, Grusch M, Ogris M, Lubitz W, Keppler BK, Pashkunova-Martic I, Kowol CR, Sibilia M, Berger W, Heffeter P. Bacterial ghosts as adjuvant to oxaliplatin chemotherapy in colorectal carcinomatosis. Oncoimmunology 2018; 7:e1424676. [PMID: 29721389 DOI: 10.1080/2162402x.2018.1424676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/29/2017] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer mortality worldwide. At late stage of the disease CRC often shows (multiple) metastatic lesions in the peritoneal cavity which cannot be efficiently targeted by systemic chemotherapy. This is one major factor contributing to poor prognosis. Oxaliplatin is one of the most commonly used systemic treatment options for advanced CRC. However, drug resistance - often due to insufficient drug delivery - is still hampering successful treatment. The anticancer activity of oxaliplatin includes besides DNA damage also a strong immunogenic component. Consequently, the aim of this study was to investigate the effect of bacterial ghosts (BGs) as adjuvant immunostimulant on oxaliplatin efficacy. BGs are empty envelopes of gram-negative bacteria with a distinct immune-stimulatory potential. Indeed, we were able to show that the combination of BGs with oxaliplatin treatment had strong synergistic anticancer activity against the CT26 allograft, resulting in prolonged survival and even a complete remission in this murine model of CRC carcinomatosis. This synergistic effect was based on an enhanced induction of immunogenic cell death and activation of an efficient T-cell response leading to long-term anti-tumor memory effects. Taken together, co-application of BGs strengthens the immunogenic component of the oxaliplatin anticancer response and thus represents a promising natural immune-adjuvant to chemotherapy in advanced CRC.
Collapse
Affiliation(s)
- Diana Groza
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Sebastian Gehrig
- Laboratory of MacroMolecular Cancer Therapeutics ( MMCT), Center of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Martin Holcmann
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Carina Dinhof
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Hemma H Schueffl
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | | | - Julia Hoebart
- Laboratory of MacroMolecular Cancer Therapeutics ( MMCT), Center of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Fatih Alioglu
- Laboratory of MacroMolecular Cancer Therapeutics ( MMCT), Center of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Manfred Ogris
- Laboratory of MacroMolecular Cancer Therapeutics ( MMCT), Center of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Irena Pashkunova-Martic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| |
Collapse
|