1
|
Le MHN, Nguyen PK, Nguyen TPT, Nguyen HQ, Tam DNH, Huynh HH, Huynh PK, Le NQK. An in-depth review of AI-powered advancements in cancer drug discovery. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167680. [PMID: 39837431 DOI: 10.1016/j.bbadis.2025.167680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
The convergence of artificial intelligence (AI) and genomics is redefining cancer drug discovery by facilitating the development of personalized and effective therapies. This review examines the transformative role of AI technologies, including deep learning and advanced data analytics, in accelerating key stages of the drug discovery process: target identification, drug design, clinical trial optimization, and drug response prediction. Cutting-edge tools such as DrugnomeAI and PandaOmics have made substantial contributions to therapeutic target identification, while AI's predictive capabilities are driving personalized treatment strategies. Additionally, advancements like AlphaFold highlight AI's capacity to address intricate challenges in drug development. However, the field faces significant challenges, including the management of large-scale genomic datasets and ethical concerns surrounding AI deployment in healthcare. This review underscores the promise of data-centric AI approaches and emphasizes the necessity of continued innovation and interdisciplinary collaboration. Together, AI and genomics are charting a path toward more precise, efficient, and transformative cancer therapeutics.
Collapse
Affiliation(s)
- Minh Huu Nhat Le
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan
| | - Phat Ky Nguyen
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan.
| | | | - Hien Quang Nguyen
- Cardiovascular Research Department, Methodist Hospital, Merrillville, IN 46410, USA
| | - Dao Ngoc Hien Tam
- Regulatory Affairs Department, Asia Shine Trading & Service Co. LTD, Viet Nam
| | - Han Hong Huynh
- International Master Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Phat Kim Huynh
- Department of Industrial and Systems Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Nguyen Quoc Khanh Le
- AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan; In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
2
|
Bandara S, Raveendran S. Current Landscape and Future Directions in Cancer Immunotherapy: Therapies, Trials, and Challenges. Cancers (Basel) 2025; 17:821. [PMID: 40075668 PMCID: PMC11899461 DOI: 10.3390/cancers17050821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a leading global health challenge, placing immense burdens on individuals and healthcare systems. Despite advancements in traditional treatments, significant limitations persist, including treatment resistance, severe side effects, and disease recurrence. Immunotherapy has emerged as a promising alternative, leveraging the immune system to target and eliminate tumour cells. However, challenges such as immunotherapy resistance, patient response variability, and the need for improved biomarkers limit its widespread success. This review provides a comprehensive analysis of the current landscape of cancer immunotherapy, highlighting both FDA-approved therapies and novel approaches in clinical development. It explores immune checkpoint inhibitors, cell and gene therapies, monoclonal antibodies, and nanotechnology-driven strategies, offering insights into their mechanisms, efficacy, and limitations. By integrating emerging research and clinical advancements, this review underscores the need for continued innovation to optimise cancer immunotherapy and overcome existing treatment barriers.
Collapse
Affiliation(s)
- Shehani Bandara
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Sreejith Raveendran
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
3
|
Li H, Zhu J, Qin W, Wang Z, Xie S, Zhang Z, Wang J, Song B, Wu W, Peng C. Modified Vaccinia Virus Ankara Selectively Targets Human Cancer Cells With Low Expression of the Zinc-Finger Antiviral Protein. J Med Virol 2025; 97:e70131. [PMID: 39726258 DOI: 10.1002/jmv.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Oncolytic viruses are emerging as promising cancer therapeutic agents, with several poxviruses, including vaccinia virus (VACV) and myxoma virus, showing significant potential in preclinical and clinical trials. Modified vaccinia virus Ankara (MVA), a laboratory-derived VACV strain approved by the FDA for mpox and smallpox vaccination, has been shown to be incapable of replicating in human cells unless zinc finger antiviral protein (ZAP) is repressed. Notably, ZAP deficiency is prevalent in various cancer types. We hypothesized that MVA could selectively target and replicate in ZAP-deficient cancer cells. Our study examined MVA's replication across multiple cancer cell lines with varying ZAP expression levels, revealing that MVA replicates more efficiently in cells with lower ZAP expression. Additionally, we assessed MVA's oncolytic potential using a xenograft mouse model, where cancer cells were transplanted into immunodeficient mice. The data demonstrated that MVA significantly reduced tumors with lower ZAP expression without causing morbidity in nude mice. These findings suggest that MVA holds promise for further development as a targeted therapy for ZAP-deficient cancers.
Collapse
Affiliation(s)
- Hua Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junda Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weilan Qin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiying Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijie Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zihui Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baifen Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Hong Y, Cheng K, Qu H, Wang Y, Wang Y, Fan G, Wu Z. Safety of talimogene laherparepvec: a real-world retrospective pharmacovigilance study based on FDA Adverse Event Reporting System (FAERS). J Pharm Health Care Sci 2024; 10:79. [PMID: 39696696 DOI: 10.1186/s40780-024-00388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Oncolytic virus therapy is a rapidly evolving emerging approach for the medical management of cancer. Talimogene laherparepvec (T-VEC) is the first and only Food and Drug Administration (FDA)-approved oncolytic virus therapy. Considering that exactly how T-VEC works is not known, there is a strong need for a comprehensive pharmacovigilance study to identify safety signals of potential risks with T-VEC. OBJECTIVE The objective of this study was to assess the risk of adverse events (AEs) related to T-VEC. METHODS We implemented a pharmacovigilance study utilizing individual case safety reports (ICSRs) reported to the FDA Adverse Event Reporting System (FAERS) database dated from 2004 quarter 1 to 2023 quarter 3. In this study, we used two algorithms, reporting odds ratio (ROR) and information component (IC), to assess the risk of AEs related to T-VEC. RESULTS A total of 1138 ICSRs of patients who received the T-VEC and reported to the FDA dated from 2004 quarter 1 to 2023 quarter 3 were available. A total of seven system organ classes (SOCs) demonstrated statistically significant signals, i.e. General disorders and administration site conditions, Injury, poisoning and procedural complication, Infections and infestations, Neoplasms benign, malignant and unspecified, Skin and subcutaneous tissue disorders, Hepatobiliary disorders, and Endocrine disorders. From the preferred term level perspective, the most reported AEs in T-VEC-treated patients were pyrexia, illness, influenza, influenza-like illness, and chills. Unexpected significant AEs were detected, such as sepsis, encephalitis, syncope, and lymphadenopathy. CONCLUSIONS Most AEs in T-VEC-treated patients have been previously mentioned in the prescriptive information or documented in other clinical trials. But safety signals were also be detected in 4 unexpected AEs (sepsis, encephalitis, syncope, and lymphadenopathy). Further clinical trials need to be undertaken to facilitate a more comprehensive comprehension of the safety profile of T-VEC.
Collapse
Affiliation(s)
- Yifan Hong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Clinical Pharmacy, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Kebin Cheng
- Department of Respiratory and Critical Care Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Han Qu
- Department of Pharmacy, Shanghai Fourth People's HospitalAffiliated to, Tongji University School of Medicine, Shanghai, China
| | - Yuting Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Wang
- Department of Clinical Pharmacy, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Guorong Fan
- Department of Clinical Pharmacy, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China.
| |
Collapse
|
5
|
Stull CM, Clark D, Parker T, Idriss MH, Patel VA, Migden MR. Current and emerging intralesional immunotherapies in cutaneous oncology. J Am Acad Dermatol 2024; 91:910-921. [PMID: 38942173 DOI: 10.1016/j.jaad.2024.05.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024]
Abstract
Immunotherapies have revolutionized the management of advanced cutaneous malignancies. However, some patients fail to respond to these therapies, others are ineligible because of comorbidities, and a minority of patients experience treatment-limiting systemic immune-related adverse events. To address these issues and expand treatment options for patients with early-stage disease, a variety of immunotherapies are being developed for direct intratumoral administration. Agents including oncolytic viruses, monoclonal antibodies, cytokines, peptides, and pattern-recognition receptor agonists have been engineered to evoke a local immune response while minimizing systemic toxicity and have shown favorable results in preclinical and early clinical testing. This review covers the current landscape of intratumoral immunotherapies for the treatment of cutaneous melanoma, squamous cell carcinoma, and basal cell carcinoma, highlighting the diverse array of agents being explored and their potential benefits and challenges.
Collapse
Affiliation(s)
- Carolyn M Stull
- Department of Dermatology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denise Clark
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Tayler Parker
- Department of Dermatology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Munir H Idriss
- Department of Dermatology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vishal A Patel
- Department of Dermatology, George Washington School of Medicine and Health Sciences, Washington, District of Columbia
| | - Michael R Migden
- Departments of Dermatology and Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
6
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
7
|
Butterfield LH, Najjar YG. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nat Rev Immunol 2024; 24:399-416. [PMID: 38057451 PMCID: PMC11460566 DOI: 10.1038/s41577-023-00973-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The approval of the first immune checkpoint inhibitors provided a paradigm shift for the treatment of malignancies across a broad range of indications. Whereas initially, single-agent immune checkpoint inhibition was used, increasing numbers of patients are now treated with combination immune checkpoint blockade, where non-redundant mechanisms of action of the individual agents generally lead to higher response rates. Furthermore, immune checkpoint therapy has been combined with various other therapeutic modalities, including chemotherapy, radiotherapy and other immunotherapeutics such as vaccines, adoptive cellular therapies, cytokines and others, in an effort to maximize clinical efficacy. Currently, a large number of clinical trials test combination therapies with an immune checkpoint inhibitor as a backbone. However, proceeding without inclusion of broad, if initially exploratory, biomarker investigations may ultimately slow progress, as so far, few combinations have yielded clinical successes based on clinical data alone. Here, we present the rationale for combination therapies and discuss clinical data from clinical trials across the immuno-oncology spectrum. Moreover, we discuss the evolution of biomarker approaches and highlight the potential new directions that comprehensive biomarker studies can yield.
Collapse
Affiliation(s)
- Lisa H Butterfield
- University of California San Francisco, Microbiology and Immunology, San Francisco, CA, USA.
| | | |
Collapse
|
8
|
Joo V, Abdelhamid K, Noto A, Latifyan S, Martina F, Daoudlarian D, De Micheli R, Pruijm M, Peters S, Hullin R, Gaide O, Pantaleo G, Obeid M. Primary prophylaxis with mTOR inhibitor enhances T cell effector function and prevents heart transplant rejection during talimogene laherparepvec therapy of squamous cell carcinoma. Nat Commun 2024; 15:3664. [PMID: 38693123 PMCID: PMC11063183 DOI: 10.1038/s41467-024-47965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
The application of mammalian target of rapamycin inhibition (mTORi) as primary prophylactic therapy to optimize T cell effector function while preserving allograft tolerance remains challenging. Here, we present a comprehensive two-step therapeutic approach in a male patient with metastatic cutaneous squamous cell carcinoma and heart transplantation followed with concomitant longitudinal analysis of systemic immunologic changes. In the first step, calcineurin inhibitor/ mycophenolic acid is replaced by the mTORi everolimus to achieve an improved effector T cell status with increased cytotoxic activity (perforin, granzyme), enhanced proliferation (Ki67) and upregulated activation markers (CD38, CD69). In the second step, talimogene laherparepvec (T-VEC) injection further enhances effector function by switching CD4 and CD8 cells from central memory to effector memory profiles, enhancing Th1 responses, and boosting cytotoxic and proliferative activities. In addition, cytokine release (IL-6, IL-18, sCD25, CCL-2, CCL-4) is enhanced and the frequency of circulating regulatory T cells is increased. Notably, no histologic signs of allograft rejection are observed in consecutive end-myocardial biopsies. These findings provide valuable insights into the dynamics of T cell activation and differentiation and suggest that timely initiation of mTORi-based primary prophylaxis may provide a dual benefit of revitalizing T cell function while maintaining allograft tolerance.
Collapse
Affiliation(s)
- Victor Joo
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Karim Abdelhamid
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Alessandra Noto
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Sofiya Latifyan
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Federica Martina
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Douglas Daoudlarian
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Rita De Micheli
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Menno Pruijm
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Nephrology Division, Rue du Bugnon 17, CH-1011, Lausanne, Switzerland
| | - Solange Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Oncology Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Roger Hullin
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Cardiology, Cardiovascular Department, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Olivier Gaide
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Dermatology Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Michel Obeid
- Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Department of Medicine, Immunology and Allergy Division, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
9
|
Zheng H, Yu X, Ibrahim ML, Foresman D, Xie M, Johnson JO, Boyle TA, Ruffell B, Perez BA, Antonia SJ, Ready N, Saltos AN, Cantwell MJ, Beg AA. Combination IFNβ and Membrane-Stable CD40L Maximize Tumor Dendritic Cell Activation and Lymph Node Trafficking to Elicit Systemic T-cell Immunity. Cancer Immunol Res 2023; 11:466-485. [PMID: 36757308 PMCID: PMC10165690 DOI: 10.1158/2326-6066.cir-22-0927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Oncolytic virus therapies induce the direct killing of tumor cells and activation of conventional dendritic cells (cDC); however, cDC activation has not been optimized with current therapies. We evaluated the adenoviral delivery of engineered membrane-stable CD40L (MEM40) and IFNβ to locally activate cDCs in mouse tumor models. Combined tumor MEM40 and IFNβ expression induced the highest cDC activation coupled with increased lymph node migration, increased systemic antitumor CD8+ T-cell responses, and regression of established tumors in a cDC1-dependent manner. MEM40 + IFNβ combined with checkpoint inhibitors led to effective control of distant tumors and lung metastases. An oncolytic adenovirus (MEM-288) expressing MEM40 + IFNβ in phase I clinical testing induced cancer cell loss concomitant with enhanced T-cell infiltration and increased systemic presence of tumor T-cell clonotypes in non-small cell lung cancer (NSCLC) patients. This approach to simultaneously target two major DC-activating pathways has the potential to significantly affect the solid tumor immunotherapy landscape.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Xiaoqing Yu
- Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Mohammed L Ibrahim
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dana Foresman
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Mengyu Xie
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | | | - Theresa A Boyle
- Pathology, Moffitt Cancer Center, Tampa, Florida
- Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Brian Ruffell
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | | | - Scott J Antonia
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | - Neal Ready
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | | | | | - Amer A Beg
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
- Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
10
|
Zhang T, Jou THT, Hsin J, Wang Z, Huang K, Ye J, Yin H, Xing Y. Talimogene Laherparepvec (T-VEC): A Review of the Recent Advances in Cancer Therapy. J Clin Med 2023; 12:1098. [PMID: 36769745 PMCID: PMC9917711 DOI: 10.3390/jcm12031098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The landscape of melanoma treatment has undergone a dramatic revolution in the past decade. The use of oncolytic viruses (OVs) represents a novel therapeutic approach that can selectively infect and lyse tumor cells and induce local and systemic antitumor immune responses. As the first OV approved by the Food and Drug Administration (FDA) for melanoma treatment, talimogene laherparepvec (T-VEC), a genetically modified herpes simplex virus (HSV), has shown promising therapeutic effects in the treatment of advanced melanoma, both as a monotherapy or in combination with other immunotherapies, such as the immune checkpoint inhibitors (ICIs). With proven efficacy, T-VEC has been evaluated against a variety of other cancer types in a clinical trial setting. In this article, we will provide a review on OVs and the application of T-VEC in melanoma monotherapy and combination therapy. In addition, we will review the recent progress of T-VEC application in other cutaneous cancer types. Moreover, we will briefly describe our experience of T-VEC therapy at City of Hope, aiming to provide more insight for expanding its future application.
Collapse
Affiliation(s)
- Tiantian Zhang
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Tony Hong-Ting Jou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Jerline Hsin
- Department of Pharmacy, City of Hope, Duarte, CA 91010, USA
| | - Zhe Wang
- High Throughput Screening Core, Department of Share Resources, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Kelly Huang
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA
| | - Jian Ye
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Holly Yin
- High Throughput Screening Core, Department of Share Resources, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yan Xing
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Carroll HK, Duffy AG, O'Farrelly C. Liver Immunology, Immunotherapy, and Liver Cancers: Time for a Rethink? Semin Liver Dis 2022; 42:212-224. [PMID: 35263795 DOI: 10.1055/s-0042-1744143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The complex immune system of the liver has a major role in tumor surveillance, but also partly explains why current immune therapies are poorly effective against liver cancers. Known primarily for its tolerogenic capacity, the hepatic immune repertoire also comprises diverse populations of armored immune cells with tumor surveillant roles. In healthy people, these work together to successfully identify malignant cells and prevent their proliferation, thus halting tumor formation. When frontline hepatic immune surveillance systems fail, compromised hepatic immunity, driven by obesity, infection, or other pathological factors, allows primary or secondary liver cancers to develop. Tumor growth promotes the normal tolerogenic immunological milieu of the liver, perhaps explaining why current immunotherapies fail to work. This review explores the complex local liver immune system with the hope of identifying potential therapeutic targets needed to best overcome immunological barriers in the liver to create an environment no longer hostile to immunotherapy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Hailey K Carroll
- Department of Medical Oncology, The Mater Hospital, Dublin, Ireland
| | - Austin G Duffy
- Department of Medical Oncology, The Mater Hospital, Dublin, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.,School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
12
|
Petrelli F, Ghidini A, Simioni A, Campana LG. Impact of electrochemotherapy in metastatic cutaneous melanoma: a contemporary systematic review and meta-analysis. Acta Oncol 2022; 61:533-544. [PMID: 34889156 DOI: 10.1080/0284186x.2021.2006776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Electrochemotherapy (ECT) harnesses electric pulses to enhance cytotoxic drug delivery into tumors and has entered the armamentarium to treat superficially metastatic melanoma. We performed a systematic review and meta-analysis to assess treatment patterns and patient outcomes. METHODS PubMed, Medline, Embase, and the Cochrane Library databases were queried for publication from inception to September 2020. Primary outcome measures were overall and complete response rate (ORR and CRR); secondary outcomes included local control rate (LCR) and overall survival (OS). RESULTS Twenty-seven studies met the selection criteria for a total of 1161 individuals (mean age 71 years) and 5308 tumors (weighted mean size 14 mm). The majority of patients (n = 1124) underwent bleomycin-ECT. Aggregate ORR was 77.6% (95% confidence interval [CI] 71.0 - 83.2%) and CRR 48% (95% CI 42 - 54%), with no significant difference between the route of bleomycin administration (ORR, 69.2 vs. 81.9% following intravenous or intratumoral bleomycin, p = .37) and tumor size (p = .69). When reported (n = 8 studies), 1- and 2-year LCR ranged from 54 to 89% and 72 to 74%, respectively, and 1-year OS (n = 3 studies) from 67 to 89%. CONCLUSIONS ECT with either intratumoral or intravenous bleomycin confers a high therapeutic response in cutaneous metastatic melanoma. Moderate evidence supports its low toxicity and durability of local control.HighlightsElectrochemotherapy (ECT) is associated with a 77% overall response rate (ORR).Intravenous and intratumoral bleomycin are equally effective.There are no relevant toxicity concerns.One-year local tumor control rate ranges from 54 to 89%.Current literature has significant variation in reporting.
Collapse
Affiliation(s)
| | | | - Andrea Simioni
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
13
|
Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng Transl Med 2022; 7:e10258. [PMID: 35079633 PMCID: PMC8780015 DOI: 10.1002/btm2.10258] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Gene therapies are currently one of the most investigated therapeutic modalities in both the preclinical and clinical settings and have shown promise in treating a diverse spectrum of diseases. Gene therapies aim at introducing a gene material in target cells and represent a promising approach to cure diseases that were thought to be incurable by conventional modalities. In many cases, a gene therapy requires a vector to deliver gene therapeutics into target cells; viral vectors are among the most widely studied vectors owing to their distinguished advantages such as outstanding transduction efficiency. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes with many products approved for treating a range of diseases including cancer, infectious diseases and monogenic diseases. In addition, a number of active clinical trials are underway to further expand their therapeutic potential. In this review, we highlight the diversity of viral vectors, review approved products, and discuss the current clinical landscape of in vivo viral vector-based gene therapies. We have reviewed 13 approved products and their clinical applications. We have also analyzed more than 200 active trials based on various viral vectors and discussed their respective therapeutic applications. Moreover, we provide a critical analysis of the major translational challenges for in vivo viral vector-based gene therapies and discuss possible strategies to address the same.
Collapse
Affiliation(s)
- Zongmin Zhao
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| |
Collapse
|
14
|
Kai M, Marx AN, Liu DD, Shen Y, Gao H, Reuben JM, Whitman G, Krishnamurthy S, Ross MI, Litton JK, Lim B, Ibrahim N, Kogawa T, Ueno NT. A phase II study of talimogene laherparepvec for patients with inoperable locoregional recurrence of breast cancer. Sci Rep 2021; 11:22242. [PMID: 34782633 PMCID: PMC8593093 DOI: 10.1038/s41598-021-01473-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023] Open
Abstract
Talimogene laherparepvec (T-VEC) is an immunotherapy that generates local tumor lysis and systemic antitumor immune response. We studied the efficacy of intratumoral administration of T-VEC as monotherapy for inoperable locoregional recurrence of breast cancer. T-VEC was injected intratumorally at 106 PFU/mL on day 1 (cycle 1), 108 PFU/mL on day 22 (cycle 2), and 108 PFU/mL every 2 weeks thereafter (cycles ≥ 3). Nine patients were enrolled, 6 with only locoregional disease and 3 with both locoregional and distant disease. No patient completed the planned 10 cycles or achieved complete or partial response. The median number of cycles administered was 4 (range, 3-8). Seven patients withdrew prematurely because of uncontrolled disease progression, 1 withdrew after cycle 3 because of fatigue, and 1 withdrew after cycle 4 for reasons unrelated to study treatment. Median progression-free survival and overall survival were 77 days (95% CI, 63-NA) and 361 days (95% CI, 240-NA). Two patients received 8 cycles with clinically stable disease as the best response. The most common grade 2 or higher adverse event was injection site reaction (n = 7, 78%). Future studies could examine whether combining intratumoral T-VEC with concurrent systemic therapy produces better outcomes.
Collapse
Affiliation(s)
- Megumi Kai
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angela N Marx
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diane D Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
| | - Hui Gao
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematopathology Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematopathology Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
| | - Gary Whitman
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
| | - Merrick I Ross
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology/Medicine, Baylor College of Medicine, 7200 Cambridge St., Houston, TX, 77030, USA
| | - Nuhad Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
| | - Takahiro Kogawa
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA.
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Abd-Aziz N, Poh CL. Development of oncolytic viruses for cancer therapy. Transl Res 2021; 237:98-123. [PMID: 33905949 DOI: 10.1016/j.trsl.2021.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Oncolytic virotherapy is a therapeutic approach that uses replication-competent viruses to kill cancers. The ability of oncolytic viruses to selectively replicate in cancer cells leads to direct cell lysis and induction of anticancer immune response. Like other anticancer therapies, oncolytic virotherapy has several limitations such as viral delivery to the target, penetration into the tumor mass, and antiviral immune responses. This review provides an insight into the different characteristics of oncolytic viruses (natural and genetically modified) that contribute to effective applications of oncolytic virotherapy in preclinical and clinical trials, and strategies to overcome the limitations. The potential of oncolytic virotherapy combining with other conventional treatments or cancer immunotherapies involving immune checkpoint inhibitors and CAR-T therapy could form part of future multimodality treatment strategies.
Collapse
Affiliation(s)
- Noraini Abd-Aziz
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research (CVVR), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
16
|
Knackstedt R, Smile T, Yu J, Gastman BR. Non-Operative Options for Loco-regional Melanoma. Clin Plast Surg 2021; 48:631-642. [PMID: 34503723 DOI: 10.1016/j.cps.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Malignant melanoma is the 5th most common cancer and stage IV melanoma accounts for approximately 4% of new melanoma diagnoses in the United States. The prognosis for regionally advanced disease is poor, but there have been numerous recent advances in the medical management of melanoma in-transit metastases. The goal of this paper is to review currently accepted treatment options for in-transit metastases and introduce emerging therapies. Therapies to be discussed include limb perfusion and infusion, immunotherapy, checkpoint inhibitors, and radiation therapy.
Collapse
Affiliation(s)
- Rebecca Knackstedt
- Department of Plastic Surgery, Cleveland Clinic, 2049 East 100th Street, Desk A60, Cleveland, OH 44195, USA
| | - Timothy Smile
- Department of Radiation Oncology, Cleveland Clinic, Taussig Cancer Center, 10201 Carnegie Avenue, Cleveland, OH 44195, USA
| | - Jennifer Yu
- Department of Radiation Oncology, Cleveland Clinic, Taussig Cancer Center, 10201 Carnegie Avenue, Cleveland, OH 44195, USA
| | - Brian R Gastman
- Department of Plastic Surgery, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, 2049 East 100th Street, Desk A60, Cleveland, OH 44195, USA.
| |
Collapse
|
17
|
Monga V, Miller BJ, Tanas M, Boukhar S, Allen B, Anderson C, Stephens L, Hartwig S, Varga S, Houtman J, Wang L, Zhang W, Jaber O, Thomason J, Kuehn D, Rajput M, Metz C, Zamba KD, Mott S, Abanonu C, Bhatia S, Milhem M. Intratumoral talimogene laherparepvec injection with concurrent preoperative radiation in patients with locally advanced soft-tissue sarcoma of the trunk and extremities: phase IB/II trial. J Immunother Cancer 2021; 9:jitc-2021-003119. [PMID: 34330766 PMCID: PMC8327848 DOI: 10.1136/jitc-2021-003119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 12/22/2022] Open
Abstract
Background Soft-tissue sarcomas (STS) in the extremities and trunk treated with standard-of-care preoperative external beam radiation therapy (EBRT) followed by surgical resection are associated with local and distant relapses. In preclinical studies, oncolytic virotherapy in sarcoma has demonstrated antitumor effects via direct intratumoral oncolysis and cytotoxic T-cell–mediated immune responses. Talimogene laherparepvec (TVEC) is a replication-competent, immune-enhanced, oncolytic herpes simplex virus type 1 engineered for intratumoral injection; it has been approved by the FDA for the treatment of locally advanced and metastatic melanoma. Methods We explored a novel combination of TVEC with standard-of-care EBRT administered preoperatively in patients with locally advanced STS of the extremities and trunk in a phase IB/II clinical trial. Thirty patients with primary STS >5 cm for which EBRT was indicated to achieve negative margins were enrolled. FDA-approved TVEC doses were used. Immune correlative studies in peripheral blood, biopsy and resected tumor tissues were performed. Results No dose-limiting toxicity was observed. Adverse events were similar to those reported in prior studies with TVEC. One patient with myxoid liposarcoma exhibited a partial response. Seven of the 29 (24%) evaluable patients achieved 95% pathological necrosis. None of the patients developed a herpes infection due to the treatment. Eight of the 29 (27%) patients developed postoperative wound complications, which is consistent with previous studies. None of the patients developed local recurrence after surgical resection of the primary sarcoma. 2-year progression-free and overall survival were 57% and 88%, respectively. Caspase-3 demonstrated increased expression of both in TVEC-treated tissue samples as compared with control samples treated with radiation alone. Conclusion Preoperative intratumoral TVEC with concurrent EBRT for locally advanced STS is safe and well-tolerated. This combination treatment may enhance immune responses in some cases but did not increase the proposed rate of pathological necrosis. The Caspase-3 biomarker may be associated with a positive effect of TVEC in sarcoma tumor tissue and should be explored in future studies. Trial registration number NCT02453191.
Collapse
Affiliation(s)
- Varun Monga
- Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Benjamin J Miller
- Orthopedic Surgery, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Munir Tanas
- Pathology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Sarag Boukhar
- Pathology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Bryan Allen
- Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Carryn Anderson
- Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Laura Stephens
- Microbiology and Immunology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Stacey Hartwig
- Microbiology and Immunology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Steven Varga
- Microbiology and Immunology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Jon Houtman
- Microbiology and Immunology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Lei Wang
- Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Weizhou Zhang
- Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Omar Jaber
- Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Jon Thomason
- Pathology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - David Kuehn
- Radiology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Maheen Rajput
- Radiology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Catherine Metz
- Radiology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - K D Zamba
- Biostatistics, The University of Iowa College of Public Health, Iowa City, Iowa, USA
| | - Sarah Mott
- The University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Chinemerem Abanonu
- HealthCare Partners Hematology/Oncology Maryland Parkway, Las Vegas, Nevada, USA
| | - Sudershan Bhatia
- Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Mohammed Milhem
- Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers (Basel) 2021; 13:cancers13061383. [PMID: 33803762 PMCID: PMC8003308 DOI: 10.3390/cancers13061383] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Talimogene laherparepvec (T-VEC; IMLYGIC®, Amgen Inc.) is the first oncolytic viral immunotherapy to be approved for the local treatment of unresectable metastatic stage IIIB/C–IVM1a melanoma. Its direct intratumoral injection aim to trigger local and systemic immunologic responses leading to tumor cell lysis, followed by release of tumor-derived antigens and subsequent activation of tumor-specific effector T-cells. Its approval has fueled the interest to study its possible sinergy with other immunotherapeutics in preclinical models as well as in clinical contextes. In fact, it has been shown that intratumoral administration of this immunostimulatory agent successfully synergizes with immune checkpoint inhibitors. The objectives of this review are to resume the current state of the art of T-VEC treatment when used in monotherapy or in combination with immune checkpoint inhibitors, describing the strong rationale of its development, the adverse events of interest and the clinical outcome in selected patient’s populations. Abstract Direct intralesional injection of specific or even generic agents, has been proposed over the years as cancer immunotherapy, in order to treat cutaneous or subcutaneous metastasis. Such treatments usually induce an effective control of disease in injected lesions, but only occasionally were able to demonstrate a systemic abscopal effect on distant metastases. The usual availability of tissue for basic and translational research is a plus in utilizing this approach, which has been used in primis for the treatment of locally advanced melanoma. Melanoma is an immunogenic tumor that could often spread superficially causing in-transit metastasis and involving draining lymph nodes, being an interesting model to study new drugs with different modality of administration from normal available routes. Talimogene laherperepvec (T-VEC) is an injectable modified oncolytic herpes virus being developed for intratumoral injection, that produces granulocyte-macrophage colony-stimulating factor (GM-CSF) and enhances local and systemic antitumor immune responses. After infection, selected viral replication happens in tumor cells leading to tumor cell lysis and activating a specific T-cell driven immune response. For this reason, a probable synergistic effect with immune checkpoints inhibition have been described. Pre-clinical studies in melanoma confirmed that T-VEC preferentially infects melanoma cells and exerts its antitumor activity through directly mediating cell death and by augmenting local and even distant immune responses. T-VEC has been assessed in monotherapy in Phase II and III clinical trials demonstrating a tolerable side-effect profile, a promising efficacy in both injected and uninjected lesions, but a mild effect at a systemic level. In fact, despite improved local disease control and a trend toward superior overall survival in respect to the comparator GM-CSF (which was injected subcutaneously daily for two weeks), responses as a single agent therapy have been uncommon in patients with visceral metastases. For this reason, T-VEC is currently being evaluated in combinations with other immune checkpoint inhibitors such as ipilimumab and pembrolizumab, with interesting confirmation of activity even systemically.
Collapse
|
19
|
Gault A, Anderson A, Plummer R, Stewart C, Pratt A, Rajan N. Cutaneous immune‐related adverse events in patients with melanoma treated with checkpoint inhibitors. Br J Dermatol 2021; 185:263-271. [DOI: 10.1111/bjd.19750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2020] [Indexed: 12/24/2022]
Affiliation(s)
- A. Gault
- Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
- Northern Centre for Cancer Care Freeman Hospital Newcastle Upon Tyne UK
| | - A.E. Anderson
- Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - R. Plummer
- Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
- Northern Centre for Cancer Care Freeman Hospital Newcastle Upon Tyne UK
| | - C. Stewart
- Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - A.G. Pratt
- Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - N. Rajan
- Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
- Department of Dermatology Royal Victoria Infirmary Newcastle upon Tyne UK
| |
Collapse
|
20
|
An Update on the Role of Talimogene Laherparepvec (T-VEC) in the Treatment of Melanoma: Best Practices and Future Directions. Am J Clin Dermatol 2020; 21:821-832. [PMID: 32767272 DOI: 10.1007/s40257-020-00554-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Talimogene laherparepvec (T-VEC) is the first agent approved for cancer in the emerging class of oncolytic viral therapies. While T-VEC was approved for the treatment of advanced melanoma in 2015, clinical utilization has been hampered by rapid changes in the therapeutic landscape of melanoma related to advances in both immune checkpoint blockade and targeted therapy, cumbersome logistics involved in T-VEC administration, biosafety concerns, and a perception that T-VEC has limited impact on uninjected, visceral disease. However, with further survival follow-up from the phase III OPTiM (OncovexGM-CSF Pivotal Trial in Melanoma), along with new real-world data and consensus guidelines on safe administration of oncolytic viruses, a roadmap for when and how to use T-VEC has been emerging. In addition, preliminary data have demonstrated improved therapeutic responses to T-VEC in combination with immune checkpoint blockade in patients with melanoma without additive toxicity. This review provides an update on recent data with T-VEC alone and in combination with other agents. The emerging data provide guidance for how to better utilize T-VEC for patients with melanoma and identifies critical areas for clinical investigation to expand the role of T-VEC in combination strategies for the treatment of melanoma and perhaps other cancers.
Collapse
|
21
|
Hwang JK, Hong J, Yun CO. Oncolytic Viruses and Immune Checkpoint Inhibitors: Preclinical Developments to Clinical Trials. Int J Mol Sci 2020; 21:E8627. [PMID: 33207653 PMCID: PMC7697902 DOI: 10.3390/ijms21228627] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Immuno-oncology (IO) has been an active area of oncology research. Following US FDA approval of the first immune checkpoint inhibitor (ICI), ipilimumab (human IgG1 k anti-CTLA-4 monoclonal antibody), in 2011, and of the first oncolytic virus, Imlygic (talimogene laherparepvec), in 2015, there has been renewed interest in IO. In the past decade, ICIs have changed the treatment paradigm for many cancers by enabling better therapeutic control, resuming immune surveillance, suppressing tumor immunosuppression, and restoring antitumor immune function. However, ICI therapies are effective only in a small subset of patients and show limited therapeutic potential due to their inability to demonstrate efficacy in 'cold' or unresponsive tumor microenvironments (TMEs). Relatedly, oncolytic viruses (OVs) have been shown to induce antitumor immune responses, augment the efficacy of existing cancer treatments, and reform unresponsive TME to turn 'cold' tumors 'hot,' increasing their susceptibility to checkpoint blockade immunotherapies. For this reason, OVs serve as ideal complements to ICIs, and multiple preclinical studies and clinical trials are demonstrating their combined therapeutic efficacy. This review will discuss the merits and limitations of OVs and ICIs as monotherapy then progress onto the preclinical rationale and the results of clinical trials of key combination therapies.
Collapse
Affiliation(s)
- June Kyu Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
- Institute of Nano Science and Technology, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
22
|
Menotti L, Avitabile E. Herpes Simplex Virus Oncolytic Immunovirotherapy: The Blossoming Branch of Multimodal Therapy. Int J Mol Sci 2020; 21:ijms21218310. [PMID: 33167582 PMCID: PMC7664223 DOI: 10.3390/ijms21218310] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses are smart therapeutics against cancer due to their potential to replicate and produce the needed therapeutic dose in the tumor, and to their ability to self-exhaust upon tumor clearance. Oncolytic virotherapy strategies based on the herpes simplex virus are reaching their thirties, and a wide variety of approaches has been envisioned and tested in many different models, and on a range of tumor targets. This huge effort has culminated in the primacy of an oncolytic HSV (oHSV) being the first oncolytic virus to be approved by the FDA and EMA for clinical use, for the treatment of advanced melanoma. The path has just been opened; many more cancer types with poor prognosis await effective and innovative therapies, and oHSVs could provide a promising solution, especially as combination therapies and immunovirotherapies. In this review, we analyze the most recent advances in this field, and try to envision the future ahead of oHSVs.
Collapse
|
23
|
Middleton MR, Hoeller C, Michielin O, Robert C, Caramella C, Öhrling K, Hauschild A. Intratumoural immunotherapies for unresectable and metastatic melanoma: current status and future perspectives. Br J Cancer 2020; 123:885-897. [PMID: 32713938 PMCID: PMC7492252 DOI: 10.1038/s41416-020-0994-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/11/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023] Open
Abstract
The emergence of human intratumoural immunotherapy (HIT-IT) is a major step forward in the management of unresectable melanoma. The direct injection of treatments into melanoma lesions can cause cell lysis and induce a local immune response, and might be associated with a systemic immune response. Directly injecting immunotherapies into tumours achieves a high local concentration of immunostimulatory agent while minimising systemic exposure and, as such, HIT-IT agents are associated with lower toxicity than systemic immune checkpoint inhibitors (CPIs), enabling their potential use in combination with other therapies. Consequently, multiple HIT-IT agents, including oncolytic viruses, pattern-recognition receptor agonists, injected CPIs, cytokines and immune glycolipids, are under investigation. This review considers the current clinical development status of HIT-IT agents as monotherapy and in combination with systemic CPIs, and the practical aspects of administering and assessing the response to these agents. The future of HIT-IT probably lies in its use in combination with systemic CPIs; data from Phase 2 trials indicate a synergy between HIT-IT and CPIs. Data also suggest that the addition of HIT-IT to a CPI might generate responses in CPI-refractory tumours, thereby overcoming resistance and addressing a current unmet need in unresectable and metastatic melanoma for treatment options following progression after CPI treatment.
Collapse
Affiliation(s)
- Mark R Middleton
- University of Oxford Department of Oncology, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK.
| | - Christoph Hoeller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Olivier Michielin
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Caroline Robert
- Department of Oncology, Gustave Roussy Cancer Campus, Villejuif, and Paris-Saclay University, Orsay, France
| | - Caroline Caramella
- Department of Radiology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Axel Hauschild
- Department of Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
24
|
Hu J, Masoud SJ, Ravichandran S, Beasley GM, Mosca PJ. Retreatment with talimogene laherparepvec for advanced melanoma. Immunotherapy 2020; 12:1167-1172. [PMID: 32840157 DOI: 10.2217/imt-2020-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Talimogene laherparepvec (T-VEC) is a genetically modified oncolytic herpesvirus approved for the treatment of unresectable, locoregionally advanced and recurrent melanoma. There is little relevant literature in the context of retreatment with T-VEC. Materials & methods: We reviewed four patients aged 71-87 years old with stage IIIB-IV melanoma at treatment who were rechallenged with T-VEC after experiencing recurrence of locoregional disease or prior treatment-limiting toxicity. Results: Cessation of initial treatment was due to one of the following reasons: severe adverse event (one case), mixed response (one case) or complete response (two cases). Three males and one female underwent T-VEC retreatment with a mean of 5.5 injection cycles. Three patients experienced a complete response to retreatment, while one experienced disease progression. Conclusion: Intralesional T-VEC may be effective and well-tolerated in patients who have completed prior T-VEC therapy.
Collapse
Affiliation(s)
- Janice Hu
- School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sabran J Masoud
- School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Surya Ravichandran
- School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Georgia M Beasley
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul J Mosca
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
25
|
Hartley A, Kavishwar G, Salvato I, Marchini A. A Roadmap for the Success of Oncolytic Parvovirus-Based Anticancer Therapies. Annu Rev Virol 2020; 7:537-557. [PMID: 32600158 DOI: 10.1146/annurev-virology-012220-023606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autonomous rodent protoparvoviruses (PVs) are promising anticancer agents due to their excellent safety profile, natural oncotropism, and oncosuppressive activities. Viral infection can trigger immunogenic cell death, activating the immune system against the tumor. However, the efficacy of this treatment in recent clinical trials is moderate compared with results seen in preclinical work. Various strategies have been employed to improve the anticancer activities of oncolytic PVs, including development of second-generation parvoviruses with enhanced oncolytic and immunostimulatory activities and rational combination of PVs with other therapies. Understanding the cellular factors involved in the PV life cycle is another important area of investigation. Indeed, these studies may lead to the identification of biomarkers that would allow a more personalized use of PV-based therapies. This review focuses on this work and the challenges that still need to be overcome to move PVs forward into clinical practice as an effective therapeutic option for cancer patients.
Collapse
Affiliation(s)
- Anna Hartley
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Gayatri Kavishwar
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Ilaria Salvato
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany; .,Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| |
Collapse
|
26
|
Shi T, Song X, Wang Y, Liu F, Wei J. Combining Oncolytic Viruses With Cancer Immunotherapy: Establishing a New Generation of Cancer Treatment. Front Immunol 2020; 11:683. [PMID: 32411132 PMCID: PMC7198760 DOI: 10.3389/fimmu.2020.00683] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The recent successes of tumor immunotherapy approaches, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cell (CAR-T) therapy, have revolutionized cancer treatment, improving efficacy and extending treatment to a larger proportion of cancer patients. However, due to high heterogeneity of cancer, poor tumor cell targeting, and the immunosuppressive status of the tumor microenvironment (TME), combinatorial agents are required to obtain more effective and consistent therapeutic responses in a wide range of cancers. Oncolytic viruses (OVs) are able to selectively replicate in and destroy tumor cells and subsequently induce systematic anti-tumor immune responses. Thus, they are ideal for combining with cancer immunotherapy. In this review, we discuss the current understanding of OVs, as well as the latest preclinical and clinical progress of combining OVs with cancer immunotherapies, including ICB, CAR-T therapy, bispecific T cell engagers (BiTEs), and cancer vaccines. Moreover, we consider future directions for applying OVs to personalized cancer immunotherapies, which could potentially launch a new generation of cancer treatments.
Collapse
Affiliation(s)
- Tao Shi
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xueru Song
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yue Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fangcen Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Krattinger R, Ramelyte E, Dornbierer J, Dummer R. Is single versus combination therapy problematic in the treatment of cutaneous melanoma? Expert Rev Clin Pharmacol 2020; 14:9-23. [PMID: 31364890 DOI: 10.1080/17512433.2019.1650641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: The development of immunotherapies and targeted therapies has changed the treatment approach in resectable, nonresectable, and metastatic melanoma. Because of their different pharmacological profiles, immunotherapies and/or targeted therapies have been studied in various combinations. Areas covered: We reviewed PubMed for most important clinical trials investigating efficacy and tolerability of combinatorial and single-agent approaches for the treatment of melanoma that were published up to June 2019. We discuss the most promising therapy approaches and highlight challenges of melanoma treatment. Expert opinion: Combinatorial approaches seem to be very promising in the treatment of resectable and advanced melanoma. Currently, dual immune checkpoint inhibition (ICI) with nivolumab and ipilimumab offers the best first-line treatment option for patients with BRAF-wt and -mutated, advanced melanoma. It is therapy of choice in younger patients with good ECOG performance status and poor prognostic features, whereas ICI monotherapy should be preferred in elderly patients with advanced melanoma. Benefit-risk ratio, patient's QoL and expectations, as well as treatment costs have to be considered in the choice of treatment. However, to elucidate mechanisms of resistance, biomarkers of response and to better define personalized strategies in the treatment of cutaneous melanoma, larger clinical trials comparing combined versus sequential therapies are necessary.
Collapse
Affiliation(s)
- Regina Krattinger
- Department of Dermatology, University Hospital Zurich , Zurich, Switzerland
| | - Egle Ramelyte
- Department of Dermatology, University Hospital Zurich , Zurich, Switzerland
| | - Joëlle Dornbierer
- Department of Dermatology, University Hospital Zurich , Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich , Zurich, Switzerland
| |
Collapse
|
28
|
Haitz K, Khosravi H, Lin JY, Menge T, Nambudiri VE. Review of talimogene laherparepvec: A first-in-class oncolytic viral treatment of advanced melanoma. J Am Acad Dermatol 2020; 83:189-196. [PMID: 32004650 DOI: 10.1016/j.jaad.2020.01.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/21/2020] [Accepted: 01/02/2020] [Indexed: 11/15/2022]
Abstract
Talimogene laherparepvec (T-VEC) is an oncolytic virus based on herpes simplex virus type 1 approved for intralesional treatment of advanced melanoma. In this article, we review the clinical literature on T-VEC for advanced melanoma and provide a practical approach to using T-VEC in the dermatologic surgery and oncology clinic. PubMed was used to conduct a systematic literature review of articles describing the structure, basic science, and clinical and therapeutic properties of T-VEC. The national clinical trials database was also searched for T-VEC clinical trials. Phase I to III clinical trials and early real-world experience have shown the efficacy of T-VEC in advanced melanoma as single or combination therapy with tolerable adverse effects. We conclude that with a standardized clinical approach and training, dermatologists can pave the way in using T-VEC and future oncolytic virus therapies in appropriate clinical scenarios.
Collapse
Affiliation(s)
- Karyn Haitz
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Department of Dermatology, University of Miami Miller School of Medicine, Miami, Florida
| | - Hasan Khosravi
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jennifer Y Lin
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tyler Menge
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Combined Dermatology Program, Boston, Massachusetts
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
29
|
Goins WF, Huang S, Hall B, Marzulli M, Cohen JB, Glorioso JC. Engineering HSV-1 Vectors for Gene Therapy. Methods Mol Biol 2020; 2060:73-90. [PMID: 31617173 DOI: 10.1007/978-1-4939-9814-2_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Virus vectors have been employed as gene transfer vehicles for various preclinical and clinical gene therapy applications and with the approval of Glybera (Alipogene tiparvovec) as the first gene therapy product as a standard medical treatment (Yla-Herttuala, Mol Ther 20:1831-1832, 2013), gene therapy has reached the status of being a part of standard patient care. Replication-competent herpes simplex virus (HSV) vectors that replicate specifically in actively dividing tumor cells have been used in Phase I-III human trials in patients with glioblastoma multiforme (GBM), a fatal form of brain cancer, and in malignant melanoma. In fact, Imlygic® (T-VEC, Talimogene laherparepvec, formerly known as OncoVex GM-CSF), displayed efficacy in a recent Phase-III trial when compared to standard GM-CSF treatment alone (Andtbacka et al., J Clin Oncol 31:sLBA9008, 2013), and has since become the first FDA-approved viral gene therapy product used in standard patient care (October 2015) (Pol et al., Oncoimmunology 5:e1115641, 2016). Moreover, increased efficacy was observed when Imlygic® was combined with checkpoint inhibitory antibodies as a frontline therapy for malignant melanoma (Ribas et al., Cell 170:1109-1119.e1110, 2017; Dummer et al., Cancer Immunol Immunother 66:683-695, 2017). In addition to the replication-competent oncolytic HSV vectors like T-VEC, replication-defective HSV vectors have been employed in Phase I-II human trials and have been explored as delivery vehicles for disorders such as pain, neuropathy and other neurodegenerative conditions. Research during the last decade on the development of HSV vectors has resulted in the engineering of recombinant vectors that are completely replication defective, nontoxic, and capable of long-term transgene expression in neurons. This chapter describes methods for the construction of recombinant genomic HSV vectors based on the HSV-1 replication-defective vector backbones, steps in their purification, and their small-scale production for use in cell culture experiments as well as preclinical animal studies.
Collapse
Affiliation(s)
- William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Shaohua Huang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bonnie Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Wedekind MF, Cripe TP. Oncolytic Viruses and Their Potential as a Therapeutic Opportunity in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:77-89. [PMID: 32767235 DOI: 10.1007/978-3-030-43085-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteosarcoma remains an unmet medical need. Oncolytic viruses are gaining traction as novel cancer therapeutics. These viruses are either naturally nonpathogenic or engineered to be safe by specific genetic deletions yet retain the ability to infect and kill human cancer cells and elicit anticancer immunity. Some versions are being specifically designed and tested in patients with osteosarcoma, though due to their generalized mechanism of action most are being tested in patients across a broad range of cancer types. The activity of these viruses is impacted not only by the susceptibility of tumor cells to infection but also by the tumor microenvironment (TME) and by tumor immunogenicity. Here we review the field of oncolytic viruses with a particular emphasis on highlighting any available data in preclinical osteosarcoma models or in patients with osteosarcoma. While in general the viruses have been shown safe to administer to patients by a variety of routes, their therapeutic efficacy to date has been limited. Given the low rate of adverse events and the likely absence of long-term side effects, the utility of oncolytic viruses will most likely be realized when used in combination with other agents.
Collapse
Affiliation(s)
| | - Timothy P Cripe
- Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
31
|
Łasińska I, Kolenda T, Teresiak A, Lamperska KM, Galus Ł, Mackiewicz J. Immunotherapy in Patients with Recurrent and Metastatic Squamous Cell Carcinoma of the Head and Neck. Anticancer Agents Med Chem 2019; 19:290-303. [PMID: 30198439 DOI: 10.2174/1871520618666180910092356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/09/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the most common malignant cancer occurring in the head and neck area, approximately 90% of the cases. Even in the cases of primary radical treatment (surgical, concomitant chemoradiotherapy or radiotherapy alone), subsequent local recurrence or distant metastases are often observed. In patients with recurrent disease who are unable to receive radical treatment, the results of palliative chemotherapy are not satisfactory. In this review, we summarized the standard treatment options, current development of new drugs and future perspectives in the treatment of patients with recurrent locally advanced and/or metastatic HNSCC. METHODS PubMed databases with words 'head and neck cancer treatment', 'immunotherapy in head and neck cancer treatment' were searched and yielded 186512 and 2249 papers respectively. We selected the most cited articles and reports presenting new immunotherapy agents and drug combinations in HNSCC. RESULTS Recently, two new agents been approved in the treatment of recurrent locally advanced and/or metastatic HNSCC. These are immune-checkpoint inhibitors targeting PD1 (nivolumab and pembrolizumab) which are the most active drugs in the second line treatment of advanced HNSCC. Still, the first line 'golden standard' is the chemotherapy regimen (cisplatin, 5-fluorouracyl) combined with cetuximab. Many phase 3 studies are currently ongoing, evaluating the efficacy of combinational treatment-anti-CTLA4 with anti-PD1 or anti-PDL1. Very encouraging results have been shown in early phase studies evaluating the combination of immunecheckpoint inhibitors with tumor microenvironment immunosuppressive inhibitors. CONCLUSION Despite the huge progress in the systemic treatment of patients with recurrent locally advanced and/or metastatic HNSCC, the disease at this stage remains incurable. Undoubtedly, further research in the field of biomarkers for effective immunotherapy is needed in order to select a group of patients whose will benefit from this therapy, as the treatment is still ineffective in most patients.
Collapse
Affiliation(s)
- Izabela Łasińska
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, University of Medical Sciences, Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Chair of Medical Biotechnology, University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | | - Łukasz Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, University of Medical Sciences, Poznan, Poland.,Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, University of Medical Sciences, Poznan, Poland.,Department of Biology and Environmental Studies, University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
32
|
Chandra A, Pius C, Nabeel M, Nair M, Vishwanatha JK, Ahmad S, Basha R. Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Med 2019; 8:7018-7031. [PMID: 31560828 PMCID: PMC6853829 DOI: 10.1002/cam4.2560] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
Of all the gynecologic tumors, ovarian cancer (OC) is known to be the deadliest. Advanced‐stages of OC are linked with high morbidity and low survival rates despite the immense amount of research in the field. Shortage of promising screening tools for early‐stage detection is one of the major challenges linked with the poor survival rate for patients with OC. In OC, therapeutic management is used with multidisciplinary approaches that includes debulking surgery, chemotherapy, and (rarely) radiotherapy. Recently, there is an increasing interest in using immunomodulation for treating OC. Relapse rates are high in this malignancy and averages around every 2‐years. Further treatments after the relapse are more intense, increasing the toxicity, resistance to chemotherapy drugs, and financial burden to patients with poor quality‐of‐life. A procedure that has been studied to help reduce the morbidity rate involves pre‐sensitizing cancer cells with standard therapy in order to produce optimal results with minimum dosage. Utilizing such an approach, platinum‐based agents are effective due to their increased response to platinum‐based chemotherapy in relapsed cases. These chemo‐drugs also help address the issue of drug resistance. After conducting an extensive search with available literature and the resources for clinical trials, information is precisely documented on current research, biomarkers, options for treatment and clinical trials. Several schemes for enhancing the therapeutic responses for OC are discussed systematically in this review with an attempt in summarizing the recent developments in this exciting field of translational/clinical research.
Collapse
Affiliation(s)
- Ashwin Chandra
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
| | - Cima Pius
- Miami Medical School, Miami, FL, USA
| | - Madiha Nabeel
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Maya Nair
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Jamboor K Vishwanatha
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | | | - Riyaz Basha
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA.,Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
33
|
Queirolo P, Boutros A, Tanda E, Spagnolo F, Quaglino P. Immune-checkpoint inhibitors for the treatment of metastatic melanoma: a model of cancer immunotherapy. Semin Cancer Biol 2019; 59:290-297. [PMID: 31430555 DOI: 10.1016/j.semcancer.2019.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
Melanoma has always been described as an immunogenic tumor. Despite that, until 2011 the standard of care in metastatic melanoma was chemotherapy, with low response rates and no clear impact on overall survival. Melanoma was the first cancer type to drive the use of immune-checkpoint inhibitors into clinical practice, which revolutionized the therapeutic paradigm not only in melanoma, but also in an increasing number of tumors. In this review, the preclinical bases and the main clinical studies that led to the approval of immune-checkpoint inhibitors in advanced melanoma will be described with insights on novel combinations of treatments and on prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Paola Queirolo
- IRCCS Ospedale Policlinico San Martino, Skin Cancer Unit, Genoa, Italy
| | - Andrea Boutros
- IRCCS Ospedale Policlinico San Martino, Skin Cancer Unit, Genoa, Italy
| | - Enrica Tanda
- IRCCS Ospedale Policlinico San Martino, Skin Cancer Unit, Genoa, Italy
| | | | - Pietro Quaglino
- Dermatologic Clinic, Department of Medical Sciences, University of Turin Medical School, Italy
| |
Collapse
|
34
|
Masoud SJ, Hu JB, Beasley GM, Stewart JH, Mosca PJ. Efficacy of Talimogene Laherparepvec (T-VEC) Therapy in Patients with In-Transit Melanoma Metastasis Decreases with Increasing Lesion Size. Ann Surg Oncol 2019; 26:4633-4641. [PMID: 31414290 DOI: 10.1245/s10434-019-07691-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Talimogene laherparepvec (T-VEC) is the first injectable oncolytic viral therapy approved for in-transit melanoma metastasis, with a reported overall response rate (ORR) of 25% and complete response rate (CRR) of 10%. To ascertain the role of patient selection on outcomes in routine practice, we evaluated the impact of patient, lesion, and treatment factors on clinical response. METHODS Medical records were extracted for patients with recurrent stage IIIB-IV melanoma completing T-VEC at Duke University Medical Center between 1 January 2016 and 1 September 2018. Kaplan-Meier analysis assessed time to response and survival, while logistic regression measured associations of clinicopathologic status, lesion burden, T-VEC dosing, and use of prior and concurrent therapy with ORR and CRR. RESULTS Of 27 patients, an objective response was observed in 11 (40.7%), including one patient with partial response (3.7%) and 10 with complete response (37.0%). Time to complete response and overall response was a median 22 weeks (95% confidence interval [CI] 2.0-41.9 weeks and 15.8-28.2 weeks, respectively), and median progression-free survival was 17 weeks (95% CI 0-36 weeks). Logistic regression demonstrated each millimeter increase in maximum lesion diameter predicted decreased ORR (odds ratio [OR] 0.866, 95% CI 0.753-0.995; p = 0.04). Stage IV disease (OR 0.04, 95% CI 0.00-0.74; p = 0.031) and programmed death-1 inhibitor treatment (OR 0.06, 95% CI 0.01-0.74; p = 0.028) also predicted reduced clinical response. CONCLUSIONS This study corroborates recent data suggesting response rates to T-VEC may be higher than reported in clinical trials, arising in part from patient selection. T-VEC lesion diameter was persistently associated with clinical response and is a readily assessed predictor of successful T-VEC therapy.
Collapse
Affiliation(s)
| | - Janice B Hu
- School of Medicine, Duke University, Durham, NC, USA
| | - Georgia M Beasley
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - John H Stewart
- Department of Surgery, University of Illinois College of Medicine, Chicago, IL, USA
| | - Paul J Mosca
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
35
|
Saha D, Martuza RL, Rabkin SD. Oncolytic herpes simplex virus immunovirotherapy in combination with immune checkpoint blockade to treat glioblastoma. Immunotherapy 2019; 10:779-786. [PMID: 30008259 DOI: 10.2217/imt-2018-0009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oncolytic viruses, such as oncolytic herpes simplex virus (oHSV), are a new class of cancer therapeutic, which selectively replicate and kill cancer cells, while inducing an inflammatory microenvironment, immunovirotherapy. Recently, an oHSV (talimogene laherparepvec) has been approved for the treatment of advanced melanoma. Glioblastoma (GBM) is an almost always lethal primary tumor in the brain that is highly immunosuppressive, and posited to contain GBM stem-like cells (GSCs). Immune checkpoint blockade has revolutionized therapy for some cancers, but not GBM. We have used a syngeneic GSC-derived orthotopic GBM model (005) to develop immunotherapeutic strategies. Curative therapy required oHSV expressing IL-12 in combination with two checkpoint inhibitors, anti-PD-1 and anti-CTLA-4. This response required CD4+ and CD8+ T cells, and macrophages in a complex interplay.
Collapse
Affiliation(s)
- Dipongkor Saha
- Department of Neurosurgery, Molecular Neurosurgery Laboratory & Brain Tumor Research Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Robert L Martuza
- Department of Neurosurgery, Molecular Neurosurgery Laboratory & Brain Tumor Research Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Samuel D Rabkin
- Department of Neurosurgery, Molecular Neurosurgery Laboratory & Brain Tumor Research Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
36
|
Perez MC, Zager JS, Amatruda T, Conry R, Ariyan C, Desai A, Kirkwood JM, Treichel S, Cohan D, Raskin L. Observational study of talimogene laherparepvec use for melanoma in clinical practice in the United States (COSMUS-1). Melanoma Manag 2019; 6:MMT19. [PMID: 31406563 PMCID: PMC6688558 DOI: 10.2217/mmt-2019-0012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Talimogene laherparepvec (T-VEC) is an intralesional treatment for unresectable cutaneous, subcutaneous and nodal melanoma. COSMUS-1 was conducted to examine how T-VEC is used in US clinical practice. Materials & methods: A chart review was conducted at seven centers, with 78 patients screened and 76 eligible. Results: Patients began treatment with T-VEC between October 2015 and December 2016. Median follow-up was 9.4 months. Twenty percent of patients (n = 15) completed T-VEC treatment with no remaining injectable lesions or pathologic complete response. Flu-like symptoms were the most commonly reported adverse events (n = 8; 10.5%), followed by lesion ulceration (n = 4; 5.3%). No herpetic lesions or infections were reported. Conclusion: T-VEC was well tolerated and showed clinical utility.
Collapse
Affiliation(s)
| | | | | | - Robert Conry
- The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Anupam Desai
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John M Kirkwood
- UPMC Hillman Center, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | | | | | | |
Collapse
|
37
|
Motofei IG. Malignant Melanoma: Autoimmunity and Supracellular Messaging as New Therapeutic Approaches. Curr Treat Options Oncol 2019; 20:45. [PMID: 31056729 DOI: 10.1007/s11864-019-0643-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT Melanoma is one of the most aggressive forms of cancer, with a high mortality rate in the absence of a safe and curable therapy. As a consequence, several procedures have been tested over time, with the most recent (immunological and targeted) therapies proving to be effective in some patients. Unfortunately, these new treatment options continue to generate debate related to the therapeutic strategy (intended to maximize the long-term results of patients with melanoma), not only about the monotherapy configuration but also regarding association/succession between distinct therapeutic procedures. As an example, targeted therapy with BRAF inhibitors proved to be effective in advanced BRAF-mutant melanoma. However, such treatments with BRAF inhibitors lead to therapy resistance in half of patients after approximately 6 months. Even if most benign nevi incorporate oncogenic BRAF mutations, they rarely become melanoma; therefore, targeted therapy with BRAF inhibitors should be viewed as an incomplete or perfectible therapy. Another example is related to the administration of immune checkpoint inhibitors/ICIs (anti-CTLA-4 antibodies, anti-PD-1/PD-L1 antibodies), which are successfully used in metastatic melanoma. It is currently believed that CTLA-4 and PD-1 blockade would favor a strong immune response against cancer cells. The main side effects of ICIs are represented by the development of immune-related adverse events, which in some cases can be lethal. These ICI side effects would thus be not only therapeutically counterproductive but also potentially dangerous. Surprisingly, a subset of immune-related adverse events (especially autoimmune toxicity) seems to be clearly correlated with better therapeutic results, perhaps due to an additional therapeutic effect (currently insufficiently studied/exploited). Contrary to the classical approach of cancer (considered until now an uncontrolled division of cells), a very recent and comprehensive theory describes malignancy as a supracellular disease. Cancerous disease would therefore be a disturbed supracellular process (embryogenesis, growth, development, regeneration, etc.), which imposes/coordinates an increased rhythm of cell division, angiogenesis, immunosuppression, etc. Melanoma is presented from such a supracellular perspective to be able to explain the beneficial role of autoimmunity in cancer (autoimmune abortion/rejection of the melanoma-embryo phenotype) and to create premises to better optimize the newly emerging therapeutic options. Finally, it is suggested that the supracellular evolution of malignancy implies complex supracellular messaging (between the cells and host organism), which would be interfaced especially by the extracellular matrix and noncoding RNA. Therefore, understanding and manipulating supracellular messaging in cancer could open new treatment perspectives in the form of digitized (supracellular) therapy.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery/Oncology, St. Pantelimon Hospital, Carol Davila University, Dionisie Lupu Street, no. 37, 020022, Bucharest, Romania.
| |
Collapse
|
38
|
Afzal MZ, Shirai K. Response to the Rechallenge With Talimogene Laherparepvec (T-VEC) After Ipilimumab/Nivolumab Treatment in Patient With Cutaneous Malignant Melanoma Who Initially Had a Progression on T-VEC With Pembrolizumab. J Immunother 2019; 42:136-141. [PMID: 30933044 DOI: 10.1097/cji.0000000000000265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Talimogene laherparepvec (T-VEC) is approved for unresected stage III-IV malignant melanoma. T-VEC has a direct cytotoxic effect and enhances the antitumor immunity of host cells. Immune checkpoints inhibitors also enhance the immunity of host cells by increasing the recruitment of antigen-presenting cells or activation and restoration of T-cell functions. Both type of therapies can potentiate the effect of the other therapy. We are reporting a case of T-VEC rechallenge who initially progressed on T-VEC with pembrolizumab but then responded to T-VEC rechallenge after intervening ipilimumab/nivolumab. An 83-year-old man developed a subungual lesion of the left thumb and found to have AJCC V. 7 stage IIIb melanoma. Few months later, he developed axillary lymphadenopathy and multiple subcutaneous nodules (AJCC V. 7 stage IIIc). The patient was started on intralesional rose Bengal and pembrolizumab. After 4 cycles of pembrolizumab with rose Bengal, a positron-emission tomography/computerized tomography scan showed the progression of disease. He was started on T-VEC intralesional injections with concurrent pembrolizumab, however, after 3 T-VEC injections and 2 more cycles of pembrolizumab, there was the progression of disease. Subsequently, ipilimumab/nivolumab was started and patient responded partially. Ipilimumab/nivolumab was held due to toxicity. Eight weeks from the last dose of ipilimumab/nivolumab, he experienced locoregional progression and was rechallenged with T-VEC monotherapy. The patient showed a significant response after second T-VEC injection and continued to show response 6 months since rechallenge. After, initial progression on T-VEC with pembrolizumab, intervening immune checkpoints inhibitors may favorably modify the antitumor immunity and potentiate antitumor effect of T-VEC rechallenge.
Collapse
Affiliation(s)
- Muhammad Z Afzal
- Department of Hospital Medicine, Dartmouth-Hitchcock Medical Center
| | - Keisuke Shirai
- Department of Hematology-Oncology, Norris Cotton Cancer Center, Lebanon, NH
| |
Collapse
|
39
|
Galloway SAE, Dolton G, Attaf M, Wall A, Fuller A, Rius C, Bianchi V, Theaker S, Lloyd A, Caillaud ME, Svane IM, Donia M, Cole DK, Szomolay B, Rizkallah P, Sewell AK. Peptide Super-Agonist Enhances T-Cell Responses to Melanoma. Front Immunol 2019; 10:319. [PMID: 30930889 PMCID: PMC6425991 DOI: 10.3389/fimmu.2019.00319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
Recent immunotherapeutic approaches using adoptive cell therapy, or checkpoint blockade, have demonstrated the powerful anti-cancer potential of CD8 cytotoxic T-lymphocytes (CTL). While these approaches have shown great promise, they are only effective in some patients with some cancers. The potential power, and relative ease, of therapeutic vaccination against tumour associated antigens (TAA) present in different cancers has been a long sought-after approach for harnessing the discriminating sensitivity of CTL to treat cancer and has seen recent renewed interest following cancer vaccination successes using unique tumour neoantigens. Unfortunately, results with TAA-targeted “universal” cancer vaccines (UCV) have been largely disappointing. Infectious disease models have demonstrated that T-cell clonotypes that recognise the same antigen should not be viewed as being equally effective. Extrapolation of this notion to UCV would suggest that the quality of response in terms of the T-cell receptor (TCR) clonotypes induced might be more important than the quantity of the response. Unfortunately, there is little opportunity to assess the effectiveness of individual T-cell clonotypes in vivo. Here, we identified effective, persistent T-cell clonotypes in an HLA A2+ patient following successful tumour infiltrating lymphocyte (TIL) therapy. One such T-cell clone was used to generate super-agonist altered peptide ligands (APLs). Further refinement produced an APL that was capable of inducing T-cells in greater magnitude, and with improved effectiveness, from the blood of all 14 healthy donors tested. Importantly, this APL also induced T-cells from melanoma patient blood that exhibited superior recognition of the patient's own tumour compared to those induced by the natural antigen sequence. These results suggest that use of APL to skew the clonotypic quality of T-cells induced by cancer vaccination could provide a promising avenue in the hunt for the UCV “magic bullet.”
Collapse
Affiliation(s)
- Sarah A E Galloway
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Garry Dolton
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Meriem Attaf
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Aaron Wall
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Anna Fuller
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Cristina Rius
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Valentina Bianchi
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sarah Theaker
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Angharad Lloyd
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Immunocore LTD, Oxford, United Kingdom
| | - Marine E Caillaud
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Inge Marie Svane
- Department of Hematology and Oncology, Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Marco Donia
- Department of Hematology and Oncology, Center for Cancer Immune Therapy, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - David K Cole
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Immunocore LTD, Oxford, United Kingdom
| | - Barbara Szomolay
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Pierre Rizkallah
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew K Sewell
- T-Cell Modulation Group, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
40
|
Successful treatment with intralesional talimogene laherparepvec in two patients with immune checkpoint inhibitor-refractory, advanced-stage melanoma. Melanoma Res 2019; 29:85-88. [DOI: 10.1097/cmr.0000000000000501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Racz JM, Block MS, Baum CL, Jakub JW. Management of local or regional non‐nodal disease. J Surg Oncol 2018; 119:187-199. [DOI: 10.1002/jso.25330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
|
42
|
Long TH, Shinohara MM, Argenyi ZB, Thompson JA, Gardner JM. Panniculitis in a patient with pathologic complete response to talimogene laherparepvec treatment for recurrent, in-transit melanoma. J Cutan Pathol 2018; 45:864-868. [PMID: 30054925 DOI: 10.1111/cup.13332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Talimogene laherparepvec (T-VEC) is a novel intralesional oncolytic genetically modified herpes simplex virus type 1 vector for the treatment of unresectable cutaneous, subcutaneous, and nodal melanoma. Although immunological therapies such as T-VEC offer therapeutic promise, they carry a risk of immune-related adverse events (irAEs), the full spectrum of which is incompletely understood. We report a 63-year-old previously healthy man with cutaneous melanoma of the right ankle and progressive right lower extremity in-transit metastases despite systemic therapy with immunomodulatory and molecularly targeted treatments. T-VEC treatment resulted in a complete pathologic response on scouting biopsies. Biopsy of the right lateral calf showed lobular and septal panniculitis with lymphoplasmacytic infiltrate and lipophages. Gomori methenamine silver (GMS) stain and acid-fast bacilli (AFB) stains were negative, and no polarizable foreign material was noted. T-VEC was discontinued due to complete pathologic response and, in part, concern for development of irAEs including this panniculitis and an early concomitant autoimmune colitis. This case highlights a previously unreported irAE with this novel treatment for advanced cases of melanoma.
Collapse
Affiliation(s)
- Thomas H Long
- Department of Pathology, University of Washington, Seattle, WA
| | - Michi M Shinohara
- Department of Pathology, University of Washington, Seattle, WA
- Division of Dermatology, Department of Medicine, University of Washington School of Medicine, University of Washington, Seattle, WA
| | - Zsolt B Argenyi
- Department of Pathology, University of Washington, Seattle, WA
- Division of Dermatology, Department of Medicine, University of Washington School of Medicine, University of Washington, Seattle, WA
| | - John A Thompson
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Jennifer M Gardner
- Division of Dermatology, Department of Medicine, University of Washington School of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
43
|
Gonzalez-Cao M, Karachaliou N, Santarpia M, Viteri S, Meyerhans A, Rosell R. Activation of viral defense signaling in cancer. Ther Adv Med Oncol 2018; 10:1758835918793105. [PMID: 30181782 PMCID: PMC6116077 DOI: 10.1177/1758835918793105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/17/2018] [Indexed: 01/01/2023] Open
Abstract
A coordinated action of innate and adaptive immune responses is required to efficiently combat a microbial infection. It has now become clear that cancer therapies also largely benefit when both arms of the immune response are engaged. In this review, we will briefly describe the current knowledge of innate immunity and how this can be utilized to prime tumors for a better response to immune checkpoint inhibitors. Comments on compounds in development and ongoing clinical trials will be provided.
Collapse
Affiliation(s)
- Maria Gonzalez-Cao
- Rosell Oncology Institute (IOR), Dexeus
University Hospital, Quironsalud Group, C/ Sabino Arana, 5, Barcelona 08028,
Spain
| | - Niki Karachaliou
- Rosell Oncology Institute (IOR), Sagrat Cor
University Hospital, Quironsalud Group, Barcelona, Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human
Pathology ‘G. Barresi’, University of Messina, Messina, Italy
| | - Santiago Viteri
- Rosell Oncology Institute (IOR), Dexeus
University Hospital, Quironsalud Group, Barcelona, Spain Rosell Oncology
Institute (IOR), Teknon Medical Center, Quironsalud Group, Barcelona,
Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of
Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra,
Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA),
Barcelona, Spain
| | - Rafael Rosell
- Rosell Oncology Institute (IOR), Dexeus
University Hospital, Quironsalud Group, Barcelona, Spain Rosell Oncology
Institute (IOR), Sagrat Cor University Hospital, Quironsalud Group,
Barcelona, Spain Catalan Institute of Oncology, Germans Trias I Pujol
University Hospital, Badalona, Spain
| |
Collapse
|
44
|
McCloskey CW, Rodriguez GM, Galpin KJC, Vanderhyden BC. Ovarian Cancer Immunotherapy: Preclinical Models and Emerging Therapeutics. Cancers (Basel) 2018; 10:cancers10080244. [PMID: 30049987 PMCID: PMC6115831 DOI: 10.3390/cancers10080244] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has emerged as one of the most promising approaches for ovarian cancer treatment. The tumor microenvironment (TME) is a key factor to consider when stimulating antitumoral responses as it consists largely of tumor promoting immunosuppressive cell types that attenuate antitumor immunity. As our understanding of the determinants of the TME composition grows, we have begun to appreciate the need to address both inter- and intra-tumor heterogeneity, mutation/neoantigen burden, immune landscape, and stromal cell contributions. The majority of immunotherapy studies in ovarian cancer have been performed using the well-characterized murine ID8 ovarian carcinoma model. Numerous other animal models of ovarian cancer exist, but have been underutilized because of their narrow initial characterizations in this context. Here, we describe animal models that may be untapped resources for the immunotherapy field because of their shared genomic alterations and histopathology with human ovarian cancer. We also shed light on the strengths and limitations of these models, and the knowledge gaps that need to be addressed to enhance the utility of preclinical models for testing novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
45
|
Jia H, Ren W, Feng Y, Wei T, Guo M, Guo J, Zhao J, Song X, Wang M, Zhao T, Wang H, Feng Z, Tian Z. The enhanced antitumour response of pimozide combined with the IDO inhibitor L‑MT in melanoma. Int J Oncol 2018; 53:949-960. [PMID: 30015838 PMCID: PMC6065445 DOI: 10.3892/ijo.2018.4473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022] Open
Abstract
Melanoma is one of the most fatal and therapy-resistant types of cancer; therefore, identifying novel therapeutic candidates to improve patient survival is an ongoing effort. Previous studies have revealed that pimozide is not sufficient to treat melanoma; therefore, enhancing the treatment is necessary. Indoleamine 2, 3‑dioxygenase (IDO) is an immunosuppressive, intracellular rate-limiting enzyme, which contributes to immune tolerance in various tumours, including melanoma, and inhibition of IDO may be considered a novel therapeutic strategy when combined with pimozide. The present study aimed to assess the antitumour activities of pimozide in vitro, and to investigate the effects of pimozide combined with L‑methyl-tryptophan (L‑MT) in vivo. For in vitro analyses, the B16 melanoma cell line was used. Cell cytotoxicity assay, cell viability assay, wound‑healing assay and western blotting were conducted to analyse the effects of pimozide on B16 cells. Furthermore, B16 cell-bearing mice were established as the animal model. Haematoxylin and eosin staining, immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end-labelling staining, western blotting and flow cytometry were performed to determine the effects of monotherapy and pimozide and L‑MT cotreatment on melanoma. The results demonstrated that pimozide exhibited potent antitumour activity via the regulation of proliferation, apoptosis and migration. Furthermore, the antitumour effects of pimozide were enhanced when combined with L‑MT, not only via regulation of proliferation, apoptosis and migration, but also via immune modulation. Notably, pimozide may regulate tumour immunity through inhibiting the activities of signal transducer and activator of transcription (Stat)3 and Stat5. In conclusion, the present study proposed the use of pimozide in combination with the IDO inhibitor, L‑MT, as a potential novel therapeutic strategy for the treatment of melanoma.
Collapse
Affiliation(s)
- Huijie Jia
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Wenjing Ren
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Yuchen Feng
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Tian Wei
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Mengmeng Guo
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jing Guo
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jingjing Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Xiangfeng Song
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Mingyong Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Tiesuo Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Hui Wang
- Research Center for Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Zhiwei Feng
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Zhongwei Tian
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|
46
|
Sun L, Funchain P, Song JM, Rayman P, Tannenbaum C, Ko J, Mcnamara M, Marcela Diaz-Montero C, Gastman B. Talimogene Laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III-IV melanoma: a case series. J Immunother Cancer 2018; 6:36. [PMID: 29764498 PMCID: PMC5954455 DOI: 10.1186/s40425-018-0337-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022] Open
Abstract
Background Talimogene Laherparepvec (T-VEC) is an oncolytic virus approved as an intratumoral therapy for treating unresectable stage IIIB-IV metastatic melanoma. The mechanisms of action for T-VEC and checkpoint inhibitor are highly complementary. Recent studies have shown that combining checkpoint inhibitor therapy with T-VEC injection can lead to improved response rates for stage IIIB-IV melanoma patients. Methods We reviewed 10 consecutive cases of stage IIIC to stage IVM1b melanoma patients that received T-VEC plus checkpoint inhibitor(s) therapy (pembrolizumab, ipilimumab/nivolumab, or nivolumab) treated between June 2016 and August 2017 at the Cleveland Clinic with a median follow-up of 7 months (range: 4 to 13 months). Responses of injected (on-target) and uninjected (off-target) lesions were evaluated according to RECIST 2.0. Results The overall response rate for on-target lesions was 90%, with 6 patients experiencing a complete response in injected lesions. Two patients had off-target lesions, which were completely resolved after treatment. Blood samples were tested for 3 complete responders and 2 partial responders. CD4:CD8 ratio and frequencies of circulating PD1+ CD4 and CD8 T cells were elevated in complete responders but not partial responders. One patient died due to causes unrelated to melanoma and one patient died of progression of the disease. Conclusion Our data suggest that combining checkpoint inhibitor(s) with T-VEC injection may provide a synergistic efficacy for patients with unresectable melanoma. We observed a better overall response rate and complete response rate compared to published studies on similar therapeutic regimens.
Collapse
Affiliation(s)
- Lillian Sun
- 0000 0001 2164 3847grid.67105.35Cleveland Clinic Lerner College of MedicineCase Western Reserve University 44106 Cleveland OH USA
| | - Pauline Funchain
- 0000 0001 0675 4725grid.239578.2Taussig Cancer InstituteCleveland Clinic 44195 Cleveland OH USA
| | - Jung Min Song
- 0000 0001 0675 4725grid.239578.2Taussig Cancer InstituteCleveland Clinic 44195 Cleveland OH USA
| | - Patricia Rayman
- 0000 0001 0675 4725grid.239578.2Department of ImmunologyCleveland Clinic Lerner Research Institute 44195 Cleveland OH USA
| | - Charles Tannenbaum
- 0000 0001 0675 4725grid.239578.2Department of ImmunologyCleveland Clinic Lerner Research Institute 44195 Cleveland OH USA
| | - Jennifer Ko
- 0000 0001 0675 4725grid.239578.2Department of ImmunologyCleveland Clinic Lerner Research Institute 44195 Cleveland OH USA .,0000 0001 0675 4725grid.239578.2Departments of Pathology and DermatologyCleveland Clinic Foundation 44195 Cleveland OH USA
| | - Michael Mcnamara
- 0000 0001 0675 4725grid.239578.2Taussig Cancer InstituteCleveland Clinic 44195 Cleveland OH USA
| | - C Marcela Diaz-Montero
- 0000 0001 0675 4725grid.239578.2Department of ImmunologyCleveland Clinic Lerner Research Institute 44195 Cleveland OH USA
| | - Brian Gastman
- 0000 0001 2164 3847grid.67105.35Cleveland Clinic Lerner College of MedicineCase Western Reserve University 44106 Cleveland OH USA .,0000 0001 0675 4725grid.239578.2Taussig Cancer InstituteCleveland Clinic 44195 Cleveland OH USA.,0000 0001 0675 4725grid.239578.2Department of ImmunologyCleveland Clinic Lerner Research Institute 44195 Cleveland OH USA.,0000 0001 0675 4725grid.239578.2Department of Plastic SurgeryCleveland Clinic 44195 Cleveland OH USA.,0000 0001 0675 4725grid.239578.2NE4-303, Cleveland Clinic Lerner Research Institute 9500 Euclid Ave 44195 Cleveland OH USA
| |
Collapse
|
47
|
Regional therapies for locoregionally advanced and unresectable melanoma. Clin Exp Metastasis 2018; 35:495-502. [DOI: 10.1007/s10585-018-9890-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/16/2018] [Indexed: 02/04/2023]
|
48
|
Marconcini R, Spagnolo F, Stucci LS, Ribero S, Marra E, Rosa FD, Picasso V, Di Guardo L, Cimminiello C, Cavalieri S, Orgiano L, Tanda E, Spano L, Falcone A, Queirolo P, for the Italian Melanoma Intergroup (IMI). Current status and perspectives in immunotherapy for metastatic melanoma. Oncotarget 2018; 9:12452-12470. [PMID: 29552325 PMCID: PMC5844761 DOI: 10.18632/oncotarget.23746] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022] Open
Abstract
Metastatic melanoma was the first malignancy in which immune checkpoint inhibitors demonstrated their successful efficacy. Currently, the knowledge on the interaction between the immune system and malignant disease is steadily increasing and new drugs and therapeutic strategies are overlooking in the clinical scenario. To provide a comprehensive overview of immune modulating drugs currently available in the treatment of melanoma as well as to discuss of possible future strategies in the metastatic melanoma setting, the present review aims at analyzing controversial aspects about the optimal immunomodulating treatment sequences, the search for biomarkers of efficacy of immunocheckpoint inhibitors, and innovative combinations of drugs currently under investigation.
Collapse
Affiliation(s)
- Riccardo Marconcini
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria
Pisana, Department of Translational Research and New Technologies in Medicine and
Surgery, University of Pisa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Luigia Stefania Stucci
- Medical Oncology Unit, Department of Biomedical Sciences and
Clinical Oncology, University of Bari, Bari, Italy
| | - Simone Ribero
- Dermatologic Clinic, Department of Medical Sciences,
University of Turin, Turin, Italy
| | - Elena Marra
- Dermatologic Clinic, Department of Medical Sciences,
University of Turin, Turin, Italy
| | - Francesco De Rosa
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei
Tumori, IRST IRCCS, Meldola, Italy
| | - Virginia Picasso
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | - Laura Orgiano
- AOU Cagliari, Department of Medical Oncology, University of
Cagliari, Cagliari, Italy
| | - Enrica Tanda
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Laura Spano
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria
Pisana, Department of Translational Research and New Technologies in Medicine and
Surgery, University of Pisa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - for the Italian Melanoma Intergroup (IMI)
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria
Pisana, Department of Translational Research and New Technologies in Medicine and
Surgery, University of Pisa, Italy
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
- Medical Oncology Unit, Department of Biomedical Sciences and
Clinical Oncology, University of Bari, Bari, Italy
- Dermatologic Clinic, Department of Medical Sciences,
University of Turin, Turin, Italy
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei
Tumori, IRST IRCCS, Meldola, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
- AOU Cagliari, Department of Medical Oncology, University of
Cagliari, Cagliari, Italy
| |
Collapse
|
49
|
Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model. PLoS One 2018; 13:e0192449. [PMID: 29420595 PMCID: PMC5805294 DOI: 10.1371/journal.pone.0192449] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/23/2018] [Indexed: 12/25/2022] Open
Abstract
Oncolytic virus (OV) is a replication competent virus that selectively invades cancer cells; as these cells die under the viral burden, the released virus particles proceed to infect other cancer cells. Oncolytic viruses are designed to also be able to stimulate the anticancer immune response. Thus, one may represent an OV by two parameters: its replication potential and its immunogenicity. In this paper we consider a combination therapy with OV and a checkpoint inhibitor, anti-PD-1. We evaluate the efficacy of the combination therapy in terms of the tumor volume at some later time, for example, 6 months from initial treatment. Since T cells kill not only virus-free cancer cells but also virus-infected cancer cells, the following question arises: Does increasing the amount of the checkpoint inhibitor always improve the efficacy? We address this question, by a mathematical model consisting of a system of partial differential equations. We use the model to construct, by simulations, an efficacy map in terms of the doses of the checkpoint inhibitor and the OV injection. We show that there are regions in the map where an increase in the checkpoint inhibitor actually decreases the efficacy of the treatment. We also construct efficacy maps with checkpoint inhibitor vs. the replication potential of the virus that show the same antagonism, namely, an increase in the checkpoint inhibitor may actually decrease the efficacy. These results have implications for clinical trials.
Collapse
|
50
|
Baues C, Schlaak M, von Bergwelt-Baildon M, Theurich S. Should we be combining local tumor therapies with immunotherapies as standard? Future Oncol 2017; 13:1573-1575. [DOI: 10.2217/fon-2017-0150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Christian Baues
- Radio-Immune-Oncology (RIO) Consortium, University Hospital Cologne, Germany
- Department of Radio-Oncology & CyberKnife Center University Hospital Cologne, Cologne, Germany
| | - Max Schlaak
- Radio-Immune-Oncology (RIO) Consortium, University Hospital Cologne, Germany
- Department of Dermatology & Venereology, Skin Cancer Center, University Hospital Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Radio-Immune-Oncology (RIO) Consortium, University Hospital Cologne, Germany
- Department I for Internal Medicine, Center for Integrated Oncology (CIO) Köln Bonn, University Hospital Cologne, Cologne Germany
- Cologne Interventional Immunology (CII), Department I for Internal Medicine, University Hospital Cologne, Germany
| | - Sebastian Theurich
- Radio-Immune-Oncology (RIO) Consortium, University Hospital Cologne, Germany
- Department I for Internal Medicine, Center for Integrated Oncology (CIO) Köln Bonn, University Hospital Cologne, Cologne Germany
- Cancer & Immunometabolism Research Group, Department I for Internal Medicine, University Hospital Cologne, Germany
| |
Collapse
|