1
|
Marrone L, D'Agostino M, Cesaro E, di Giacomo V, Urzini S, Romano MF, Romano S. Alternative splicing of FKBP5 gene exerts control over T lymphocyte expansion. J Cell Biochem 2024; 125:e30364. [PMID: 36645880 DOI: 10.1002/jcb.30364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023]
Abstract
FKBP51 is constitutively expressed by immune cells. As other FKBP family members, FKBP51 acts as a coreceptor for the natural products FK506 and rapamycin, which exhibit immunosuppressive effects. However, little is known about the intrinsic role of this large FKBP in the primary function of lymphocytes, that is, the adaptive immune response against foreign antigens, for example, pathogens. This paper aimed to investigate whether FKBP51 expression was modulated during lymphocyte activation. Moreover, as we recently identified a splicing isoform of FKBP51, namely FKBP51s, we also measured this splice protein, along with the canonical one, at different times of a peripheral blood mononuclear cell culture stimulated via T cell receptor. Our results show that the two FKBP51 isoforms were alternatively induced during the proliferative burst. Canonical FKBP51 increased in the time window between 48 and 96 h and its expression levels correlated with cyclin D levels. FKBP51s transiently increased earlier, at 24-36 h to reappearing later, at 120 h, when cyclin D expression returned at resting levels and proliferation ceased. Interestingly, within these two specific timeframes, FKBP51s accumulated in the nucleus. Here FKBP51s colocalized with the Foxp3 transcription factor at 36 h. Regulatory T cell (Treg) counts significantly decreased when FKBP51s was downmodulated. The coculture suppression assay suggested that FKBP51s supports the suppressive capability of Tregs. At 120 h, chromatin immunoprecipitation experiments found FKBP51s linked to CCND1 gene, suggesting a possible effect on gene transcription regulation, as previously demonstrated in melanoma. In conclusion, our study shows that FKBP5 isoforms are upregulated during lymphocyte activation, albeit on different timeframes. The activation of canonical FKBP51 coincides with proliferation hallmarks; FKBP5 splicing occurs early to sustain Treg development and late when proliferation ceases.
Collapse
Affiliation(s)
- Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Urzini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Qiu B, Zhong Z, Dou L, Xu Y, Zou Y, Weldon K, Wang J, Zhang L, Liu M, Williams KE, Spence JP, Bell RL, Lai Z, Yong W, Liang T. Knocking out Fkbp51 decreases CCl 4-induced liver injury through enhancement of mitochondrial function and Parkin activity. Cell Biosci 2024; 14:1. [PMID: 38167156 PMCID: PMC10763032 DOI: 10.1186/s13578-023-01184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND AIMS Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CI, 06520, USA
| | - Zhaohui Zhong
- General Surgery Department, Peking University People's Hospital, Beijing, 100032, China
| | - Longyu Dou
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ming Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - John Paul Spence
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Weidong Yong
- Department of Surgery, Indiana University, School of Medicine, Indianapolis, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tiebing Liang
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA.
| |
Collapse
|
3
|
Luo X, Du G, Chen B, Yan G, Zhu L, Cui P, Dai H, Qi Z, Lan T. Novel immunosuppressive effect of FK506 by upregulation of PD-L1 via FKBP51 in heart transplantation. Scand J Immunol 2022; 96:e13203. [PMID: 35801698 DOI: 10.1111/sji.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
The calcineurin inhibitor-FK506-is a first-line immunosuppressant that regulates T-cell secretion of IL-2 and other cytokines. However, the mechanism of its protective effect on target cells and its role on tumor recurrence and interaction with anti-tumor immune checkpoint inhibitors, such as PD-L1 blocking, are still unclear. Here, in a murine heart transplantation model, we observed the upregulation of programmed death-ligand 1 (PD-L1) expression by FK506 in both dendritic cells (DCs) and allografts. Blocking PD-L1 during FK506 treatment increased IFN-γ and TNF-α expression, enhanced CD4+ and CD8+ T-cell proliferation, and suppressed Treg differentiation. Moreover, PD-L1 decreased T-cell infiltration and induced T cell apoptosis in both the spleen and graft. PD-L1 was not only required in FK506-mediated immunosuppression but also upregulated by FK506. Treatment with SAFit2, a FKBP51 selective inhibitor, reduced the expression of PD-L1 on DCs and the grafts and interfered with the immunosuppressive effect of FK506, suggesting that the mechanism depends on FK506-binding protein (FKBP) 51 expression. Overall, our results add new insights into the role of FK506, not only on T-cell cytokine secretion but also on co-inhibitory molecular regulation and target cell immune privilege.
Collapse
Affiliation(s)
- Xuewei Luo
- Medical College of Guangxi University, Nanning, China.,Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Guicheng Du
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Bingye Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, China
| | - Luyao Zhu
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Pengcheng Cui
- Medical College of Guangxi University, Nanning, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Zhongquan Qi
- Medical College of Guangxi University, Nanning, China.,Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Tianshu Lan
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China.,Institute of Respiratory diseases,Xiamen medical college
| |
Collapse
|
4
|
Comprehensive Analysis of Common Different Gene Expression Signatures in the Neutrophils of Sepsis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6655425. [PMID: 33959663 PMCID: PMC8077712 DOI: 10.1155/2021/6655425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022]
Abstract
The central component of sepsis pathogenesis is inflammatory disorder, which is related to dysfunction of the immune system. However, the specific molecular mechanism of sepsis has not yet been fully elucidated. The aim of our study was to identify genes that are significantly changed during sepsis development, for the identification of potential pathogenic factors. Differentially expressed genes (DEGs) were identified in 88 control and 214 septic patient samples. Gene ontology (GO) and pathway enrichment analyses were performed using David. A protein-protein interaction (PPI) network was established using STRING and Cytoscape. Further validation was performed using real-time polymerase chain reaction (RT-PCR). We identified 37 common DEGs. GO and pathway enrichment indicated that enzymes and transcription factors accounted for a large proportion of DEGs; immune system and inflammation signaling demonstrated the most significant changes. Furthermore, eight hub genes were identified via PPI analysis. Interestingly, four of the top five upregulated and all downregulated DEGs were involved in immune and inflammation signaling. In addition, the most intensive hub gene AKT1 and the top DEGs in human clinical samples were validated using RT-PCR. This study explored the possible molecular mechanisms underpinning the inflammatory, immune, and PI3K/AKT pathways related to sepsis development.
Collapse
|
5
|
Giordano C, Sabatino G, Romano S, Della Pepa GM, Tufano M, D’Alessandris QG, Cottonaro S, Gessi M, Balducci M, Romano MF, Olivi A, Gaudino S, Colosimo C. Combining Magnetic Resonance Imaging with Systemic Monocyte Evaluation for the Implementation of GBM Management. Int J Mol Sci 2021; 22:ijms22073797. [PMID: 33917598 PMCID: PMC8038816 DOI: 10.3390/ijms22073797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the gold standard for glioblastoma (GBM) patient evaluation. Additional non-invasive diagnostic modalities are needed. GBM is heavily infiltrated with tumor-associated macrophages (TAMs) that can be found in peripheral blood. FKBP51s supports alternative-macrophage polarization. Herein, we assessed FKBP51s expression in circulating monocytes from 14 GBM patients. The M2 monocyte phenotype was investigated by qPCR and flow cytometry using antibodies against PD-L1, CD163, FKBP51s, and CD14. MRI assessed morphologic features of the tumors that were aligned to flow cytometry data. PD-L1 expression on circulating monocytes correlated with MRI tumor necrosis score. A wider expansion in circulating CD163/monocytes was measured. These monocytes resulted in a dramatic decrease in patients with an MRI diagnosis of complete but not partial surgical removal of the tumor. Importantly, in patients with residual tumor, most of the peripheral monocytes that in the preoperative stage were CD163/FKBP51s- had turned into CD163/FKBP51s+. After Stupp therapy, CD163/FKBP51s+ monocytes were almost absent in a case of pseudoprogression, while two patients with stable or true disease progression showed sustained levels in such circulating monocytes. Our work provides preliminary but meaningful and novel results that deserve to be confirmed in a larger patient cohort, in support of potential usefulness in GBM monitoring of CD163/FKBP51s/CD14 immunophenotype in adjunct to MRI.
Collapse
Affiliation(s)
- Carolina Giordano
- UOC Radiodiagnostica e Neuroradiologia, Istituto di Radiologia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (C.G.); (S.C.); (S.G.); (C.C.)
| | - Giovanni Sabatino
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (G.S.); (G.M.D.P.); (Q.G.D.); (A.O.)
- UOC of Neurochirurgia “Ospedale Mater Olbia”, 07026 Olbia, Italy
| | - Simona Romano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy; (S.R.); (M.T.)
| | - Giuseppe Maria Della Pepa
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (G.S.); (G.M.D.P.); (Q.G.D.); (A.O.)
| | - Martina Tufano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy; (S.R.); (M.T.)
| | - Quintino Giorgio D’Alessandris
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (G.S.); (G.M.D.P.); (Q.G.D.); (A.O.)
| | - Simone Cottonaro
- UOC Radiodiagnostica e Neuroradiologia, Istituto di Radiologia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (C.G.); (S.C.); (S.G.); (C.C.)
| | - Marco Gessi
- UOS di Neuropatologia, UOC Anatomia Patologica, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy;
| | - Mario Balducci
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy;
| | - Maria Fiammetta Romano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy; (S.R.); (M.T.)
- Correspondence: ; Tel.: +39-081-7463200; Fax: +39-081-7463205
| | - Alessandro Olivi
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (G.S.); (G.M.D.P.); (Q.G.D.); (A.O.)
| | - Simona Gaudino
- UOC Radiodiagnostica e Neuroradiologia, Istituto di Radiologia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (C.G.); (S.C.); (S.G.); (C.C.)
| | - Cesare Colosimo
- UOC Radiodiagnostica e Neuroradiologia, Istituto di Radiologia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (C.G.); (S.C.); (S.G.); (C.C.)
| |
Collapse
|
6
|
Cugliari G, Catalano C, Guarrera S, Allione A, Casalone E, Russo A, Grosso F, Ferrante D, Viberti C, Aspesi A, Sculco M, Pirazzini C, Libener R, Mirabelli D, Magnani C, Dianzani I, Matullo G. DNA Methylation of FKBP5 as Predictor of Overall Survival in Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:cancers12113470. [PMID: 33233407 PMCID: PMC7700347 DOI: 10.3390/cancers12113470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor with median survival of 12 months and limited effective treatments. The scope of this study was to study the relationship between blood DNA methylation (DNAm) and overall survival (OS) aiming at a noninvasive prognostic test. We investigated a cohort of 159 incident asbestos exposed MPM cases enrolled in an Italian area with high incidence of mesothelioma. Considering 12 months as a cut-off for OS, epigenome-wide association study (EWAS) revealed statistically significant (p value = 7.7 × 10-9) OS-related differential methylation of a single-CpG (cg03546163), located in the 5'UTR region of the FKBP5 gene. This is an independent marker of prognosis in MPM patients with a better performance than traditional inflammation-based scores such as lymphocyte-to-monocyte ratio (LMR). Cases with DNAm < 0.45 at the cg03546163 had significantly poor survival compared with those showing DNAm ≥ 0.45 (mean: 243 versus 534 days; p value< 0.001). Epigenetic changes at the FKBP5 gene were robustly associated with OS in MPM cases. Our results showed that blood DNA methylation levels could be promising and dynamic prognostic biomarkers in MPM.
Collapse
Affiliation(s)
- Giovanni Cugliari
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
- Correspondence: (G.C.); (G.M.)
| | - Chiara Catalano
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, IIGM, 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Alessandra Allione
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
| | - Elisabetta Casalone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
| | - Alessia Russo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
| | - Federica Grosso
- Division of Medical Oncology, SS. Antonio e Biagio General Hospital, 15121 Alessandria, Italy;
| | - Daniela Ferrante
- Unit of Medical Statistics, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (D.F.); (C.M.)
- Cancer Epidemiology Unit, CPO-Piemonte, 28100 Novara, Italy
| | - Clara Viberti
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
| | - Anna Aspesi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.S.); (I.D.)
| | - Marika Sculco
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.S.); (I.D.)
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Roberta Libener
- Pathology Unit, SS. Antonio e Biagio General Hospital, 15122 Alessandria, Italy;
| | - Dario Mirabelli
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
| | - Corrado Magnani
- Unit of Medical Statistics, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (D.F.); (C.M.)
- Cancer Epidemiology Unit, CPO-Piemonte, 28100 Novara, Italy
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
| | - Irma Dianzani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.S.); (I.D.)
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (A.A.); (E.C.); (A.R.); (C.V.)
- Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, AOU Città della Salute e della Scienza, 10126 Turin, Italy
- Correspondence: (G.C.); (G.M.)
| |
Collapse
|
7
|
D'Arrigo P, Tufano M, Rea A, Vigorito V, Novizio N, Russo S, Romano MF, Romano S. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Curr Med Chem 2020; 27:2402-2448. [PMID: 30398102 DOI: 10.2174/0929867325666181106114421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called "inhibitory immune checkpoints" is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.
Collapse
Affiliation(s)
- Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Rea
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenza Vigorito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Novizio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Alternative macrophage polarisation associated with resistance to anti-PD1 blockade is possibly supported by the splicing of FKBP51 immunophilin in melanoma patients. Br J Cancer 2020; 122:1782-1790. [PMID: 32317723 PMCID: PMC7283486 DOI: 10.1038/s41416-020-0840-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/25/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background FKBP51 immunophilin is abundantly expressed by immune cells. Co-inhibitory immune receptor signalling generates the splicing isoform FKBP51s. Tregs stained by FKBP51s are increased in melanoma patients and their counts are associated with anti-CTLA-4 response. An expansion of FKBP51s+PD-L1+ monocytes was measured in a group of non-responding patients to anti-CTLA-4. The aim of this work was to confirm the predictive value of response of FKBP51s+Tregs in a cohort of patients undergoing anti-PD1 treatment and shed light on a monocyte subset co-expressing PD-L1/FKBP51s. Methods Co-cultures of organoids and autologous lymphocytes were used to confirm that tumour T-cell interaction can induce FKBP51s. PBMC immunophenotype and flow cytometry served to assess and monitor FKBP51s+Treg and FKBP51s+PD-L1+ monocytes in 22 advanced melanoma patients treated with anti-PD1. Silencing and overexpression of FKBP51s in human macrophages served to address the protein role in the tolerant macrophages’ behaviour. Results FKBP51s+Tregs count was increased in responders and had a prognostic value. Non-responders showed an early increase in FKBP51s+ PD-L1+ monocytes during anti-PD1 treatment. Manipulation of FKBP51s modulated the macrophage–phenotype, with forced protein expression promoting aspects associated with tolerance. Conclusions FKBP51s may guide in the selection and monitoring of melanoma patient candidates to immune-checkpoint-targeted therapy. Manipulation of FKBP51s may overcome resistance.
Collapse
|
9
|
Immune signatures predicting responses to immunomodulatory antibody therapy. Curr Opin Immunol 2018; 51:91-96. [PMID: 29550661 DOI: 10.1016/j.coi.2018.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/30/2022]
Abstract
Since the first immunomodulatory antibody was licensed by the FDA in 2011 for treating melanoma it has remained the case that only a certain proportion of cancer patients respond favourably to a particular therapy. Recent results from combining two or more different antibodies each targeting a different immune checkpoint indicate that the proportion of responding patients can be increased, but thus far there are no such therapies routinely yielding clinical benefit in 100% of patients in any cancer type. Therefore, predicting which patients will respond to a particular therapy remains of the utmost importance in order to maximise treatment efficacy and minimise side-effects and costs. Moreover, determining biomarkers predicting responses may provide insight into the mechanisms responsible for success or failure of that therapy. This article reviews seminal papers mostly from the past two years of progress in this area of intense investigation, and mostly in melanoma, the tumour type for which the largest body of data exists thus far.
Collapse
|
10
|
Jia Y, Xu H, Li Y, Wei C, Guo R, Wang F, Wu Y, Liu J, Jia J, Yan J, Qi X, Li Y, Gao X. A Modified Ficoll-Paque Gradient Method for Isolating Mononuclear Cells from the Peripheral and Umbilical Cord Blood of Humans for Biobanks and Clinical Laboratories. Biopreserv Biobank 2017; 16:82-91. [PMID: 29232525 DOI: 10.1089/bio.2017.0082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although the Ficoll-Paque method is classically used to isolate peripheral blood mononuclear cells (PBMCs), modifications in this method are required for a more rapid and economic output for biobanks and clinical laboratories, particularly in developing countries. In this study, we addressed this issue by modifying the Ficoll-Paque method for the isolation of PBMCs or mononuclear cells from the peripheral and the umbilical cord blood of healthy and diseased (infected, anemic, and chronic obstructive pulmonary disease) adult individuals. In the modified method, we initiated the cell isolation process from the buffy coat layer, which appears in the interface between the plasma and sediments after centrifugation, instead of using the whole blood as described in the classic method. Although the PBMC yield by the modified method was about 12% less than in the classic method, the number of PBMCs isolated by the modified method was more than one million, which is enough for different research/diagnostic purposes, such as multi-omics detection. Assessment of cell viability and purity by hematology analyzer and trypan blue showed no significant difference between the viability and purity of the PBMCs isolated by these two methods in almost all groups, except samples from the infected and cord blood groups, where lower PBMC purity with higher granulocyte contamination were observed. In addition, at delayed processing time points, all parameters for the two methods were decreased in a time-dependent manner, especially at 8, 12, or 24 hours after the sample collection. In summary, the performance of PBMC isolation by the classic and modified methods mainly relies on the PBMC ratio in original samples. The modified method could be preferred for PBMC isolation because of its time and cost savings, especially for the biobanks and clinical laboratories in developing countries.
Collapse
Affiliation(s)
- Yanjuan Jia
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Hui Xu
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Yonghong Li
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Chaojun Wei
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Rui Guo
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Fang Wang
- 2 The Clinical Laboratory Centre, Gansu Provincial Hospital , Lanzhou, China
| | - Yu Wu
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Jing Liu
- 2 The Clinical Laboratory Centre, Gansu Provincial Hospital , Lanzhou, China
| | - Jing Jia
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Junwen Yan
- 2 The Clinical Laboratory Centre, Gansu Provincial Hospital , Lanzhou, China
| | - Xiaoming Qi
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Yuanting Li
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| | - Xiaoling Gao
- 1 The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital , Lanzhou, China
| |
Collapse
|
11
|
D'Arrigo P, Russo M, Rea A, Tufano M, Guadagno E, Del Basso De Caro ML, Pacelli R, Hausch F, Staibano S, Ilardi G, Parisi S, Romano MF, Romano S. A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma. Oncotarget 2017; 8:68291-68304. [PMID: 28978117 PMCID: PMC5620257 DOI: 10.18632/oncotarget.19309] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/11/2017] [Indexed: 01/06/2023] Open
Abstract
Background FKBP51 is a co-chaperone with isomerase activity, abundantly expressed in glioma. We previously identified a spliced isoform (FKBP51s) and highlighted a role for this protein in the upregulation of Programmed Death Ligand 1 (PD-L1) expression in melanoma. Because gliomas can express PD-L1 causing a defective host anti-tumoral immunity, we investigated whether FKBP51s was expressed in glioma and played a role in PD-L1 regulation in this tumour. Methods We used D54 and U251 glioblastoma cell lines that constitutively expressed PD-L1. FKBP51s was measured by immunoblot, flow cytometry and microscopy. In patient tumours, IHC and qPCR were used to measure protein and mRNA levels respectively. FKBP51s depletion was achieved by siRNAs, and its enzymatic function was inhibited using selective inhibitors (SAFit). We investigated protein maturation using N-glycosidase and cell fractionation approaches. Results FKBP51s was expressed at high levels in glioma cells. Glycosylated-PD-L1 was increased and reduced by FKBP51s overexpression or silencing, respectively. Naïve PD-L1 was found in the endoplasmic reticulum (ER) of glioma cells complexed with FKBP51s, whereas the glycosylated form was measured in the Golgi apparatus. SAFit reduced PD-L1 levels (constitutively expressed and ionizing radiation-induced). SAFit reduced cell death of PBMC co-cultured with glioma. Conclusions Here we addressed the mechanism of post-translational regulation of PD-L1 protein in glioma. FKBP51s upregulated PD-L1 expression on the plasma membrane by catalysing the protein folding required for subsequent glycosylation. Inhibition of FKBP51s isomerase activity by SAFit decreased PD-L1 levels. These findings suggest that FKBP51s is a potential target of immunomodulatory strategies for glioblastoma treatment.
Collapse
Affiliation(s)
- Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Michele Russo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Anna Rea
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Elia Guadagno
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | | | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Felix Hausch
- Technical University Darmstadt Institute of Organic Chemistry and Biochemistry, Darmstadt, Germany
| | - Stefania Staibano
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| |
Collapse
|