1
|
Li T, Xia J, Yun H, Sun G, Shen Y, Wang P, Shi J, Wang K, Yang H, Ye H. A novel autoantibody signatures for enhanced clinical diagnosis of pancreatic ductal adenocarcinoma. Cancer Cell Int 2023; 23:273. [PMID: 37974212 PMCID: PMC10655307 DOI: 10.1186/s12935-023-03107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease that requires precise diagnosis for effective treatment. However, the diagnostic value of carbohydrate antigen 19 - 9 (CA19-9) is limited. Therefore, this study aims to identify novel tumor-associated autoantibodies (TAAbs) for PDAC diagnosis. METHODS A three-phase strategy comprising discovery, test, and validation was implemented. HuProt™ Human Proteome Microarray v3.1 was used to screen potential TAAbs in 49 samples. Subsequently, the levels of potential TAAbs were evaluated in 477 samples via enzyme-linked immunosorbent assay (ELISA) in PDAC, benign pancreatic diseases (BPD), and normal control (NC), followed by the construction of a diagnostic model. RESULTS In the discovery phase, protein microarrays identified 167 candidate TAAbs. Based on bioinformatics analysis, fifteen tumor-associated antigens (TAAs) were selected for further validation using ELISA. Ten TAAbs exhibited differentially expressed in PDAC patients in the test phase (P < 0.05), with an area under the curve (AUC) ranging from 0.61 to 0.76. An immunodiagnostic model including three TAAbs (anti-HEXB, anti-TXLNA, anti-SLAMF6) was then developed, demonstrating AUCs of 0.81 (58.0% sensitivity, 86.0% specificity) and 0.78 (55.71% sensitivity, 87.14% specificity) for distinguishing PDAC from NC. Additionally, the model yielded AUCs of 0.80 (58.0% sensitivity, 86.25% specificity) and 0.83 (55.71% sensitivity, 100% specificity) for distinguishing PDAC from BPD in the test and validation phases, respectively. Notably, the combination of the immunodiagnostic model with CA19-9 resulted in an increased positive rate of PDAC to 92.91%. CONCLUSION The immunodiagnostic model may offer a novel serological detection method for PDAC diagnosis, providing valuable insights into the development of effective diagnostic biomarkers.
Collapse
Affiliation(s)
- Tiandong Li
- College of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Junfen Xia
- Office of Health Care, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Huan Yun
- Zhengzhou University, 450001, Zhengzhou, Henan Province, China
| | - Guiying Sun
- College of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Yajing Shen
- College of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 450052, Zhengzhou, Henan Province, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 450052, Zhengzhou, Henan Province, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Hongwei Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan Province, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, 450001, Zhengzhou, Henan Province, China.
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 450052, Zhengzhou, Henan Province, China.
| |
Collapse
|
2
|
Crescioli S, Correa I, Ng J, Willsmore ZN, Laddach R, Chenoweth A, Chauhan J, Di Meo A, Stewart A, Kalliolia E, Alberts E, Adams R, Harris RJ, Mele S, Pellizzari G, Black ABM, Bax HJ, Cheung A, Nakamura M, Hoffmann RM, Terranova-Barberio M, Ali N, Batruch I, Soosaipillai A, Prassas I, Ulndreaj A, Chatanaka MK, Nuamah R, Kannambath S, Dhami P, Geh JLC, MacKenzie Ross AD, Healy C, Grigoriadis A, Kipling D, Karagiannis P, Dunn-Walters DK, Diamandis EP, Tsoka S, Spicer J, Lacy KE, Fraternali F, Karagiannis SN. B cell profiles, antibody repertoire and reactivity reveal dysregulated responses with autoimmune features in melanoma. Nat Commun 2023; 14:3378. [PMID: 37291228 PMCID: PMC10249578 DOI: 10.1038/s41467-023-39042-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma.
Collapse
Affiliation(s)
- Silvia Crescioli
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Isabel Correa
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Joseph Ng
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Zena N Willsmore
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Roman Laddach
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - Alicia Chenoweth
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Jitesh Chauhan
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Ashley Di Meo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Alexander Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Eleni Kalliolia
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Elena Alberts
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Rebecca Adams
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Robert J Harris
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Silvia Mele
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Giulia Pellizzari
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Anna B M Black
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Heather J Bax
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Anthony Cheung
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Mano Nakamura
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Ricarda M Hoffmann
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Manuela Terranova-Barberio
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Niwa Ali
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Ioannis Prassas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Antigona Ulndreaj
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miyo K Chatanaka
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rosamund Nuamah
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Shichina Kannambath
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Genomics Facility, Institute of Cancer Research, London, UK
| | - Pawan Dhami
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Jenny L C Geh
- St John's Institute of Dermatology, Guy's, King's, and St. Thomas' Hospitals NHS Foundation Trust, London, UK
- Department of Plastic Surgery at Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery at Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - David Kipling
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Panagiotis Karagiannis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Eleftherios P Diamandis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Katie E Lacy
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Sophia N Karagiannis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK.
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
3
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
4
|
Autoantibody against Tumor-Associated Antigens as Diagnostic Biomarkers in Hispanic Patients with Hepatocellular Carcinoma. Cells 2022; 11:cells11203227. [PMID: 36291095 PMCID: PMC9600682 DOI: 10.3390/cells11203227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Tumor-associated antigens (TAAs) have been investigated for many years as potential early diagnosis tools, especially for hepatocellular carcinoma (HCC). Nonetheless, very few studies have focused on the Hispanic HCC group that may be associated with distinct etiological risk factors. In the present study, we investigated novel anti-TAA autoantibodies as diagnostic biomarkers for Hispanic HCC patients. Methods: Novel TAA targets were identified by the serological proteome analysis (SERPA) and from differentially expressed HCC driver genes via bioinformatics. The autoantibody levels were validated by enzyme-linked immunosorbent assay (ELISA). Results: Among 19 potential TAA targets, 4 anti-TAA autoantibodies were investigated as potential diagnostic biomarkers with significantly high levels in Hispanic HCC sera, including DNA methyltransferase 3A (DNMT3A), p16, Hear shock protein 60 (Hsp60), and Heat shock protein A5 (HSPA5). The area under the ROC curve (AUC) value of the single autoantibodies varies from 0.7505 to 0.8885. After combining all 4 autoantibodies, the sensitivity of the autoantibody panel increased to 75% compared to the single one with the highest value of 45.8%. In a separate analysis of the Asian cohort, autoantibodies against HSPA5 and p16 showed significantly elevated levels in HCC compared to normal healthy controls, but not for DNMT3A or HSP60. Conclusion: Anti-DNMT3A, p16, HSPA5, and HSP60 autoantibodies have the potential to be diagnostic biomarkers for Hispanic HCC patients, of which DNMT3A and HSP60 might be exclusive for Hispanic HCC diagnosis.
Collapse
|
5
|
Li X, Li Y, Xu A, Zhou D, Zhang B, Qi S, Chen Z, Wang X, Ou X, Cao B, Qu C, Huang J. Apoptosis-induced translocation of centromere protein F in its corresponding autoantibody production in hepatocellular carcinoma. Oncoimmunology 2021; 10:1992104. [PMID: 34676150 PMCID: PMC8525945 DOI: 10.1080/2162402x.2021.1992104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/03/2022] Open
Abstract
Serum autoantibodies against tumor-associated antigen have important value in the early diagnosis of hepatocellular carcinoma (HCC), but the mechanism of autoantibody production is poorly understood. We previously showed that autoantibodies against the centromere protein F (CENPF) may be useful as an early diagnostic marker for HCC. Here we explored the mechanism of cell apoptosis-based CENPF autoantibody production and verified the correlation of CENPF autoantibody level with HCC development. We demonstrated that CENPF was overexpressed and aberrantly localized throughout the nuclei and cytoplasm in human HCC cells compared with hepatic cells. CENPF overexpression promoted the production of CENPF autoantibodies in a manner that correlated with tumor growth of mouse HCC model. During apoptosis of HCC cells, CENPF protein translocated to apoptotic vesicles and relocalized at the cell surface. Through isolating apoptotic components, we found apoptotic body and blebs with lower CD31 and CD47 expression more effectively induced DC phagocytosis and maturation compared with apoptotic intact cells in vitro, and this DC response was independent of CENPF expression. Moreover, injection of mice with apoptotic bodies and blebs effectively induced an immune response and the production of CENPF-specific antibodies. Our findings provide a first elucidation of mechanisms underlying the CENPF autoantibody production via cell apoptosis-induced CENPF translocation, and demonstrate a direct correlation between CENPF autoantibody levels and HCC progression, suggesting the potential of CENPF autoantibody as an HCC diagnostic marker.
Collapse
Affiliation(s)
- Xiaojin Li
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanmeng Li
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Donghu Zhou
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saiping Qi
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Ou
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunfeng Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Huang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Wang T, Huang XY, Zheng SJ, Liu YY, Chen SS, Ren F, Lu J, Duan ZP, Liu M. Serum Anti-14-3-3 Zeta Autoantibody as a Biomarker for Predicting Hepatocarcinogenesis. Front Oncol 2021; 11:733680. [PMID: 34722278 PMCID: PMC8555665 DOI: 10.3389/fonc.2021.733680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide. Alpha-fetoprotein (AFP) is still the only serum biomarker widely used in clinical settings. However, approximately 40% of HCC patients exhibit normal AFP levels, including very early HCC and AFP-negative HCC; for these patients, serum AFP is not applicable as a biomarker of early detection. Thus, there is an urgent need to identify novel biomarkers for patients for whom disease cannot be diagnosed early. In this study, we screened and identified novel proteins in AFP-negative HCC and evaluated the feasibility of using autoantibodies to those protein to predict hepatocarcinogenesis. First, we screened and identified differentially expressed proteins between AFP-negative HCC tissue and adjacent non-tumor liver tissue using SWATH-MS proteome technology. In total, 2,506 proteins were identified with a global false discovery rate of 1%, of which 592 proteins were expressed differentially with 175 upregulated and 417 downregulated (adjusted p-value <0.05, fold-change FC ≥1.5 or ≤0.67) between the tumor and matched benign samples, including 14-3-3 zeta protein. For further serological verification, autoantibodies against 14-3-3 zeta in serum were evaluated using enzyme-linked immunosorbent, Western blotting, and indirect immunofluorescence assays. Five serial serum samples from one patient with AFP-negative HCC showed anti-14-3-3 zeta autoantibody in sera 9 months before the diagnosis of HCC, which gradually increased with an increase in the size of the nodule. Based on these findings, we detected the prevalence of serum anti-14-3-3 zeta autoantibody in liver cirrhosis (LC) patients, which is commonly considered a premalignant liver disease of HCC. We found that the prevalence of autoantibodies against 14-3-3 zeta protein was 16.1% (15/93) in LC patient sera, which was significantly higher than that in patients with chronic hepatitis (0/75, p = 0.000) and normal human sera (1/60, 1.7%, p = 0.01). Therefore, we suggest that anti-14-3-3 zeta autoantibody might be a biomarker for predicting hepatocarcinogenesis. Further follow-up and research of patients with positive autoantibodies will be continued to confirm the relationship between anti-14-3-3 zeta autoantibody and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory and Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Xue-ying Huang
- Department of Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Su-jun Zheng
- First Department of Hepatology Center, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Ye-ying Liu
- Department of Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Si-si Chen
- Department of Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Jun Lu
- Department of Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Zhong-ping Duan
- Fourth Department of Hepatology Center, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Mei Liu
- Department of Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zitvogel L, Perreault C, Finn OJ, Kroemer G. Beneficial autoimmunity improves cancer prognosis. Nat Rev Clin Oncol 2021; 18:591-602. [PMID: 33976418 DOI: 10.1038/s41571-021-00508-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Many tumour antigens that do not arise from cancer cell-specific mutations are targets of humoral and cellular immunity despite their expression on non-malignant cells. Thus, in addition to the expected ability to detect mutations and stress-associated shifts in the immunoproteome and immunopeptidome (the sum of MHC class I-bound peptides) unique to malignant cells, the immune system also recognizes antigens expressed in non-malignant cells, which can result in autoimmune reactions against non-malignant cells from the tissue of origin. These autoimmune manifestations include, among others, vitiligo, thyroiditis and paraneoplastic syndromes, concurrent with melanoma, thyroid cancer and non-small-cell lung cancer, respectively. Importantly, despite the undesirable effects of these symptoms, such events can have prognostic value and correlate with favourable disease outcomes, suggesting 'beneficial autoimmunity'. Similarly, the occurrence of dermal and endocrine autoimmune adverse events in patients receiving immune-checkpoint inhibitors can have a positive predictive value for therapeutic outcomes. Neoplasias derived from stem cells deemed 'not essential' for survival (such as melanocytes, thyroid cells and most cells in sex-specific organs) have a particularly good prognosis, perhaps because the host can tolerate autoimmune reactions that destroy tumour cells at some cost to non-malignant tissues. In this Perspective, we discuss examples of spontaneous as well as therapy-induced autoimmunity that correlate with favourable disease outcomes and make a strong case in favour of this 'beneficial autoimmunity' being important not only in patients with advanced-stage disease but also in cancer immunosurveillance.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France. .,Université Paris Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France. .,INSERM U1015, Gustave Roussy, Villejuif, France. .,Equipe labellisée par la Ligue contre le cancer, Villejuif, France. .,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) BIOTHERIS, Villejuif, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Xing M, Wang X, Kiken RA, He L, Zhang JY. Immunodiagnostic Biomarkers for Hepatocellular Carcinoma (HCC): The First Step in Detection and Treatment. Int J Mol Sci 2021; 22:6139. [PMID: 34200243 PMCID: PMC8201127 DOI: 10.3390/ijms22116139] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) exerts huge effects on the health burden of the world because of its high mortality and poor prognosis. HCC is often clinically detected late in patients. If HCC could be detected and treated earlier, the survival rate of patients will be greatly improved. Therefore, identifying specific biomarkers is urgent and important for HCC. The liver is also recognized as an immune organ. The occurrence of HCC is related to exacerbation of immune tolerance and/or immunosurveillance escape. The host immune system plays an important role in the recognition and targeting of tumor cells in cancer immunotherapy, as can be seen from the clinical success of immune checkpoint inhibitors and chimeric antigen receptor (CAR) T cells. Thus, there is a pressing medical need to discover immunodiagnostic biomarkers specific to HCC for understanding the pathological mechanisms of HCC, especially for immunotherapy targets. We have reviewed the existing literature to summarize the immunodiagnostic markers of HCC, including autoantibodies against tumor-associated antigens (TAAs) and exosomes, to provide new insights into HCC and early detection of this deadly cancer.
Collapse
Affiliation(s)
- Mengtao Xing
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China;
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (X.W.); (R.A.K.)
| | - Xinzhi Wang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (X.W.); (R.A.K.)
- Jiangsu Key Laboratory of Drug Screening, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Robert A. Kiken
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (X.W.); (R.A.K.)
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China;
| | - Jian-Ying Zhang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (X.W.); (R.A.K.)
| |
Collapse
|
9
|
Lu F, Ma XJN, Jin WL, Luo Y, Li X. Neoantigen Specific T Cells Derived From T Cell-Derived Induced Pluripotent Stem Cells for the Treatment of Hepatocellular Carcinoma: Potential and Challenges. Front Immunol 2021; 12:690565. [PMID: 34054880 PMCID: PMC8155510 DOI: 10.3389/fimmu.2021.690565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Immunotherapy has become an indispensable part of the comprehensive treatment of hepatocellular carcinoma (HCC). Immunotherapy has proven effective in patients with early HCC, advanced HCC, or HCC recurrence after liver transplantation. Clinically, the most commonly used immunotherapy is immune checkpoint inhibition using monoclonal antibodies, such as CTLA-4 and PD-1. However, it cannot fundamentally solve the problems of a weakened immune system and inactivation of immune cells involved in killing tumor cells. T cells can express tumor antigen-recognizing T cell receptors (TCRs) or chimeric antigen receptors (CARs) on the cell surface through gene editing to improve the specificity and responsiveness of immune cells. According to previous studies, TCR-T cell therapy is significantly better than CAR-T cell therapy in the treatment of solid tumors and is one of the most promising immune cell therapies for solid tumors so far. However, its application in the treatment of HCC is still being researched. Technological advancements in induction and redifferentiation of induced pluripotent stem cells (iPSCs) allow us to use T cells to induce T cell-derived iPSCs (T-iPSCs) and then differentiate them into TCR-T cells. This has allowed a convenient strategy to study HCC models and explore optimal treatment strategies. This review gives an overview of the major advances in the development of protocols to generate neoantigen-specific TCR-T cells from T-iPSCs. We will also discuss their potential and challenges in the treatment of HCC.
Collapse
Affiliation(s)
- Fei Lu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Jing-Nan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wei-Lin Jin
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yang Luo
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Hepatopancreatobiliary Surgery Institute of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Health Science Center, Lanzhou University, Lanzhou, China.,Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
de Jonge H, Iamele L, Maggi M, Pessino G, Scotti C. Anti-Cancer Auto-Antibodies: Roles, Applications and Open Issues. Cancers (Basel) 2021; 13:813. [PMID: 33672007 PMCID: PMC7919283 DOI: 10.3390/cancers13040813] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Auto-antibodies are classically associated with autoimmune diseases, where they are an integral part of diagnostic panels. However, recent evidence is accumulating on the presence of auto-antibodies against single or selected panels of auto-antigens in many types of cancer. Auto-antibodies might initially represent an epiphenomenon derived from the inflammatory environment induced by the tumor. However, their effect on tumor evolution can be crucial, as is discussed in this paper. It has been demonstrated that some of these auto-antibodies can be used for early detection and cancer staging, as well as for monitoring of cancer regression during treatment and follow up. Interestingly, certain auto-antibodies were found to promote cancer progression and metastasis, while others contribute to the body's defense against it. Moreover, auto-antibodies are of a polyclonal nature, which means that often several antibodies are involved in the response to a single tumor antigen. Dissection of these antibody specificities is now possible, allowing their identification at the genetic, structural, and epitope levels. In this review, we report the evidence available on the presence of auto-antibodies in the main cancer types and discuss some of the open issues that still need to be addressed by the research community.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (H.d.J.); (L.I.); (M.M.); (G.P.)
| |
Collapse
|
11
|
Cyclic Peptide Mimotopes for the Detection of Serum Anti-ATIC Autoantibody Biomarker in Hepato-Cellular Carcinoma. Int J Mol Sci 2020; 21:ijms21249718. [PMID: 33352757 PMCID: PMC7766137 DOI: 10.3390/ijms21249718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
Tumor-associated (TA) autoantibodies have been identified at the early tumor stage before developing clinical symptoms, which holds hope for early cancer diagnosis. We identified a TA autoantibody from HBx-transgenic (HBx-tg) hepatocellular carcinoma (HCC) model mouse, characterized its target antigen, and examined its relationship to human HCC. The mimotopes corresponding to the antigenic epitope of TA autoantibody were screened from a random cyclic peptide library and used for the detection of serum TA autoantibody. The target antigen of the TA autoantibody was identified as an oncogenic bi-functional purine biosynthesis protein, ATIC. It was upregulated in liver cancer tissues of HBx-tg mouse as well as human HCC tissues. Over-expressed ATIC was also secreted extracellularly via the cancer-derived exosomes, which might cause auto-immune responses. The cyclic peptide mimotope with a high affinity to anti-ATIC autoantibody, CLPSWFHRC, distinguishes between serum samples from HCC patients and healthy subjects with 70.83% sensitivity, 90.68% specificity (AUC = 0.87). However, the recombinant human ATIC protein showed a low affinity to anti-ATIC autoantibody, which may be incompatible as a capture antigen for serum TA autoantibody. This study indicates that anti-ATIC autoantibody can be a potential HCC-associated serum biomarker and suggests that autoantibody biomarker's efficiency can be improved by using antigenic mimicry to native antigens present in vivo.
Collapse
|
12
|
Bjørklund G, Dadar M, Chirumbolo S, Aaseth J, Peana M. Metals, autoimmunity, and neuroendocrinology: Is there a connection? ENVIRONMENTAL RESEARCH 2020; 187:109541. [PMID: 32445945 DOI: 10.1016/j.envres.2020.109541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
It has been demonstrated that metals can induce autoimmunity. However, few studies have attempted to assess and elucidate the underlying mechanisms of action. Recent research has tried to evaluate the possible interactions of the immune system with metal ions, particularly with heavy metals. Research indicates that metals have the potential to induce or promote the development of autoimmunity in humans. Metal-induced inflammation may dysregulate the hypothalamic-pituitary-adrenal (HPA) axis and thus contribute to fatigue and other non-specific symptoms characterizing disorders related to autoimmune diseases. The toxic effects of several metals are also mediated through free radical formation, cell membrane disturbance, or enzyme inhibition. There are worldwide increases in environmental metal pollution. It is therefore critical that studies on the role of metals in autoimmunity, and neuroendocrine disorders, including effects on the developing immune system and brain and the genetic susceptibility are performed. These studies can lead to efficient preventive strategies and improved therapeutic approaches. In this review, we have retrieved and commented on studies that evaluated the effects of metal toxicity on immune and endocrine-related pathways. This review aims to increase awareness of metals as factors in the onset and progression of autoimmune and neuroendocrine disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
13
|
Zhang S, Liu Y, Chen J, Shu H, Shen S, Li Y, Lu X, Cao X, Dong L, Shi J, Cao Y, Wang X, Zhou J, Liu Y, Chen L, Fan J, Ding G, Gao Q. Autoantibody signature in hepatocellular carcinoma using seromics. J Hematol Oncol 2020; 13:85. [PMID: 32616055 PMCID: PMC7330948 DOI: 10.1186/s13045-020-00918-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background Alpha-fetoprotein (AFP) is a widely used biomarker for hepatocellular carcinoma (HCC) early detection. However, low sensitivity and false negativity of AFP raise the requirement of more effective early diagnostic approaches for HCC. Methods We employed a three-phase strategy to identify serum autoantibody (AAb) signature for HCC early diagnosis using protein array-based approach. A total of 1253 serum samples from HCC, liver cirrhosis, and healthy controls were prospectively collected from three liver cancer centers in China. The Human Proteome Microarray, comprising 21,154 unique proteins, was first applied to identify AAb candidates in discovery phase (n = 100) and to further fabricate HCC-focused arrays. Then, an artificial neural network (ANN) model was used to discover AAbs for HCC detection in a test phase (n = 576) and a validation phase (n = 577), respectively. Results Using HCC-focused array, we identified and validated a novel 7-AAb panel containing CIAPIN1, EGFR, MAS1, SLC44A3, ASAH1, UBL7, and ZNF428 for effective HCC detection. The ANN model of this panel showed improvement of sensitivity (61.6–77.7%) compared to AFP (cutoff 400 ng/mL, 28.4–30.7%). Notably, it was able to detect AFP-negative HCC with AUC values of 0.841–0.948. For early-stage HCC (BCLC 0/A) detection, it outperformed AFP (cutoff 400 ng/mL) with approximately 10% increase in AUC. Conclusions The 7-AAb panel provides potentially clinical value for non-invasive early detection of HCC, and brings new clues on understanding the immune response against hepatocarcinogenesis.
Collapse
Affiliation(s)
- Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Yuming Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Jing Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Hong Shu
- Department of Clinical Laboratory, Cancer Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Siyun Shen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinyuan Lu
- The Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Xinyi Cao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Liangqing Dong
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Jieyi Shi
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital and Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xiaoying Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guangyu Ding
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Serological Biomarkers for Early Detection of Hepatocellular Carcinoma: A Focus on Autoantibodies against Tumor-Associated Antigens Encoded by Cancer Driver Genes. Cancers (Basel) 2020; 12:cancers12051271. [PMID: 32443439 PMCID: PMC7280966 DOI: 10.3390/cancers12051271] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Substantial evidence manifests the occurrence of autoantibodies to tumor-associated antigens (TAAs) in the early stage of hepatocellular carcinoma (HCC), and previous studies have mainly focused on known TAAs. In the present study, protein microarrays based on cancer driver genes were customized to screen TAAs. Subsequently, autoantibodies against selected TAAs in sera were tested by enzyme-linked immunosorbent assays (ELISA) in 1175 subjects of three independent datasets (verification dataset, training dataset, and validation dataset). The verification dataset was used to verify the results from the microarrays. A logistic regression model was constructed within the training dataset; seven TAAs were included in the model and yielded an area under the receiver operating characteristic curve (AUC) of 0.831. The validation dataset further evaluated the model, exhibiting an AUC of 0.789. Remarkably, as the aggravation of HCC increased, the prediction probability (PP) of the model tended to decrease, the trend of which was contrary to alpha-fetoprotein (AFP). For AFP-negative HCC patients, the positive rate of this model reached 67.3% in the training dataset and 50.9% in the validation dataset. Screening TAAs with protein microarrays based on cancer driver genes is the latest, fast, and effective method for finding indicators of HCC. The identified anti-TAA autoantibodies can be potential biomarkers in the early detection of HCC.
Collapse
|
15
|
Jiang D, Wang Y, Liu M, Si Q, Wang T, Pei L, Wang P, Ye H, Shi J, Wang X, Song C, Wang K, Dai L, Zhang J. A panel of autoantibodies against tumor-associated antigens in the early immunodiagnosis of lung cancer. Immunobiology 2020; 225:151848. [PMID: 31980218 DOI: 10.1016/j.imbio.2019.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Lung cancer (LC) is one of the most common malignant tumors worldwide with low five-year survival rate due to lack of effective diagnosis. This study aims to find an optimal combination of autoantibodies for detecting of early-stage LC. METHODS Nine relatively novel autoantibodies against tumor-associated (TAAs) (PSIP1, TOP2A, ACTR3, RPS6KA5, HMGB3, MMP12, GREM1, ZWINT and NUSAP1) were detected by using ELISA. Diagnostic models were developed by using the training set (n = 644) and further validated in another independent set (n = 248). We also evaluated the diagnostic accuracy of the model to detect benign lung diseases (BLD) from the early-stage lung cancer. RESULTS The areas under the receiver operating characteristic curve (AUC) for the model with three TAAs panel (GREM1, HMGB3 and PSIP1) was 0.711(95% CI 0.674-0.746) in the training set and 0.858 (95% CI 0.808-0.899) in the validation set, which demonstrated a higher diagnostic capability. The AUC of this three TAAs model was 0.833 (95%CI 0.780-0.878) in discriminating LC from BLD. This model could identify early-stage LC patients from normal control (NC) individuals, with AUC of 0.687(95% CI 0.634-0.736) in training set and AUC of 0.920(95% CI 0.860-0.960) in validation set, and the overall AUC for early-stage LC was 0.779(95% CI 0.739-0.816) when the training set and validation set were combined. CONCLUSIONS The model with three TAAs panel would detect LC with higher effectiveness, and might be potential screening method for the early LC.
Collapse
Affiliation(s)
- Di Jiang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Yulin Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Man Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Qiufang Si
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Tingting Wang
- Department of Clinical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 451464, Henan, China
| | - Lu Pei
- Department of Clinical Laboratory, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Peng Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Hua Ye
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Jianxiang Shi
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Xiao Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Chunhua Song
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Kaijuan Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China.
| | - Jianying Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhenghzou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
16
|
Xing M, Li P, Wang X, Li J, Shi J, Qin J, Zhang X, Ma Y, Francia G, Zhang JY. Overexpression of p62/IMP2 can Promote Cell Migration in Hepatocellular Carcinoma via Activation of the Wnt/β-Catenin Pathway. Cancers (Basel) 2019; 12:cancers12010007. [PMID: 31861402 PMCID: PMC7017416 DOI: 10.3390/cancers12010007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
p62/IMP2 is an oncofetal protein that was first reported as a tumor-associated antigen in hepatocellular carcinoma (HCC). In our previous studies, we demonstrated a high frequency of p62/IMP2 autoantibodies appearing in various types of cancer. Therefore, we hypothesize that p62/IMP2 plays an important role in the progression of HCC, although the mechanism remains to be explored. In this study, we evaluated the expression of p62/IMP2 protein both in human tissues and liver cancer cell lines by immunohistochemistry and western blotting analysis and found that p62/IMP2 protein is overexpressed in human HCC tissue in comparison to normal human liver tissue. To explore the role that p62/IMP2 plays in HCC, p62/IMP2 was knocked out in two p62/IMP2-positive liver cancer cell lines (SNU449 and HepG2). Due to the low expression level of p62/IMP2 in SNU449, we overexpressed p62/IMP2 in this cell line. We subsequently demonstrated that high expression of p62/IMP2 in both cell lines can promote cell migration and invasion abilities in vitro by activating the Wnt/β-catenin pathway. We also used the Wnt/β-catenin pathway inhibitor, XAV 939, and a phosphoproteome assay to confirm our findings. Conclusion: Our results suggest that p62/IMP2 is an essential regulator of Wnt signaling pathways and plays an important role in HCC progression and metastasis.
Collapse
Affiliation(s)
- Mengtao Xing
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Pei Li
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Xiao Wang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Henan Medical and Pharmaceutical Institute, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jitian Li
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Jianxiang Shi
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Henan Medical and Pharmaceutical Institute, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiejie Qin
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Xiaojun Zhang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Yangcheng Ma
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Giulio Francia
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Correspondence: (G.F.); (J.-Y.Z.)
| | - Jian-Ying Zhang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Correspondence: (G.F.); (J.-Y.Z.)
| |
Collapse
|
17
|
Qiu C, Wang P, Wang B, Shi J, Wang X, Li T, Qin J, Dai L, Ye H, Zhang J. Establishment and validation of an immunodiagnostic model for prediction of breast cancer. Oncoimmunology 2019; 9:1682382. [PMID: 32002291 PMCID: PMC6959442 DOI: 10.1080/2162402x.2019.1682382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Serum autoantibodies that react with tumor-associated antigens (TAAs) can be used as potential biomarkers for diagnosis of cancer. This study aims to evaluate the immunodiagnostic value of 11 anti-TAAs autoantibodies for detection of breast cancer (BC) and establish a diagnostic model for distinguishing BC from normal human controls (NHC) and benign breast diseases (BBD). Sera from 10 BC patients and 10 NHC were used to detect 11 anti-TAAs autoantibodies by western blotting. The 11 anti-TAAs autoantibodies were further assessed in 983 sera by relative quantitative enzyme-linked immunosorbent assay (ELISA). Binary logistic regression and Fisher linear discriminant analysis were conducted to establish a prediction model by using 184 BC and 184 NHC (training cohort, n = 568) and validated by leave-one-out cross-validation. Logistic regression model was selected to establish the prediction model. Results were validated using an independent validation cohort (n = 415). The five anti-TAAs (p53, cyclinB1, p16, p62, 14-3-3ξ) autoantibodies were selected to construct the model with the area under the curve (AUC) of 0.943 (95% CI, 0.919–0.967) in training cohort and 0.916 (95% CI, 0.886–0.947) in the validation cohort. In the identification of BC and BBD, AUCs were 0.881 (95% CI, 0.848–0.914) and 0.849 (95% CI, 0.803–0.894) in training and validation cohort, respectively. In summary, our study indicates that the immunodiagnostic model can distinguish BC from NHC and BC from BBD and this model may have a potential application in immunodiagnosis of breast cancer.
Collapse
Affiliation(s)
- Cuipeng Qiu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Bofei Wang
- College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Jianxiang Shi
- College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Wang
- College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tiandong Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiejie Qin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Dai
- College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Ye
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Jianying Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Heo CK, Hwang HM, Lee HJ, Kwak SS, Yoo JS, Yu DY, Lim KJ, Lee S, Cho EW. Serum anti-EIF3A autoantibody as a potential diagnostic marker for hepatocellular carcinoma. Sci Rep 2019; 9:11059. [PMID: 31363116 PMCID: PMC6667438 DOI: 10.1038/s41598-019-47365-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Tumor-associated autoantibodies are promising diagnostic biomarkers for early detection of tumors. We have screened a novel tumor-associated autoantibody in hepatocellular carcinoma (HCC) model mice. Its target antigen was identified as eukaryotic translation initiation factor 3 subunit A (EIF3A) by proteomic analysis, and the elevated expression of EIF3A in HCC tissues of tumor model mice as well as human patients was shown. Also, its existence in tumor-derived exosomes was revealed, which seem to be the cause of tumor-associated autoantibody production. To use serum anti-EIF3A autoantibody as biomarker, ELISA detecting anti-EIF3A autoantibody in human serum was performed using autoantibody-specific epitope. For the sensitive detection of serum autoantibodies its specific conformational epitopes were screened from the random cyclic peptide library, and a streptavidin antigen displaying anti-EIF3A autoantibody-specific epitope, XC90p2(-CPVRSGFPC-), was used as capture antigen. It distinguished patients with HCC (n = 102) from healthy controls (n = 0285) with a sensitivity of 79.4% and specificity of 83.5% (AUC = 0.87). Also, by simultaneously detecting with other HCC biomarkers, including alpha-fetoprotein, HCC diagnostic sensitivity improved from 79.4% to 85%. Collectively, we suggest that serum anti-EIF3A autoantibody is a useful biomarker for the diagnosis of HCC and the combinational detection of related biomarkers can enhance the accuracy of the cancer diagnosis.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.,College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Hai-Min Hwang
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.,College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Hye-Jung Lee
- Proteometech Inc., 1101 Wooree Venture Town, 466 Gangseo-ro, Gangseo-gu, Seoul, 03722, South Korea.,Graduate Program for Nanomedical Science, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea
| | - Sang-Seob Kwak
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.,Department of Functional Genomics, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jong-Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongju, Chungbuk, 28119, South Korea
| | - Dae-Yeul Yu
- Disease Model Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kook-Jin Lim
- Proteometech Inc., 1101 Wooree Venture Town, 466 Gangseo-ro, Gangseo-gu, Seoul, 03722, South Korea
| | - Soojin Lee
- College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea.
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,Department of Functional Genomics, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| |
Collapse
|
19
|
Mato JM, Elortza F, Lu SC, Brun V, Paradela A, Corrales FJ. Liver cancer-associated changes to the proteome: what deserves clinical focus? Expert Rev Proteomics 2018; 15:749-756. [PMID: 30204005 DOI: 10.1080/14789450.2018.1521277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is recognized as the fifth most common neoplasm and currently represents the second leading form of cancer-related death worldwide. Despite great progress has been done in the understanding of its pathogenesis, HCC represents a heavy societal and economic burden as most patients are still diagnosed at advanced stages and the 5-year survival rate remain below 20%. Early detection and revolutionary therapies that rely on the discovery of new molecular biomarkers and therapeutic targets are therefore urgently needed to develop precision medicine strategies for a more efficient management of patients. Areas covered: This review intends to comprehensively analyse the proteomics-based research conducted in the last few years to address some of the principal still open riddles in HCC biology, based on the identification of molecular drivers of tumor progression and metastasis. Expert commentary: The technical advances in mass spectrometry experienced in the last decade have significantly improved the analytical capacity of proteome wide studies. Large-scale protein and protein variant (post-translational modifications) identification and quantification have allowed detailed dissections of molecular mechanisms underlying HCC progression and are already paving the way for the identification of clinically relevant proteins and the development of their use on patient care.
Collapse
Affiliation(s)
- José M Mato
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain
- b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Félix Elortza
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain
- b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Shelly C Lu
- c Division of Digestive and Liver Diseases , Cedars-Sinai Medical Center , LA , CA , USA
| | - Virginie Brun
- d Université Grenoble-Alpes, CEA, BIG, Biologie à Grande Echelle, Inserm , Grenoble , France
| | - Alberto Paradela
- e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| | - Fernando J Corrales
- b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
- e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| |
Collapse
|