1
|
Naqvi SAA, Anjum MU, Bibi A, Khan MA, Khakwani KZR, He H, Imran M, Kazmi SZ, Raina A, Cobran EK, Bryan Rumble R, Oliver TK, Agarwal N, Zakharia Y, Taplin ME, Sartor O, Singh P, Orme JJ, Childs DS, Parikh RA, Garje R, Murad MH, Bryce AH, Riaz IB. Systemic treatment options for metastatic castration resistant prostate cancer: A living systematic review. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.15.25325837. [PMID: 40321256 PMCID: PMC12047928 DOI: 10.1101/2025.04.15.25325837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Background Optimal treatment selection for metastatic castration resistant prostate cancer (mCRPC) remains challenging due to evolving standards of care in castration sensitive setting. Purpose To synthesize and appraise evidence on systemic therapy for mCRPC patients stratified by prior therapy and HRR alterations informing a clinical practice guideline. Data Sources MEDLINE and EMBASE (inception to 5 March 2025) using living search. Study Selection Randomized clinical trials assessing systemic therapy in mCRPC. Data Extraction Primary outcomes assessed were progression free survival (PFS) and overall survival (OS). Data Synthesis This report of the living systematic review (LSR) includes 143 trials with 17,523 patients (59 phase III/IV trials, 8,941 patients; 84 phase II, 8,582 patients). In the setting of prior androgen deprivation therapy (ADT) alone or ADT+docetaxel, treatment benefit was observed with poly (ADP-ribose) polymerase inhibitors (PARPi) in combination with androgen receptor pathway inhibitors (ARPI) for BRCA+ subgroup. In the setting of prior ADT+ARPI or ADT+ARPI+docetaxel, treatment benefit was observed with PARPi monotherapy for BRCA+ subgroup. Treatment benefit with PARPi may be observed for select non-BRCA homologous recombination repair (HRR) alterations (CDK12, PALB2). Treatment benefit was observed with abiraterone, enzalutamide, cabazitaxel, docetaxel (if no prior docetaxel), and Lu177 (if PSMA+) for patients without HRR alterations. Limitations Study-level data and indirectness in evidence. Conclusion Findings from the current LSR suggest that optimal treatment for mCRPC should be individualized based on prior therapy and HRR alterations. Current evidence favors PARPi alone (ARPI exposed) or in combination with ARPI (ARPI naïve) for patients with BRCA alterations, while ARPI alone, chemotherapy, and Lu177 remain potential options for patients without HRR alterations.
Collapse
Affiliation(s)
- Syed Arsalan Ahmed Naqvi
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States
| | - Muhammad Umair Anjum
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States
| | - Arifa Bibi
- Department of Internal Medicine, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Muhammad Ali Khan
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States
| | | | - Huan He
- Department of Biomedical Informatics and Data Science, Yale University, New Haven, Connecticut, United States
| | - Manal Imran
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Syeda Zainab Kazmi
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Ammad Raina
- Department of Internal Medicine, Canyon Vista Medical Center, Midwestern University, Sierra Vista, Arizona, United States
| | - Ewan K. Cobran
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona, United States
| | - R. Bryan Rumble
- American Society of Clinical Oncology, Alexandria, Virginia, United States
| | - Thomas K. Oliver
- American Society of Clinical Oncology, Alexandria, Virginia, United States
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute (NCI-CCC), University of Utah, Salt Lake City, Utah, United States
| | - Yousef Zakharia
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Oliver Sartor
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States
| | - Parminder Singh
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States
| | - Jacob J. Orme
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States
| | - Daniel S. Childs
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States
| | - Rahul A. Parikh
- Division of Hematology and Oncology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Rohan Garje
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, United States
| | | | - Alan H. Bryce
- Department of Medical Oncology and Developmental Therapeutics, City of Hope Cancer Center, Goodyear, Arizona, United States
| | - Irbaz Bin Riaz
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States
| |
Collapse
|
2
|
Kalemoglu E, Jani Y, Canaslan K, Bilen MA. The role of immunotherapy in targeting tumor microenvironment in genitourinary cancers. Front Immunol 2025; 16:1506278. [PMID: 40260236 PMCID: PMC12009843 DOI: 10.3389/fimmu.2025.1506278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Genitourinary (GU) cancers, including renal cell carcinoma, prostate cancer, bladder cancer, and testicular cancer, represent a significant health burden and are among the leading causes of cancer-related mortality worldwide. Despite advancements in traditional treatment modalities such as chemotherapy, radiotherapy, and surgery, the complex interplay within the tumor microenvironment (TME) poses substantial hurdles to achieving durable remission and cure. The TME, characterized by its dynamic and multifaceted nature, comprises various cell types, signaling molecules, and the extracellular matrix, all of which are instrumental in cancer progression, metastasis, and therapy resistance. Recent breakthroughs in immunotherapy (IO) have opened a new era in the management of GU cancers, offering renewed hope by leveraging the body's immune system to combat cancer more selectively and effectively. This approach, distinct from conventional therapies, aims to disrupt cancer's ability to evade immune detection through mechanisms such as checkpoint inhibition, therapeutic vaccines, and adoptive cell transfer therapies. These strategies highlight the shift towards personalized medicine, emphasizing the importance of understanding the intricate dynamics within the TME for the development of targeted treatments. This article provides an in-depth overview of the current landscape of treatment strategies for GU cancers, with a focus on IO targeting the specific cell types of TME. By exploring the roles of various cell types within the TME and their impact on cancer progression, this review aims to underscore the transformative potential of IO strategies in TME targeting, offering more effective and personalized treatment options for patients with GU cancers, thereby improving outcomes and quality of life.
Collapse
Affiliation(s)
- Ecem Kalemoglu
- Department of Internal Medicine, Rutgers-Jersey City Medical Center, Jersey City, NJ, United States
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Türkiye
| | - Yash Jani
- Medical College of Georgia, Augusta, GA, United States
| | - Kubra Canaslan
- Department of Medical Oncology, Dokuz Eylul University, Izmir, Türkiye
| | - Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
- Department of Urology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Che J, Liu Y, Liu Y, Song J, Cui H, Feng D, Tian A, Zhang Z, Xu Y. The application of emerging immunotherapy in the treatment of prostate cancer: progress, dilemma and promise. Front Immunol 2025; 16:1544882. [PMID: 40145100 PMCID: PMC11937122 DOI: 10.3389/fimmu.2025.1544882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, there has been a growing trend towards the utilization of immunotherapy techniques for the treatment of cancer. Some malignancies have acquired significant progress with the use of cancer vaccines, immune checkpoint inhibitors, and adoptive cells therapy. Scholars are exploring the aforementioned methods as potential treatments for advanced prostate cancer (PCa) due to the absence of effective adjuvant therapy to improve the prognosis of metastatic castration-resistant prostate cancer (mCRPC). Immunotherapy strategies have yet to achieve significant advancements in the treatment of PCa, largely attributed to the inhibitory tumor microenvironment and low mutation load characteristic of this malignancy. Hence, researchers endeavor to address these challenges by optimizing the design and efficacy of immunotherapy approaches, as well as integrating them with other therapeutic modalities. To date, studies have also shown potential clinical benefits. This comprehensive review analyzed the utilization of immunotherapy techniques in the treatment of PCa, assessing their advantages and obstacles, with the aim of providing healthcare professionals and scholars with a comprehensive understanding of the progress in this field.
Collapse
Affiliation(s)
- Jizhong Che
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yuanyuan Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yangyang Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Jingheng Song
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Hongguo Cui
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Dongdong Feng
- Department of Urology, Haiyang City People’s Hospital, Yantai, Shandong, China
| | - Aimin Tian
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Zhengchao Zhang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yankai Xu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
4
|
Cao C, Gong W, Shuai Y, Rasouli S, Ge Q, Khan A, Dakic A, Putluri N, Shvets G, Zheng YL, Daneshdoust D, Mahyoob R, Li J, Liu X. Canonical and non-canonical functions of the non-coding RNA component (TERC) of telomerase complex. Cell Biosci 2025; 15:30. [PMID: 40025596 PMCID: PMC11871756 DOI: 10.1186/s13578-025-01367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/04/2025] Open
Abstract
The telomerase complex consists of a protein component (TERT), which has reverse transcriptase activity, and an RNA component (TERC), which serves as a template for telomere synthesis. Evidence is rapidly accumulating regarding the non-canonical functions of these components in both normal or diseased cells. An oligonucleotide-based drug, the first telomerase inhibitor, secured FDA approval in June 2024. We recently summarized the non-canonical functions of TERT in viral infections and cancer. In this review, we expand on these non-canonical functions of TERC beyond telomere maintenance. Specifically, we explore TERC's roles in cellular aging and senescence, immune regulation, genetic diseases, human cancer, as well as involvement in viral infections and host interactions. Finally, we discuss a transcription product of telomere repeats, TERRA, and explore strategies for targeting TERC as a therapeutic approach.
Collapse
Affiliation(s)
- Chongwen Cao
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Weiyi Gong
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Yuanlong Shuai
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Sara Rasouli
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Qianyun Ge
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Anam Khan
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, MD, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Yun-Ling Zheng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Danyal Daneshdoust
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rani Mahyoob
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jenny Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Baylie T, Jemal M, Baye G, Getinet M, Amare GA, Adugna A, Abebaw D, Hibstu Z, Tegegne BA, Gugsa E, Adane T, Getie G, Ashenef B, Sinamaw D. The role of telomere and telomerase in cancer and novel therapeutic target: narrative review. Front Oncol 2025; 15:1542930. [PMID: 40151802 PMCID: PMC11947687 DOI: 10.3389/fonc.2025.1542930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 03/29/2025] Open
Abstract
Telomeres are dynamic complexes at the ends of chromosomes that are made up of protective proteins and tandem repeating DNA sequences. In the large majority of cancer cells, telomere length is maintained by telomerase, an enzyme that elongates telomeres. Telomerase activation is seen in the majority of cancer, which permits uncontrol cell proliferation. About 90% of human malignancies show telomere dysfunction and telomerase reactivation; as a result, telomerase activation plays a special role as a practically universal stage on the way to malignancy. This review understands the structural and functional of telomere and telomerase, mechanisms of telomerase activation in oncogenesis, biomarkers and therapeutic targets. Therapeutic strategies targeting telomerase, including antisense oligonucleotides, G-quadruplex stabilizers, immunotherapy, small-molecule inhibitors, gene therapy, Telomerase-Responsive Drug Release System, have shown promise in preclinical and clinical settings. Advances in telomere biology not only illuminate the complex interplay between telomeres, telomerase, and cancer progression but also open avenues for innovative, targeted cancer therapies.
Collapse
Affiliation(s)
- Temesgen Baylie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gelagay Baye
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Abebaw
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu
- Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Endalkachew Gugsa
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tadegew Adane
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gedefaw Getie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Baye Ashenef
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Deresse Sinamaw
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
6
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Mishra A, Patel TN. Telomerase in cancer- ongoing quest and future discoveries. Mol Biol Rep 2025; 52:161. [PMID: 39862360 DOI: 10.1007/s11033-025-10251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis. Beyond their primary function of telomere maintenance, TERT and TERC exhibit multifaceted roles in regulating gene expression, signal transduction pathways, and cellular metabolism. The presence of the enzymatic component TERT in both the nucleus and mitochondria underscores its non-canonical roles. Cell death is prevented in TERT-upregulated cells regardless of the DNA damage events and safeguards mitochondrial DNA from oxidative damage. This highlights its protective role in cancer cells where it intersects with glucose metabolism and epigenetic regulation, shaping tumor phenotypes. Oncogenic viruses exploit various strategies to manipulate telomerase activity, aiding cancer progression. The perpetual cell proliferation facilitated by telomerase is a hallmark of cancer, making it an attractive therapeutic target. Inhibitors targeting the catalytic subunit of telomerase, nutraceutical-based compounds, and telomerase-based vaccines represent promising avenues for cancer therapy. Considering the pivotal roles played by the complete enzyme telomerase and TERT component in cancer initiation, substantial endeavors have been dedicated to unravel the mechanisms driving telomerase activation and TERT induction. This review also explores how computational modeling can be leveraged to uncover new insights in telomere research, and efficient targeted therapies.
Collapse
Affiliation(s)
- Apurwa Mishra
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Trupti N Patel
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Vahidi S, Zabeti Touchaei A. Telomerase-based vaccines: a promising frontier in cancer immunotherapy. Cancer Cell Int 2024; 24:421. [PMID: 39707351 DOI: 10.1186/s12935-024-03624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
Telomerase, an enzyme crucial for maintaining telomere length, plays a critical role in cellular immortality and is overexpressed in most cancers. This ubiquitous presence makes telomerase, and specifically its catalytic subunit, human telomerase reverse transcriptase (hTERT), an attractive target for cancer immunotherapy. This review explores the development and application of telomerase-based vaccines, focusing on DNA and peptide-based approaches. While DNA vaccines demonstrate promising immunogenicity, peptide vaccines, such as UV1, UCPVax, and Vx-001, have shown clinical efficacy in certain cancer types. Recent advancements in vaccine design, including multiple peptides and adjuvants, have enhanced immune responses. However, challenges remain in achieving consistent and durable anti-tumor immunity. Accordingly, we discuss the mechanisms of action, preclinical and clinical data, and the potential of these vaccines to elicit robust and durable anti-tumor immune responses. This review highlights the potential of telomerase-based vaccines as a promising strategy for cancer treatment and identifies areas for future research.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | |
Collapse
|
9
|
Wang Y, Zhang X, Chen G, Shao M. Clinical research progress of telomerase targeted cancer immunotherapy: a literature review. Transl Cancer Res 2024; 13:3904-3921. [PMID: 39145070 PMCID: PMC11319969 DOI: 10.21037/tcr-24-196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
Background and Objective Telomerase is activated or overexpressed in 85-90% of tumors, which maintains the length of telomere and has become an important anti-cancer target. Increasing clinical and preclinical data suggest that telomerase-targeted cancer immunotherapy could achieve effective killing of tumor cells in vivo. This article reviews the research progress of telomerase targeted cancer immunotherapy in clinical and pre-clinical trials, aiming to provide a reference for further clinical research and treatment of cancers. Methods We investigated the research progress of telomerase immunotherapy in the last 20 years from four electronic databases. Key Content and Findings Telomerase-targeted immunotherapies have been developed with the arising of a new era in immuno-oncology, including peptide vaccines, DNA vaccines, dendritic cells (DCs), adoptive cell transfer (ACT) therapies, antibodies, etc. Some of them have been approved for undergoing clinical trials by the Food and Drug Administration (FDA) for the treatment of various cancers, such as pancreatic cancer, non-small cell lung cancer, melanoma, leukaemia. Of all the treatment modalities, vaccines are the primary treatment methods, some of which have been even entered into phase III clinical trials. The main clinical application direction of telomerase vaccine is the combination with other drugs and treatment modalities, including combination with other vaccines targeting human telomerase reverse transcriptase (hTERT), traditional chemotherapy drugs and immunosuppressors. We also summarized the recent findings of immunotherapy targeting hTERT, focusing on various vaccines and the current status of associated clinical trials. We further discussed the advantages, disadvantages and potential developmental directions of various telomerase-targeted immunotherapies. Conclusions Telomerase-targeted cancer immunotherapy has promising prospects in improving patient survival expectancy. This review may provide data support and design ideas for all researchers and pharmaceutical enterprises in this field.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Xiaoying Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Guangming Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Mingzhe Shao
- Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
10
|
Tao HY, Zhao CY, Wang Y, Sheng WJ, Zhen YS. Targeting Telomere Dynamics as an Effective Approach for the Development of Cancer Therapeutics. Int J Nanomedicine 2024; 19:3805-3825. [PMID: 38708177 PMCID: PMC11069074 DOI: 10.2147/ijn.s448556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.
Collapse
Affiliation(s)
- Hong-yu Tao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chun-yan Zhao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ying Wang
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei-jin Sheng
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yong-su Zhen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Zhang Y, Zhang Y, Song J, Cheng X, Zhou C, Huang S, Zhao W, Zong Z, Yang L. Targeting the "tumor microenvironment": RNA-binding proteins in the spotlight in colorectal cancer therapy. Int Immunopharmacol 2024; 131:111876. [PMID: 38493688 DOI: 10.1016/j.intimp.2024.111876] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and has the second highest mortality rate among cancers. The development of CRC involves both genetic and epigenetic abnormalities, and recent research has focused on exploring the ex-transcriptome, particularly post-transcriptional modifications. RNA-binding proteins (RBPs) are emerging epigenetic regulators that play crucial roles in post-transcriptional events. Dysregulation of RBPs can result in aberrant expression of downstream target genes, thereby affecting the progression of colorectal tumors and the prognosis of patients. Recent studies have shown that RBPs can influence CRC pathogenesis and progression by regulating various components of the tumor microenvironment (TME). Although previous research on RBPs has primarily focused on their direct regulation of colorectal tumor development, their involvement in the remodeling of the TME has not been systematically reported. This review aims to highlight the significant role of RBPs in the intricate interactions within the CRC tumor microenvironment, including tumor immune microenvironment, inflammatory microenvironment, extracellular matrix, tumor vasculature, and CRC cancer stem cells. We also highlight several compounds under investigation for RBP-TME-based treatment of CRC, including small molecule inhibitors such as antisense oligonucleotides (ASOs), siRNAs, agonists, gene manipulation, and tumor vaccines. The insights gained from this review may lead to the development of RBP-based targeted novel therapeutic strategies aimed at modulating the TME, potentially inhibiting the progression and metastasis of CRC.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; Queen Mary School, Nanchang University, 330006 Nanchang, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China
| | - Jingjing Song
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry of Nanchang University, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry of Nanchang University, China
| | - Chulin Zhou
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Shuo Huang
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wentao Zhao
- The 3rd Clinical Department of China Medical University, 10159 Shenyang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China.
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China.
| |
Collapse
|
12
|
Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, Yang C, Zheng Y, Li X, Lu Y, To KKW, Xia C, Zhang J, Shi Z, Hu Z, Huang M, Fu L. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B 2024; 14:905-952. [PMID: 38486980 PMCID: PMC10935485 DOI: 10.1016/j.apsb.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaopeng Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
13
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
14
|
Yan S, Lin S, Qiu H, Wang X, He Y, Wang C, Huang Y. Regulation of telomerase towards tumor therapy. Cell Biosci 2023; 13:228. [PMID: 38111043 PMCID: PMC10726632 DOI: 10.1186/s13578-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
Cancer is an aging-related disease, while aging plays an important role in the development process of tumor, thus the two are inextricably associated. Telomere attrition is one of the recognized hallmark events of senescence. Hence, targeting telomerase which could extends telomere sequences to treat tumors is widely favored. Cancer cells rely on high activity of telomerase to maintain a strong proliferative potential. By inhibiting the expression or protein function of telomerase, the growth of cancer cells can be significantly suppressed. In addition, the human immune system itself has a defense system against malignant tumors. However, excessive cell division results in dramatic shortening on telomeres and decline in the function of immune organs that facilitates cancer cell evasion. It has been shown that increasing telomerase activity or telomere length of these immune cells can attenuate senescence, improve cellular viability, and enhance the immunosuppressive microenvironment of tumor. In this paper, we review the telomerase-targeting progress using different anti-tumor strategies from the perspectives of cancer cells and immune cells, respectively, as well as tracking the preclinical and clinical studies of some representative drugs for the prevention or treatment of tumors.
Collapse
Affiliation(s)
- Siyu Yan
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Lumiere Therapeutics Co., Ltd., Suzhou, 215000, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hongxin Qiu
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xining Wang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yijun He
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Verma J, Kaushal N, Manish M, Subbarao N, Shakirova V, Martynova E, Liu R, Hamza S, Rizvanov AA, Khaiboullina SF, Baranwal M. Identification of conserved immunogenic peptides of SARS-CoV-2 nucleocapsid protein. J Biomol Struct Dyn 2023; 42:11098-11114. [PMID: 37750540 DOI: 10.1080/07391102.2023.2260484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
The emergence of the new SARS-CoV-2 variants has led to major concern regarding the efficacy of approved vaccines. Nucleocapsid is a conserved structural protein essential for replication of the virus. This study focuses on identifying conserved epitopes on the nucleocapsid (N) protein of SARS-CoV-2. Using 510 unique amino acid sequences of SARS-CoV-2 N protein, two peptides (193 and 215 aa) with 90% conservancy were selected for T cell epitope prediction. Three immunogenic peptides containing multiple T cell epitopes were identified which were devoid of autoimmune and allergic immune response. These peptides were also conserved (100%) in recent Omicron variants reported in Jan-August 2023. HLA analysis reveals that these peptides are predicted as binding to large number of HLA alleles and 71-90% population coverage in six continents. Identified peptides displayed good binding score with both HLA class I and HLA class II molecules in the docking study. Also, a vaccine construct docked with TLR-4 receptor displays strong interaction with 20 hydrogen bonds and molecular simulation analysis reveals that docked complex are stable. Additionally, the immunogenicity of these N protein peptides was confirmed using SARS-CoV-2 convalescent serum samples. We conclude that the identified N protein peptides contain highly conserved and antigenic epitopes which could be used as a target for the future vaccine development against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jigyasa Verma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Neha Kaushal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Manish Manish
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Venera Shakirova
- Department of Infectious Diseases, Kazan State Medical Academy, Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
16
|
Waksal JA, Bruedigam C, Komrokji RS, Jamieson CHM, Mascarenhas JO. Telomerase-targeted therapies in myeloid malignancies. Blood Adv 2023; 7:4302-4314. [PMID: 37216228 PMCID: PMC10424149 DOI: 10.1182/bloodadvances.2023009903] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
Human telomeres are tandem arrays that are predominantly composed of 5'-TTAGGG-3' nucleotide sequences at the terminal ends of chromosomes. These sequences serve 2 primary functions: they preserve genomic integrity by protecting the ends of chromosomes, preventing inappropriate degradation by DNA repair mechanisms, and they prevent loss of genetic information during cellular division. When telomeres shorten to reach a critical length, termed the Hayflick limit, cell senescence or death is triggered. Telomerase is a key enzyme involved in synthesizing and maintaining the length of telomeres within rapidly dividing cells and is upregulated across nearly all malignant cells. Accordingly, targeting telomerase to inhibit uncontrolled cell growth has been an area of great interest for decades. In this review, we summarize telomere and telomerase biology because it relates to both physiologic and malignant cells. We discuss the development of telomere- and telomerase-targeted therapeutic candidates within the realm of myeloid malignancies. We overview all mechanisms of targeting telomerase that are currently in development, with a particular focus on imetelstat, an oligonucleotide with direct telomerase inhibitory properties that has advanced the furthest in clinical development and has demonstrated promising data in multiple myeloid malignancies.
Collapse
Affiliation(s)
- Julian A. Waksal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Claudia Bruedigam
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | | | - John O. Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
17
|
Saleem S, Rashid AB, Shehzadi S, Mumtaz H, Saqib M, Bseiso A, Villasenor AV, Ahmed A, Sonia SN. Contemporaneous and upcoming trends in immunotherapy for prostate cancer: review. Ann Med Surg (Lond) 2023; 85:4005-4014. [PMID: 37554896 PMCID: PMC10406079 DOI: 10.1097/ms9.0000000000001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/02/2023] [Indexed: 08/10/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men worldwide. It affects more than 1.4 million men worldwide and kills up to 37 5000 people. PCa is routinely managed with chemotherapy and androgen deprivation therapy, but the success rate of these treatments is unsatisfactory. Immunotherapy is a novel method of treating different types of cancers, and it utilizes the body's own immune system to fight cancer. Different types of cancer respond differently to immunotherapy, with some showing excellent responses, while others do not show very satisfactory responses. PCa is known to be an immunologically cold tumor, such that conventional immunotherapy does not work as effectively as it works in other cancers. In the past decade, multiple studies and trials have been conducted to test different types of therapies, ranging from immune checkpoint inhibitors to anticancer vaccines to anticancer cytokines. Even after many studies, there is still a drug to be discovered that can completely cure any stage of PCa. Recent immunotherapeutic drug trials have started using immunotherapy in conjunction with chemotherapy and radiotherapy and have shown promising results. In this paper, the authors present a comprehensive overview of the currently used immunotherapeutic drugs as well as emerging immunotherapies, including modalities of combination immunotherapy with radiotherapy and chemotherapy. This review can help readers gain the latest knowledge about emerging trends in the current immunotherapy landscape for the treatment of PCa, as well as a general overview of the already used immunotherapy drugs for PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Anan Bseiso
- Hebron University, Palestine, State of Hebron
| | | | | | | |
Collapse
|
18
|
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life (Basel) 2023; 13:1498. [PMID: 37511873 PMCID: PMC10382052 DOI: 10.3390/life13071498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
Tian Y, Liu Z, Wang J, Li L, Wang F, Zhu Z, Wang X. Nanomedicine for Combination Urologic Cancer Immunotherapy. Pharmaceutics 2023; 15:546. [PMID: 36839868 PMCID: PMC9960671 DOI: 10.3390/pharmaceutics15020546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Urologic cancers, particularly kidney, bladder, and prostate cancer, have a growing incidence and account for about a million annual deaths worldwide. Treatments, including surgery, chemotherapy, radiotherapy, hormone therapy, and immunotherapy are the main therapeutic options in urologic cancers. Immunotherapy is now a clinical reality with marked success in solid tumors. Immunological checkpoint blockade, non-specific activation of the immune system, adoptive cell therapy, and tumor vaccine are the main modalities of immunotherapy. Immunotherapy has long been used to treat urologic cancers; however, dose-limiting toxicities and low response rates remain major challenges in the clinic. Herein, nanomaterial-based platforms are utilized as the "savior". The combination of nanotechnology with immunotherapy can achieve precision medicine, enhance efficacy, and reduce toxicities. In this review, we highlight the principles of cancer immunotherapy in urology. Meanwhile, we summarize the nano-immune technology and platforms currently used for urologic cancer treatment. The ultimate goal is to help in the rational design of strategies for nanomedicine-based immunotherapy in urologic cancer.
Collapse
Affiliation(s)
- Yun Tian
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Zhenzhu Liu
- Department of Cardiovascular, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jianbo Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Linan Li
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zheng Zhu
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuejian Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| |
Collapse
|
20
|
Jin T, Zhou C, Zhao L, Dong X, Zhou F. Advances in cancer vaccines for immunotherapy of prostate cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:148-156. [PMID: 36935188 PMCID: PMC10930556 DOI: 10.11817/j.issn.1672-7347.2023.220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 03/21/2023]
Abstract
Prostate cancer is currently one of the most common malignancies that endanger the lives and health of elderly men. In recent years, immunotherapy, which exploits the activation of anti-cancer host immune cells to accomplish tumor-killing effects, has emerged as a new study avenue in the treatment of prostate cancer. As an important component of immunotherapy, cancer vaccines have a unique position in the precision treatment of malignant tumors. Monocyte cell vaccines, dendritic cell vaccines, viral vaccines, peptide vaccines, and DNA/mRNA vaccines are the most often used prostate cancer vaccines. Among them, Sipuleucel-T, as a monocyte cell-based cancer vaccine, is the only FDA-approved therapeutic vaccine for prostate cancer, and has a unique position and role in advancing the development of immunotherapy for prostate cancer. However, due to its own limitations, Sipuleucel-T has not been widely adopted. Meanwhile, owing to the complexity of immunotherapy and the specificity of prostate cancer, the remaining prostate cancer vaccines have not shown good clinical benefit in large randomized phase II and phase III trials, and further in-depth studies are still needed.
Collapse
Affiliation(s)
- Tongtong Jin
- First School of Clinical Medicine, Lanzhou University, Lanzhou 730000.
| | - Chuan Zhou
- First School of Clinical Medicine, Lanzhou University, Lanzhou 730000
| | - Lei Zhao
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Xu Dong
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Fenghai Zhou
- First School of Clinical Medicine, Lanzhou University, Lanzhou 730000.
- Department of Urology, Gansu Provincial People's Hospital, Lanzhou 730000, China.
| |
Collapse
|
21
|
Shi T, Sun M, Lu C, Meng F. Self-assembled nanoparticles: A new platform for revolutionizing therapeutic cancer vaccines. Front Immunol 2023; 14:1125253. [PMID: 36895553 PMCID: PMC9988954 DOI: 10.3389/fimmu.2023.1125253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer vaccines have had some success in the past decade. Based on in-depth analysis of tumor antigen genomics, many therapeutic vaccines have already entered clinical trials for multiple cancers, including melanoma, lung cancer, and head and neck squamous cell carcinoma, which have demonstrated impressive tumor immunogenicity and antitumor activity. Recently, vaccines based on self-assembled nanoparticles are being actively developed as cancer treatment, and their feasibility has been confirmed in both mice and humans. In this review, we summarize recent therapeutic cancer vaccines based on self-assembled nanoparticles. We describe the basic ingredients for self-assembled nanoparticles, and how they enhance vaccine immunogenicity. We also discuss the novel design method for self-assembled nanoparticles that pose as a promising delivery platform for cancer vaccines, and the potential in combination with multiple therapeutic approaches.
Collapse
Affiliation(s)
- Tianyu Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengna Sun
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Changchang Lu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
22
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
24
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|