1
|
Yong GY, Kamkaew A, Kue CS. Synergistic approach of PEGylated photothermal agent and immunomodulator in cancer immunotherapy. Nanomedicine (Lond) 2025; 20:967-983. [PMID: 40214079 PMCID: PMC12051527 DOI: 10.1080/17435889.2025.2489342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Photothermal therapy (PTT) utilizes photothermal agents (PTAs) to generate heat at the local tumor site that leads to ablation upon photoirradiation at a specific wavelength of light. Currently, most of the available PTAs have weak tumor selectivity and depositing ability, which leads to poor therapeutic outcomes. PEGylation of PTAs improves therapeutic outcomes, prolongs systemic circulation time, enhances tumor accumulation, and reduces the risk of clearance by the immune system. This paper reviews the recent developments of PEGylated PTAs in photothermal cancer therapy from 2019 to 2023, highlighting their antitumour efficacy and immune response post-therapy with immune agents, current challenges and strategies. This review aims to foster knowledge dissemination on the application of nanomedicine in photothermal cancer therapy from an immunological perspective and to encourage the clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Gong Yi Yong
- School of Graduate Studies, Management and Science University, Shah Alam, Malaysia
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
2
|
Wang Z, Ren J, Jia K, Zhao Y, Liang L, Cheng Z, Huang F, Zhao X, Cheng J, Song S, Sheng T, Wan W, Shu Q, Wu D, Zhang J, Lu T, Chen Y, Ran T, Lu S. Identification and structural analysis of a selective tropomyosin receptor kinase C (TRKC) inhibitor. Eur J Med Chem 2022; 241:114601. [PMID: 35872544 DOI: 10.1016/j.ejmech.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
Abstract
Tropomyosin receptor kinases (TRKs) are a family of TRKA, TRKB and TRKC isoforms. It has been widely reported that TRKs are implicated in a variety of tumors with several Pan-TRK inhibitors currently being used or evaluated in clinical treatment. However, off-target adverse events frequently occur in the clinical use of Pan-TRK inhibitors, which result in poor patient compliance, even drug discontinuation. Although a subtype-selectivity TRK inhibitor may avert the potential off-target adverse events and can act as a more powerful tool compound in the biochemical studies on TRKs, the high sequence similarities of TRKs hinder the development of subtype-selectivity TRK inhibitors. For example, no selective TRKC inhibitor has been reported. Herein, a selective TRKC inhibitor (L13) was disclosed, with potent TRKC inhibitory activity and 107.5-/34.9-fold selectivity over TRKA/B (IC50 TRKA/B/C = 1400 nM, 454 nM, 13 nM, respectively). Extensive molecular dynamics simulations illustrated that key interactions of L13 with the residues and diversely conserved water molecules in the ribose regions of different TRKs may be the structural basis of selectivity. This will provide inspiring insights into the development of subtype-selectivity TRK inhibitors. Moreover, L13 could serve as a tool compound to investigate the distinct biological functions of TRKC and a starting point for further research on drugs specifically targeting TRKC.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jiwei Ren
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Kun Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, PR China
| | - Li Liang
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jie Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shiyu Song
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, 210038, PR China
| | - Tiancheng Sheng
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Weiqi Wan
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qingqing Shu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Junhao Zhang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ting Ran
- Drug and Vaccine Research Center, Guangzhou Laboratory, Guangzhou, 510005, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|