1
|
Cao R, Chen B, Song K, Guo F, Pan H, Cao Y. Characterization and potential of periosteum-derived cells: an overview. Front Med (Lausanne) 2023; 10:1235992. [PMID: 37554503 PMCID: PMC10405467 DOI: 10.3389/fmed.2023.1235992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
As a thin fibrous layer covering the bone surface, the periosteum plays a significant role in bone physiology during growth, development and remodeling. Over the past several decades, the periosteum has received considerable scientific attention as a source of mesenchymal stem cells (MSCs). Periosteum-derived cells (PDCs) have emerged as a promising strategy for tissue engineering due to their chondrogenic, osteogenic and adipogenic differentiation capacities. Starting from the history of PDCs, the present review provides an overview of their characterization and the procedures used for their isolation. This study also summarizes the chondrogenic, osteogenic, and adipogenic abilities of PDCs, serving as a reference about their potential therapeutic applications in various clinical scenarios, with particular emphasis on the comparison with other common sources of MSCs. As techniques continue to develop, a comprehensive analysis of the characterization and regulation of PDCs can be conducted, further demonstrating their role in tissue engineering. PDCs present promising potentials in terms of their osteogenic, chondrogenic, and adipogenic capacities. Further studies should focus on exploring their utility under multiple clinical scenarios to confirm their comparative benefit over other commonly used sources of MSCs.
Collapse
Affiliation(s)
- Rongkai Cao
- Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| | - Beibei Chen
- Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| | - Kun Song
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fang Guo
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Haoxin Pan
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yujie Cao
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Yoo H, Yoon T, Bae HS, Kang MS, Kim BJ. Does periosteum promote chondrogenesis? A comparison of free periosteal and perichondrial grafts in the regeneration of ear cartilage. Arch Craniofac Surg 2021; 22:260-267. [PMID: 34732038 PMCID: PMC8568495 DOI: 10.7181/acfs.2021.00423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/16/2021] [Indexed: 11/24/2022] Open
Abstract
Background Elastic ear cartilage is a good source of tissue for support or augmentation in plastic and reconstructive surgery. However, the amount of ear cartilage is limited and excessive use of cartilage can cause deformation of the auricular framework. This animal study investigated the potential of periosteal chondrogenesis in an ear cartilage defect model. Methods Twelve New Zealand white rabbits were used in the present study. Four ear cartilage defects were created in both ears of each rabbit, between the central artery and marginal veins. The defects were covered with perichondrium (group 1), periosteum taken from the calvarium (group 2), or periosteum taken from the tibia (group 3). No coverage was performed in a control group (group 4). All animals were sacrificed 6 weeks later, and the ratio of neo-cartilage to defect size was measured. Results Significant chondrogenesis occurred only in group 1 (cartilage regeneration ratio: mean± standard deviation, 0.97± 0.60), whereas the cartilage regeneration ratio was substantially lower in group 2 (0.10± 0.11), group 3 (0.08± 0.09), and group 4 (0.08± 0.14) (p=0.004). Instead of chondrogenesis, osteogenesis was observed in the periosteal graft groups. No statistically significant differences were found in the amount of osteogenesis or chondrogenesis between groups 2 and 3. Group 4 showed fibrous tissue accumulation in the defect area. Conclusion Periosteal grafts showed weak chondrogenic potential in an ear cartilage defect model of rabbits; instead, they exhibited osteogenesis, irrespective of their embryological origin.
Collapse
Affiliation(s)
- Hyokyung Yoo
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul, Korea
| | - Taekeun Yoon
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul, Korea
| | | | | | - Byung Jun Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
3
|
Maglio M, Brogini S, Pagani S, Giavaresi G, Tschon M. Current Trends in the Evaluation of Osteochondral Lesion Treatments: Histology, Histomorphometry, and Biomechanics in Preclinical Models. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4040236. [PMID: 31687388 PMCID: PMC6803751 DOI: 10.1155/2019/4040236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
Osteochondral lesions (OCs) are typically of traumatic origins but are also caused by degenerative conditions, in primis osteoarthritis (OA). On the other side, OC lesions themselves, getting worse over time, can lead to OA, indicating that chondral and OC defects represent a risk factor for the onset of the pathology. Many animal models have been set up for years for the study of OC regeneration, being successfully employed to test different treatment strategies, from biomaterials and cells to physical and biological adjuvant therapies. These studies rely on a plethora of post-explant investigations ranging from histological and histomorphometric analyses to biomechanical ones. The present review aims to analyze the methods employed for the evaluation of OC treatments in each animal model by screening literature data within the last 10 years. According to the selected research criteria performed in two databases, 60 works were included. Data revealed that lapine (50% of studies) and ovine (23% of studies) models are predominant, and knee joints are the most used anatomical locations for creating OC defects. Analyses are mostly conducted on paraffin-embedded samples in order to perform histological/histomorphometric analyses by applying semiquantitative scoring systems and on fresh samples in order to perform biomechanical investigations by indentation tests on articular cartilage. Instead, a great heterogeneity is pointed out in terms of OC defect dimensions and animal's age. The choice of experimental times is generally adequate for the animal models adopted, although few studies adopt very long experimental times. Improvements in data reporting and in standardization of protocols would be desirable for a better comparison of results and for ethical reasons related to appropriate and successful animal experimentation.
Collapse
Affiliation(s)
- M. Maglio
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, 40136 Bologna, Italy
| | - S. Brogini
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, 40136 Bologna, Italy
| | - S. Pagani
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, 40136 Bologna, Italy
| | - G. Giavaresi
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, 40136 Bologna, Italy
| | - M. Tschon
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
4
|
Schulze-Tanzil G, Silawal S, Hoyer M. Anatomical feature of knee joint in Aachen minipig as a novel miniature pig line for experimental research in orthopaedics. Ann Anat 2019; 227:151411. [PMID: 31394168 DOI: 10.1016/j.aanat.2019.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/08/2019] [Accepted: 07/11/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND The pig is a commonly used large animal model, since pigs share anatomical and physiological similarities with humans. In contrast to other experimental pig lines the Aachen minipig, as a robust novel minipig does not require housing with any barrier. To estimate transferability of results to human conditions, pig lines should be thoroughly characterized. PURPOSE Therefore, we analyzed the anatomical pecularities of the knee joint of the novel "Aachen minipig" line raised for experimental conditions. METHODS Eight knee joints of four adult Aachen minipigs were dissected measuring the dimensions of typical landmarks using a digital caliper. Hybrid pig and human knee joints served as controls. Cartilage of the Aachen minipig (trochlear groove, femoral condyles, menisci) were assessed histologically. RESULTS The Aachen minipig shared its knee joint anatomy with the hybrid pig. In comparison to humans, peculiarities of the pig were demonstrated in the Aachen minipig: the lateral meniscus and the lateral tibial joint surface were significantly longer than the medial counterparts. The fibular head was covered by fibrocartilage and completely integrated into the lateral lower joint surface. The cartilage at the joint areas usually used for cartilage repair studies was in average 0.66±0.04mm thick. The porcine anterior cruciate ligament (ACL) attached with two bundles at the anterior tibial plateau separated from each other by the lateral anterior meniscotibial ligament. Aachen minipig articular and meniscal cartilage presented the typical histoarchitecture. CONCLUSIONS The Aachen minipig reflects porcine anatomical peculiarities, which should be considered, especially for meniscus and ACL reconstruction.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Prof. Ernst Nathan Str. 1, Nuremberg, 90419, Germany.
| | - Sandeep Silawal
- Department of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Prof. Ernst Nathan Str. 1, Nuremberg, 90419, Germany
| | - Mariann Hoyer
- amedes MVZ für Laboratoriumsdiagnostik und Mikrobiologie Halle/Leipzig GmbH, 06112 Halle, Germany
| |
Collapse
|
5
|
Mendes LF, Katagiri H, Tam WL, Chai YC, Geris L, Roberts SJ, Luyten FP. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo. Stem Cell Res Ther 2018; 9:42. [PMID: 29467016 PMCID: PMC5822604 DOI: 10.1186/s13287-018-0787-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/04/2018] [Accepted: 01/22/2018] [Indexed: 02/08/2023] Open
Abstract
Background Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. Methods hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Results Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Conclusion Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units. Electronic supplementary material The online version of this article (10.1186/s13287-018-0787-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L F Mendes
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium
| | - H Katagiri
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium
| | - W L Tam
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium
| | - Y C Chai
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium
| | - L Geris
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Biomechanics Research Unit, University of Liege, Chemin des Chevreuils 1 - BAT 52/3, 4000, Liege 1, Belgium.,Biomechanics Section, KU Leuven, Celestijnenlaan 300C bus 2419, 3001, Leuven, Belgium
| | - S J Roberts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.,Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
| | - F P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Campus Gasthuisberg O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium. .,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, bus 813, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Sakata R, Kokubu T, Mifune Y, Inui A, Nishimoto H, Fujioka H, Kuroda R, Kurosaka M. A new bioabsorbable cotton-textured synthetic polymer scaffold for osteochondral repair. INTERNATIONAL ORTHOPAEDICS 2014; 38:2413-20. [PMID: 24384940 DOI: 10.1007/s00264-013-2253-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/06/2013] [Indexed: 11/24/2022]
Abstract
PURPOSE We have previously reported that a cylindrical bioabsorbable synthetic polymer scaffold made of poly (DL-lactide-co-glycolide) (PLG) can be used to repair osteochondral defects without using cultured cells in a rabbit model. This cylindrical scaffold has a solid and pre-formed design, which limits its widespread application. Therefore, we created a cotton-textured PLG scaffold, which would be superior to other scaffolds in terms of plastic property and operability. The purpose of the present study was to examine the efficacy of the cotton-textured PLG scaffold in the repair of osteochondral defects. METHODS Cotton-textured PLG scaffolds were prepared using the electrospinning method and used to repair osteochondral defects produced on the right femoral condyle in 36 rabbits. As a control, the defect was left untreated. The outcomes of repair were examined histologically at postoperative weeks four, eight, and 12. RESULTS In the untreated control group, the surface of the defect remained concave and the regenerated cartilaginous tissue partially covered the articular surface even at postoperative week 12. In the scaffold group, cartilaginous tissue covered the surface of the defect at postoperative week four, and the surface was smooth and the cartilaginous tissue was well regenerated and integrated with the native cartilage at postoperative week 12. CONCLUSIONS The cotton-textured PLG scaffold could repair the osteochondral defect with good outcomes similar to those previously reported for the cylindrical scaffold, with its characteristic advantages of better plasticity and operability. We conclude that the cotton-textured PLG scaffold has potential for clinical application in comminuted osteochondral injury.
Collapse
Affiliation(s)
- Ryosuke Sakata
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|