1
|
Giménez-El-Amrani A, Sanz-Garcia A, Villalba-Rojas N, Mirabet V, Valverde-Navarro A, Escobedo-Lucea C. The untapped potential of 3D virtualization using high resolution scanner-based and photogrammetry technologies for bone bank digital modeling. Comput Biol Med 2024; 183:109340. [PMID: 39504780 DOI: 10.1016/j.compbiomed.2024.109340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Three-dimensional (3D) scanning technologies could transform medical practices by creating virtual tissue banks. In bone transplantation, new approaches are needed to provide surgeons with accurate tissue measurements while minimizing contamination risks and avoiding repeated freeze-thaw cycles of banked tissues. This study evaluates three prominent non-contact 3D scanning methods-structured light scanning (SLG), laser scanning (LAS), and photogrammetry (PHG)-to support tissue banking operations. We conducted a thorough examination of each technology and the precision of the 3D scanned bones using relevant anatomical specimens under sterile conditions. Cranial caps were scanned as separate inner and outer surfaces, automatically aligned, and merged with post-processing. A colorimetric analysis based on CIEDE2000 was performed, and the results were compared with questionnaires distributed among neurosurgeons. The findings indicate that certain 3D scanning methods were more appropriate for specific bones. Among the technologies, SLG emerged as optimal for tissue banking, offering a superior balance of accuracy, minimal distortion, cost-efficiency, and ease of use. All methods slightly underestimated the volume of the specimens in their virtual models. According to the colorimetric analysis and the questionnaires given to the neurosurgeons, our low-cost PHG system performed better than others in capturing cranial caps, although it exhibited the least dimensional accuracy. In conclusion, this study provides valuable insights for surgeons and tissue bank personnel in selecting the most efficient 3D non-contact scanning technology and optimizing protocols for modernized tissue banking. Future work will advance towards smart healthcare solutions, explore the development of virtual tissue banks.
Collapse
Affiliation(s)
- Anuar Giménez-El-Amrani
- BTELab. Fundación de Investigación del Hospital General Universitario de Valencia, Avda. Tres Cruces, 2, Pabellón B Planta 4, Valencia, 46014, Spain
| | - Andres Sanz-Garcia
- Department of Mechanical Engineering, University of Salamanca, 37007, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007, Salamanca, Spain; Unit of Excellence in Structured Light and Matter (LUMES), University of Salamanca, Spain.
| | - Néstor Villalba-Rojas
- BTELab. Fundación de Investigación del Hospital General Universitario de Valencia, Avda. Tres Cruces, 2, Pabellón B Planta 4, Valencia, 46014, Spain
| | - Vicente Mirabet
- Cell and Tissue Bank, Centro de Transfusión de la Comunidad Valenciana, Avenida del Cid, 65-A, 46014, Valencia, Spain
| | - Alfonso Valverde-Navarro
- Department of Anatomy and Human Embryology, Faculty of Medicine and Odontology, University of Valencia, E-46010, Valencia, Spain
| | - Carmen Escobedo-Lucea
- BTELab. Fundación de Investigación del Hospital General Universitario de Valencia, Avda. Tres Cruces, 2, Pabellón B Planta 4, Valencia, 46014, Spain; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Vila M, Xiberta P, Ruiz M, Bermudo R, Leivas D, Fariñas O, Vilarrodona A, Boada I. BeST-Graft viewer, a new system to improve the bone allograft-recipient matching process. Comput Biol Med 2024; 176:108553. [PMID: 38723397 DOI: 10.1016/j.compbiomed.2024.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Tissue establishments are responsible for processing, testing, preserving, storing, and distributing allografts from donors to be transplanted into recipients. In some situations, a matching process is required to determine the allograft that best fits the recipient. Allograft morphology is a key consideration for the matching process. The manual procedures applied to obtain these parameters make the process error-prone. MATERIAL AND METHODS A new system to manage bone allograft-recipient matching for tissue establishments is proposed. The system requires bone allografts to be digitalized and the resulting images to be stored in a DICOM file. The system provides functionalities to: (i) manage DICOM files (registered in the PACs) from both allografts and recipients; (ii) reconstruct 3D models from DICOM images; (iii) explore 3D models using 2D, 3D, and multiplanar reconstructions; (iv) take allograft and recipient measurements; and (v) visualize and interact with recipient and allograft data simultaneously. The system has been installed in the Barcelona Tissue Bank (Banc de Sang i Teixits), which has digitalized the bone allografts to test the system. RESULTS A use case with a femur is presented to test all the viewer functionalities. In addition, the recipient-allograft workflow is evaluated to show the steps of the procedure where the viewer can be used. CONCLUSIONS The bone allograft-recipient matching procedure can be optimized using software tools with functionalities to visualize, interact, and take measurements.
Collapse
Affiliation(s)
- Marius Vila
- Graphics and Imaging Laboratory, Universitat de Girona, Girona, Catalonia.
| | - Pau Xiberta
- Graphics and Imaging Laboratory, Universitat de Girona, Girona, Catalonia
| | - Marc Ruiz
- Graphics and Imaging Laboratory, Universitat de Girona, Girona, Catalonia
| | - Raquel Bermudo
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Catalonia; Vall Hebron Institute of Research (VHIR), Barcelona, Catalonia
| | - Daniel Leivas
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Catalonia
| | - Oscar Fariñas
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Catalonia; Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Catalonia
| | - Anna Vilarrodona
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Catalonia; Vall Hebron Institute of Research (VHIR), Barcelona, Catalonia
| | - Imma Boada
- Graphics and Imaging Laboratory, Universitat de Girona, Girona, Catalonia
| |
Collapse
|
3
|
Zhang Z, Shi Y, Fu J, Liu D, Zhu D, Liu X, Dang J, Fan H. Customized three dimensional printed prosthesis as a novel intercalary reconstruction for resection of extremity bone tumours: a retrospective cohort study. INTERNATIONAL ORTHOPAEDICS 2022; 46:2971-2981. [PMID: 36083497 DOI: 10.1007/s00264-022-05559-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
AIMS The 3D-printed prosthesis (3DP) is a novel treatment for massive bone defect reconstruction after tumor resection. This study was aiming to explore the clinical efficacy of customized 3DP for intercalary reconstruction by comparing the clinical outcomes after implanting customized 3DP or conventional allograft in limb salvage surgery. METHODS A total of 28 patients with extremity bone tumors who underwent customized 3DP or conventional allograft reconstruction between 2011 and 2018 at our institution were analyzed retrospectively. Among them, 14 cases received customized 3DP reconstruction (3DP group), and 14 cases received conventional allograft reconstruction (control group). Demographics, surgical outcomes, radiographical assessments, limb functions, and post-operative complications between these two groups were collected to evaluate clinical outcomes. RESULTS No significant difference was observed in the demographics, mean intra-operative blood loss, MOSI scores, and MSTS scores between the two groups. Patients in 3DP group had a shorter operative time (157.9 vs 199.6 min, p = 0.03) and lesser number of fluoroscopy (4.1 vs 8.1, p < 0.001) compared to control group. The mean time to osseointegration at bone-implant interfaces in 3DP group was significantly earlier than that in control group (6.1 vs 12.2 months, p < 0.001). Moreover, the 3DP group had a significantly lower post-operative complication rate than the control group (7% vs 50%, p = 0.03). CONCLUSIONS The customized 3DP might provide a promising strategy for intercalary reconstruction in limb salvage surgery with more precise reconstruction, higher surgical efficiency, and comparable satisfactory clinical outcomes.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yubo Shi
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Fu
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Liu
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dongze Zhu
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xincheng Liu
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jingyi Dang
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Vivarelli L, Govoni M, Attala D, Zoccali C, Biagini R, Dallari D. Custom Massive Allograft in a Case of Pelvic Bone Tumour: Simulation of Processing with Computerised Numerical Control vs. Robotic Machining. J Clin Med 2022; 11:jcm11102781. [PMID: 35628908 PMCID: PMC9143408 DOI: 10.3390/jcm11102781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
The use of massive bone allografts after the resection of bone tumours is still a challenging process. However, to overcome some issues related to the processing procedures and guarantee the best three-dimensional matching between donor and recipient, some tissue banks have developed a virtual tissue database based on the scanning of the available allografts for using their 3D shape during virtual surgical planning (VSP) procedures. To promote the use of future VSP bone-shaping protocols useful for machining applications within a cleanroom environment, in our work, we simulate a massive bone allograft machining with two different machines: a four-axes (computer numerical control, CNC) vs. a five-axes (robot) milling machine. The allograft design was based on a real case of allograft reconstruction after pelvic tumour resection and obtained with 3D Slicer and Rhinoceros software. Machining simulations were performed with RhinoCAM and graphically and mathematically analysed with CloudCompare and R, respectively. In this case, the geometrical differences of the allograft design are not clinically relevant; however, the mathematical analysis showed that the robot performed better than the four-axes machine. The proof-of-concept presented here paves the way towards massive bone allograft cleanroom machining. Nevertheless, further studies, such as the simulation of different types of allografts and real machining on massive bone allografts, are needed.
Collapse
Affiliation(s)
- Leonardo Vivarelli
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
- Correspondence: (L.V.); (M.G.)
| | - Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
- Correspondence: (L.V.); (M.G.)
| | - Dario Attala
- Department of Oncological Orthopaedics—Musculoskeletal Tissue Bank, IRCCS—Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Carmine Zoccali
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Science, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Roberto Biagini
- Department of Oncological Orthopaedics, IRCCS—Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
5
|
Howe BM, Broski SM, Littrell LA, Pepin KM, Wenger DE. Quantitative Musculoskeletal Tumor Imaging. Semin Musculoskelet Radiol 2020; 24:428-440. [PMID: 32992370 DOI: 10.1055/s-0040-1708825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The role of quantitative magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) techniques continues to grow and evolve in the evaluation of musculoskeletal tumors. In this review we discuss the MRI quantitative techniques of volumetric measurement, chemical shift imaging, diffusion-weighted imaging, elastography, spectroscopy, and dynamic contrast enhancement. We also review quantitative PET techniques in the evaluation of musculoskeletal tumors, as well as virtual surgical planning and three-dimensional printing.
Collapse
Affiliation(s)
- B Matthew Howe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Kay M Pepin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Doris E Wenger
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Kubicek J, Tomanec F, Cerny M, Vilimek D, Kalova M, Oczka D. Recent Trends, Technical Concepts and Components of Computer-Assisted Orthopedic Surgery Systems: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5199. [PMID: 31783631 PMCID: PMC6929084 DOI: 10.3390/s19235199] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.
Collapse
Affiliation(s)
- Jan Kubicek
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, FEECS, 708 00 Ostrava-Poruba, Czech Republic; (F.T.); (M.C.); (D.V.); (M.K.); (D.O.)
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Navigation in surgery has increasingly become more commonplace. The use of this technological advancement has enabled ever more complex and detailed surgery to be performed to the benefit of surgeons and patients alike. This is particularly so when applying the use of navigation within the field of orthopedic oncology. The developments in computer processing power coupled with the improvements in scanning technologies have permitted the incorporation of navigational procedures into day-to-day practice. A comprehensive search of PubMed using the search terms "navigation", "orthopaedic" and "oncology" yielded 97 results. After filtering for English language papers, excluding spinal surgery and review articles, this resulted in 38 clinical studies and case reports. These were analyzed in detail by the authors (GM and JS) and the most relevant papers reviewed. We have sought to provide an overview of the main types of navigation systems currently available within orthopedic oncology and to assess some of the evidence behind its use.
Collapse
Affiliation(s)
- Guy Vernon Morris
- The Oncology Department, The Royal Orthopaedic Hospital NHS Trust, Birmingham, West Midlands, United Kingdom,Address for correspondence: Dr. Guy Vernon Morris, The Oncology Unit, The Royal Orthopaedic Hospital NHS Trust, Bristol Road South, Birmingham B31 2AP, West Midlands, United Kingdom. E-mail:
| | - Jonathan D Stevenson
- The Oncology Department, The Royal Orthopaedic Hospital NHS Trust, Birmingham, West Midlands, United Kingdom
| | - Scott Evans
- The Oncology Department, The Royal Orthopaedic Hospital NHS Trust, Birmingham, West Midlands, United Kingdom
| | - Michael C Parry
- The Oncology Department, The Royal Orthopaedic Hospital NHS Trust, Birmingham, West Midlands, United Kingdom
| | - Lee Jeys
- The Oncology Department, The Royal Orthopaedic Hospital NHS Trust, Birmingham, West Midlands, United Kingdom,School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
8
|
Anastasieva EA, Sadovoy MA, Voropaeva VV, Kirilova IA. RECONSTRUCTION OF BONE DEFECTS AFTER TUMOR RESECTION BY AUTOAND ALLOGRAFTS (review of literature). TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2017. [DOI: 10.21823/2311-2905-2017-23-3-148-155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The problem of replacement of large bone defects resulting from segmental bone resections in patients with bone tumors is still actual in modern orthopedics. Segmental defects cause the main difficulty especially in cases of disturbance of normal biomechanics while the “gold standard” of reconstruction with bone autograft is not always possible. The reason is that the defect can be so extensive that would make it impossible to harvest necessary autobone stock. Therefore, allografts based on demineralized bone with optimal properties for osteoregeneration are used as an alternative for autograft. For certain composite materials it is possible to program the properties of future graft by changing its compound. Literature analysis revealed that the effectiveness of the allograft in combination with additional components is comparable to autograft effectiveness. Mesenchymal stem cells of both bone marrow and adipose tissue can be used as an additional component to improve osteoregeneration. It is noteworthy that the analyzed studies did not reveal the influence of stem cells on the tumor recurrence. Nevertheless, the authors support the need of further researches in this area to confirm gained results. Some authors still prefer traditional methods of bone traction despite obtaining own satisfactory results of defects reconstruction with allografts. Such opinion is based on proven effectiveness of the method, structural stability of construction during treatment period and ability to adjust the process of bone regeneration at any stage. The authors goal was to analyze publications over the recent 5 years with the results of experiments and clinical studies on the replacement of large bone defects after bone tumor resection with autoand allografts. Based on the literature analysis the authors propose a general algorithm for graft selection in replacement of large bone defects after segmental bone resections.
Collapse
|
9
|
Automatic allograft bone selection through band registration and its application to distal femur. Cell Tissue Bank 2017; 18:297-305. [PMID: 28744791 DOI: 10.1007/s10561-017-9643-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
Clinical reports suggest that large bone defects could be effectively restored by allograft bone transplantation, where allograft bone selection acts an important role. Besides, there is a huge demand for developing the automatic allograft bone selection methods, as the automatic methods could greatly improve the management efficiency of the large bone banks. Although several automatic methods have been presented to select the most suitable allograft bone from the massive allograft bone bank, these methods still suffer from inaccuracy. In this paper, we propose an effective allograft bone selection method without using the contralateral bones. Firstly, the allograft bone is globally aligned to the recipient bone by surface registration. Then, the global alignment is further refined through band registration. The band, defined as the recipient points within the lifted and lowered cutting planes, could involve more local structure of the defected segment. Therefore, our method could achieve robust alignment and high registration accuracy of the allograft and recipient. Moreover, the existing contour method and surface method could be unified into one framework under our method by adjusting the lift and lower distances of the cutting planes. Finally, our method has been validated on the database of distal femurs. The experimental results indicate that our method outperforms the surface method and contour method.
Collapse
|
10
|
Allograft selection for distal femur through cutting contour registration. Cell Tissue Bank 2016; 17:699-711. [PMID: 27631324 DOI: 10.1007/s10561-016-9580-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Allograft reconstruction is an acceptable procedure for the recovery of normal anatomy after the bone tumor resection. During the past few years, several automated methods have been proposed to select the best anatomically matching allograft from the virtual donor bone bank. The surface-based automated method uses the contralateral healthy bone to obtain the normal surface shape of the diseased bone, which could achieve good matching of the defect and the selected allograft. However, the surface-based method focuses on the matching of the whole bone so that the matching of the contact surface between the allograft and the recipient bone may not be optimal. To deal with the above problem, we propose a cutting contour based method for the allograft selection. Cutting contour from the recipient bone could reflect the structural information of the defect and is seldom influenced by tumor. Thus the cutting contour can be used as the matching template to find the optimal alignment of the recipient bone and the allograft. The proposed method is validated using the data of distal femurs where bone transplantation is commonly performed. Experimental results show that the proposed method generally outperforms the surface-based method within modest extra time. Overall, our contour-based method is an effective complementary technique for allograft selection in the virtual bone bank.
Collapse
|
11
|
Aponte-Tinao LA, Ritacco LE, Milano FE, Ayerza MA, Farfalli GF. Techniques in surgical navigation of extremity tumors: state of the art. Curr Rev Musculoskelet Med 2015; 8:319-23. [PMID: 26408148 DOI: 10.1007/s12178-015-9305-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Image-guided surgical navigation allows the orthopedic oncologist to perform adequate tumor resection based on fused images (CT, MRI, PET). Although surgical navigation was first performed in spine and pelvis, recent reports have described the use of this technique in bone tumors located in the extremities. In long bones, this technique has moved from localization or percutaneous resection of benign tumors to complex bone tumor resections and guided reconstructions (allograft or endoprostheses). In recent years, the reported series have increased from small numbers (5 to 16 patients) to larger ones (up to 130 patients). The purpose of this paper is to review recent reports regarding surgical navigation in the extremities, describing the results obtained with different kind of reconstructions when navigation is used and how the previously described problems were solved.
Collapse
Affiliation(s)
| | - Lucas E Ritacco
- Italian Hospital of Buenos Aires, Potosi 4247, Buenos Aires, Argentina.
| | - Federico E Milano
- Italian Hospital of Buenos Aires, Potosi 4247, Buenos Aires, Argentina.
| | - Miguel A Ayerza
- Italian Hospital of Buenos Aires, Potosi 4247, Buenos Aires, Argentina.
| | - German F Farfalli
- Italian Hospital of Buenos Aires, Potosi 4247, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Structural bone allograft fractures in oncological procedures. INTERNATIONAL ORTHOPAEDICS 2015; 39:2261-5. [DOI: 10.1007/s00264-015-2980-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
|