1
|
Chang SY, Kang DH, Cho SK. Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review. Asian Spine J 2024; 18:444-457. [PMID: 38146053 PMCID: PMC11222887 DOI: 10.31616/asj.2023.0407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023] Open
Abstract
This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient's anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.
Collapse
Affiliation(s)
- Sam Yeol Chang
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul,
Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Ho Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
- Department of Orthopaedic Surgery, Spine Center, Samsung Medical Center, Seoul,
Korea
| | - Samuel K. Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY,
USA
| |
Collapse
|
2
|
Bian Y, Hu T, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Feng B, Liang R, Tan C, Weng X. Bone tissue engineering for treating osteonecrosis of the femoral head. EXPLORATION (BEIJING, CHINA) 2023; 3:20210105. [PMID: 37324030 PMCID: PMC10190954 DOI: 10.1002/exp.20210105] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a devastating and complicated disease with an unclear etiology. Femoral head-preserving surgeries have been devoted to delaying and hindering the collapse of the femoral head since their introduction in the last century. However, the isolated femoral head-preserving surgeries cannot prevent the natural progression of ONFH, and the combination of autogenous or allogeneic bone grafting often leads to many undesired complications. To tackle this dilemma, bone tissue engineering has been widely developed to compensate for the deficiencies of these surgeries. During the last decades, great progress has been made in ingenious bone tissue engineering for ONFH treatment. Herein, we comprehensively summarize the state-of-the-art progress made in bone tissue engineering for ONFH treatment. The definition, classification, etiology, diagnosis, and current treatments of ONFH are first described. Then, the recent progress in the development of various bone-repairing biomaterials, including bioceramics, natural polymers, synthetic polymers, and metals, for treating ONFH is presented. Thereafter, regenerative therapies for ONFH treatment are also discussed. Finally, we give some personal insights on the current challenges of these therapeutic strategies in the clinic and the future development of bone tissue engineering for ONFH treatment.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yingjie Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Wei Zhu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Bin Feng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chaoliang Tan
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Wang X, Ning B, Pei X. Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces 2021; 208:112055. [PMID: 34438295 DOI: 10.1016/j.colsurfb.2021.112055] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Implant-associated infections and aseptic loosening are some of the main reasons for implant failure. Therefore, there is an urgent need to improve the osseointegration and antibacterial capabilities of implant materials. In recent years, a large number of breakthroughs in the biological application of tantalum and its derivatives have been achieved. Owing to their corrosion resistance, biocompatibility, osseointegration ability, and antibacterial properties, they have shown considerable potential in orthopedic and dental implant applications. In this review, we provide the latest progress and achievements in the research on osseointegration and antibacterial properties of tantalum as well as its derivatives, and summarize the surface modification methods to enhance their osseointegration and antibacterial properties.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Boyu Ning
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
He M, Wei Q, Chen Z, Yang F, Chen X, Qin YX, Fang B, He W. Porous tantalum rod implantation is associated with low survival rates in patients with type C2 osteonecrosis of the femoral head but has no effect on the clinical outcome of conversion total hip arthroplasty: a retrospective study with an average 8-year follow-up. BMC Musculoskelet Disord 2020; 21:841. [PMID: 33308229 PMCID: PMC7733268 DOI: 10.1186/s12891-020-03860-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
Background Our study aimed to investigate the clinical outcomes and survival rates following porous tantalum rod surgery (PTRS) and conversion total hip arthroplasty (THA) subsequent to failed PTRS. Methods A total of 38 subjects (40 hips) with osteonecrosis of the femoral head (ONFH) were included in this retrospective study between January 2008 and December 2011. All subjects were evaluated before surgery by using the Association Research Circulation Osseous (ARCO) classification system, the Japan Investigation Committee (JIC) classification and the Harris hip score (HHS). The endpoint of this study was set as final follow-up (including the survival time of PTRS and conversion THA). The rates of radiological progression were also evaluated. Patients who received conversion THA were further followed and compared to a control group of 58 patients with ONFH who underwent primary THA. Results The mean follow-up time was 120.7 ± 9.2 (range, 104–143) months, and the overall survival rate was 75% at 96 months (ARCO stage II: 81.5%; stage III: 38.5%; JIC type C1: 83.3%; C2: 30%). The HHS before surgery was 59 (55–61), in contrast to 94 (91–96) at 96 months follow-up (P < 0.01). HHS in stage III show a significant poorer result compared to stage II at 24 months. HHS in Type C2 group show no significant difference compared to HHS before surgery at 24 and 60 months follow up (P = 0.91, P = 0.30). Twelve hips requiring secondary THA were followed for 66.9 ± 31.7 months, and control hips that underwent primary THA was followed for 75.4 ± 14.9 months. The HHS in the conversion group was 89 (86–93) and that in the primary THA group was 92 (79–95, P = 0.09) at the 5-year follow-up. Conclusion In the mid-term follow-up, porous tantalum implants showed an encouraging survival rate in symptomatic patients in early stages (ARCO stage II) or with limited necrotic lesions (JIC type C1). In addition, our results did not demonstrated any difference between primary THA and conversion THA.
Collapse
Affiliation(s)
- Mincong He
- Department of Orthopedic Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Qiushi Wei
- Institute of Orthopedics of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, NO.12 Jichang Road, Guangzhou, Guangdong, 510405, People's Republic of China
| | - Zhenqiu Chen
- Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fan Yang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xiaojun Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Bin Fang
- Department of Orthopedic Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China. .,Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Wei He
- Institute of Orthopedics of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China. .,The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, NO.12 Jichang Road, Guangzhou, Guangdong, 510405, People's Republic of China.
| |
Collapse
|
5
|
Mont MA, Salem HS, Piuzzi NS, Goodman SB, Jones LC. Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today?: A 5-Year Update. J Bone Joint Surg Am 2020; 102:1084-1099. [PMID: 32282421 PMCID: PMC7508290 DOI: 10.2106/jbjs.19.01271] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
➢. Clinicians should exercise a high level of suspicion in at-risk patients (those who use corticosteroids, consume excessive alcohol, have sickle cell disease, etc.) in order to diagnose osteonecrosis of the femoral head in its earliest stage. ➢. Nonoperative treatment modalities have generally been ineffective at halting progression. Thus, nonoperative treatment is not appropriate in early stages when one is attempting to preserve the native joint, except potentially on rare occasions for small-sized, medially located lesions, which may heal without surgery. ➢. Joint-preserving procedures should be attempted in early-stage lesions to save the femoral head. ➢. Cell-based augmentation of joint-preserving procedures continues to show promising results, and thus should be considered as an ancillary treatment method that may improve clinical outcomes. ➢. The outcomes of total hip arthroplasty in the setting of osteonecrosis are excellent, with results similar to those in patients who have an underlying diagnosis of osteoarthritis.
Collapse
Affiliation(s)
- Michael A. Mont
- Lenox Hill Hospital, New York, NY,Cleveland Clinic, Cleveland, Ohio,Email address for M.A. Mont:
| | | | | | | | - Lynne C. Jones
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Lei PF, Su SL, Kong LY, Wang CG, Zhong D, Hu YH. Mixed Reality Combined with Three-Dimensional Printing Technology in Total Hip Arthroplasty: An Updated Review with a Preliminary Case Presentation. Orthop Surg 2020; 11:914-920. [PMID: 31663276 PMCID: PMC6819179 DOI: 10.1111/os.12537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/18/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing technology, virtual reality, and augmented reality technology have been used to help surgeons to complete complex total hip arthroplasty, while their respective shortcomings limit their further application. With the development of technology, mixed reality (MR) technology has been applied to improve the success rate of complicated hip arthroplasty because of its unique advantages. We presented a case of a 59-year-old man with an intertrochanteric fracture in the left femur, who had received a prior left hip fusion. After admission to our hospital, a left total hip arthroplasty was performed on the patient using a combination of MR technology and 3D printing technology. Before surgery, 3D reconstruction of a certain bony landmark exposed in the surgical area was first performed. Then a veneer part was designed according to the bony landmark and connected to a reference registration landmark outside the body through a connecting rod. After that, the series of parts were made into a holistic reference registration instrument using 3D printing technology, and the patient's data for bone and surrounding tissue, along with digital 3D information of the reference registration instrument, were imported into the head-mounted display (HMD). During the operation, the disinfected reference registration instrument was installed on the selected bony landmark, and then the automatic real-time registration was realized by HMD through recognizing the registration landmark on the reference registration instrument, whereby the patient's virtual bone and other anatomical structures were quickly and accurately superimposed on the real body of the patient. To the best of our knowledge, this is the first report to use MR combined with 3D printing technology in total hip arthroplasty.
Collapse
Affiliation(s)
- Peng-Fei Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Shi-Long Su
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Yu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng-Gong Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Da Zhong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yi-He Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Han Q, Wang C, Chen H, Zhao X, Wang J. Porous Tantalum and Titanium in Orthopedics: A Review. ACS Biomater Sci Eng 2019; 5:5798-5824. [PMID: 33405672 DOI: 10.1021/acsbiomaterials.9b00493] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Porous metal is metal with special porous structures, which can offer high biocompatibility and low Young's modulus to satisfy the need for orthopedic applications. Titanium and tantalum are the most widely used porous metals in orthopedics due to their excellent biomechanical properties and biocompatibility. Porous titanium and tantalum have been studied and applied for a long history until now. Here in this review, various manufacturing methods of titanium and tantalum porous metals are introduced. Application of these porous metals in different parts of the body are summarized, and strengths and weaknesses of these porous metal implants in clinical practice are discussed frankly for future improvement from the viewpoint of orthopedic surgeons. Then according to the requirements from clinics, progress in research for clinical use is illustrated in four aspects. Various creative designs of microporous and functionally gradient structure, surface modification, and functional compound systems of porous metal are exhibited as reference for future research. Finally, the directions of orthopedic porous metal development were proposed from the clinical view based on the rapid progress of additive manufacturing. Controllable design of both macroscopic anatomical bionic shape and microscopic functional bionic gradient porous metal, which could meet the rigorous mechanical demand of bone reconstruction, should be developed as the focus. The modification of a porous metal surface and construction of a functional porous metal compound system, empowering stronger cell proliferation and antimicrobial and antineoplastic property to the porous metal implant, also should be taken into consideration.
Collapse
Affiliation(s)
- Qing Han
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Chenyu Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Hao Chen
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Xue Zhao
- Department of Endocrine and Metabolism, The First Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Jincheng Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| |
Collapse
|
8
|
Hip osteonecrosis: stem cells for life or behead and arthroplasty? INTERNATIONAL ORTHOPAEDICS 2018; 42:1425-1428. [PMID: 29934715 DOI: 10.1007/s00264-018-4026-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
|
9
|
Hernigou P, Thiebaut B, Housset V, Bastard C, Homma Y, Chaib Y, Flouzat Lachaniette CH. Stem cell therapy in bilateral osteonecrosis: computer-assisted surgery versus conventional fluoroscopic technique on the contralateral side. INTERNATIONAL ORTHOPAEDICS 2018; 42:1593-1598. [PMID: 29696307 DOI: 10.1007/s00264-018-3953-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Surgical management of osteonecrosis with core decompression with stem cell therapy is a new procedure. The technique is performed with fluoroscopic guidance. This study attempts to determine if computer-navigated technique can improve the procedure. METHODS Thirty consecutive patients with bilateral symptomatic osteonecrosis without collapse were included in this study during the year 2011. A prospective, randomized, and controlled study was conducted on 60 hips (bilateral osteonecrosis) using conventional fluoroscopy technique on one side and computer-based navigation on the contralateral side. Bone marrow aspirated from the two iliac crests was mixed before concentration. Each side received the same volume of concentrated bone marrow and the same number of cells 110,000 ± 27,000 cells (counted as CFU-F). RESULTS Computer navigation achieved better parallelism to the ideal position of the trocar, with better trocar placement as regards to tip-to-subchondral distance and ideal centre position within the osteonecrosis for injection of stem cells. Using computer navigation took fewer attempts to position the trocar, used less fluoroscopy time, and decreased the radiation exposure as compared with surgery performed with conventional fluoroscopy. At the most recent follow-up (6 years), increasing the precision with computer navigation resulted in less collapse (7 versus 1) and better volume of repair (13.4 versus 8.2 cm3) for hips treated with the computer-assisted technique. CONCLUSIONS The findings of this study suggest that computer navigation may be safely used in a basic procedure for injection of stem cells.
Collapse
|