1
|
Keshavarz S, Alavi CE, Aghayan H, Jafari-Shakib R, Vojoudi E. Advancements in Degenerative Disc Disease Treatment: A Regenerative Medicine Approach. Stem Cell Rev Rep 2025:10.1007/s12015-025-10882-z. [PMID: 40232618 DOI: 10.1007/s12015-025-10882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Regenerative medicine represents a transformative approach to treating nucleus pulposus degeneration and offers hope for patients suffering from chronic low back pain due to disc degeneration. By focusing on restoring the natural structure and function of the nucleus pulposus rather than merely alleviating symptoms, these innovative therapies hold the potential to significantly improve patient outcomes. As research continues to advance in this field, we may soon witness a paradigm shift in how we approach spinal health and degenerative disc disease. The main purpose of this review is to provide an overview of the various regenerative approaches that target the restoration of the nucleus pulposus, a primary site for initiation of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Cyrus Emir Alavi
- Department of Anesthesiology, Neuroscience Research Center, Avicenna University Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari-Shakib
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, P.O.Box 41635 - 3363, Rasht, Iran.
| | - Elham Vojoudi
- Regenerative Medicine, Organ Procurement and Transplantation Multidisciplinary Center, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Chen X, Li H, Huang B, Ruan J, Li X, Li Q. High impact works on stem cell transplantation in intervertebral disc degeneration. BMC Musculoskelet Disord 2024; 25:1029. [PMID: 39702055 DOI: 10.1186/s12891-024-08131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Low back pain is a major disorder that causes disability and is strongly associated with intervertebral disc degeneration (IDD). Because of the limitations of contemporary interventions, stem cell transplantation (SCT) has been increasingly used to regenerate degenerative discs. Nevertheless, analyses of high-impact papers in this field are rare. This study aimed to determine and analyze the 100 highest-cited documents on SCT in IDD. METHODS The 100 highest-cited documents were retrieved from the Web of Science (WoS) database. Descriptive statistics were calculated and correlation analysis was conducted to determine the relationship between WoS citations, the Altmetric Attention Score (AAS), and Dimensions citations. RESULTS The citation counts of the top 100 most cited papers ranged from 13 to 372. These studies were conducted in 17 countries and were published in 48 journals between 2003 and 2021. The top three contributing countries were the China (31), United States (22), and Japan (14). Bone marrow-derived stem cells were the most common type of stem cells (70.00%), followed by adipose-derived stem cells (13.75%), and nucleus pulposus-derived stem cells (7.50). Rabbit was the most studied species (41.25%), followed by rat (21.25%), human (13.75%), sheep (8.75%), dog (8.75%), and pig (6.25%). Tokai University School of Medicine (11) had the largest number of documents, followed by The University of Hong Kong (8), and Southeast University (4). Sakai D (10) was the most fruitful author, followed by Cheung KMC (6), Melrose J (3), Pettine K (3), Lotz JC (3), and Murphy MB (3). We observed a very high correlation between the WoS and Dimensions citations (p < 0.001, r = 0.994). CONCLUSIONS This study highlights the highest impact works on SCT in IDD, thereby providing a deeper understanding of the historical works related to SCT in IDD, as well as benefits for future studies in this field.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Li
- Department of Orthopedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Baoci Huang
- Department of Ultrasound, Guangdong Second Provincial General Hospital Guangzhou City, Guangzhou, China
| | - Jiajian Ruan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Li
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| | - Qian Li
- Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Dermatology, Panyu Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Schol J, Tamagawa S, Volleman TNE, Ishijima M, Sakai D. A comprehensive review of cell transplantation and platelet-rich plasma therapy for the treatment of disc degeneration-related back and neck pain: A systematic evidence-based analysis. JOR Spine 2024; 7:e1348. [PMID: 38919468 PMCID: PMC11196836 DOI: 10.1002/jsp2.1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Low back pain (LBP) and neck pain predominate as the primary causes of disability. Cell- and platelet-rich plasma (PRP) products are potential therapies with clinical trials and reviews promoting their efficacy. Nonetheless, they frequently disregard the clinical significance of reported improvements. In this systematic review, the effectuated improvements in pain, disability, quality of life (QoL), and radiographic images are comprehensively described and scored on their clinical significance. An electronic database literature search was conducted on July 2023 for in-human assessment of cell or PRP products to alleviate discogenic pain. Papers were screened on quantitative pain, disability, QoL, radiographic improvements, and safety outcomes. Risk of bias was assessed through MINORS and Cochrane Source of Bias tools. Reported outcomes were obtained, calculated, and assessed to meet minimal clinically important difference (MCID) standards. From 7623 screened papers, a total of 80 articles met the eligibility criteria, presenting 68 specific studies. These presented at least 1974 treated patients. Overall, cell/PRP injections could alleviate pain and disability, resulting in MCID for pain and disability in up to a 2-year follow-up, similar to those observed in patients undergoing spinal fusion. Included trials predominantly presented high levels of bias, involved heterogeneous study designs, and only a minimal number of randomized controlled trials. Nonetheless, a clear clinically significant impact was observed for cell- and PRP-treated cohorts with overall good safety profiles. These results highlight a strong therapeutic potential but also underline the need for future cost-effectiveness assessments to determine the benefits of cell/PRP treatments.
Collapse
Affiliation(s)
- Jordy Schol
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Tokai University Center of Regenerative MedicineIseharaJapan
| | - Shota Tamagawa
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | | | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Daisuke Sakai
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Tokai University Center of Regenerative MedicineIseharaJapan
| |
Collapse
|
4
|
Li J, Han N, Liu Z, Osman A, Xu L, Song J, Xiao Y, Hu W. Role of Galectin-3 in intervertebral disc degeneration: an experimental study. BMC Musculoskelet Disord 2024; 25:249. [PMID: 38561725 PMCID: PMC10983641 DOI: 10.1186/s12891-024-07382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND This study investigated the role of Galectin-3 in the degeneration of intervertebral disc cartilage. METHODS The patients who underwent lumbar spine surgery due to degenerative disc disease were recruited and divided into Modic I, Modic II, and Modic III; groups. HE staining was used to detect the pathological changes in endplates. The changes of Galectin-3, MMP3, Aggrecan, CCL3, and Col II were detected by immunohistochemistry, RT-PCR, and Western blot. MTT and flow cytometry were used to detect cartilage endplate cell proliferation, cell cycle, and apoptosis. RESULTS With the progression of degeneration (from Modic I to III), the chondrocytes and density of the cartilage endplate of the intervertebral disc decreased, and the collagen arrangement of the cartilage endplate of the intervertebral disc was broken and calcified. Meanwhile, the expressions of Aggrecan, Col II, Galectin-3, Aggrecan, and CCL3 gradually decreased. After treatment with Galectin-3 inhibitor GB1107, the proliferation of rat cartilage end plate cells was significantly reduced (P < 0.05). GB1107 (25 µmol/L) also significantly promoted the apoptosis of cartilage endplate cells (P < 0.05). Moreover, the percentage of cartilage endplate cells in the G1 phase was significantly higher, while that in the G2 and S phases was significantly lower (P < 0.05). Additionally, the mRNA and protein expression levels of MMP3, CCL3, and Aggrecan in rat cartilage end plate cells were lower than those in the control group. CONCLUSIONS Galectin-3 decreases with the progression of the cartilage endplate degeneration of the intervertebral disc. Galectin-3 may affect intervertebral disc degeneration by regulating the degradation of the extracellular matrix.
Collapse
Affiliation(s)
- Jianjiang Li
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Nianrong Han
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Zhenqiang Liu
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Akram Osman
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Leilei Xu
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Jing Song
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Yang Xiao
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China
| | - Wei Hu
- The Second Spine Department, The Fourth School of Clinical Medicine of Xinjiang Medical University, Urumqi, 830000, China.
| |
Collapse
|
5
|
Cherif H, Li L, Snuggs J, Li X, Sammon C, Li J, Beckman L, Haglund L, Le Maitre CL. Injectable hydrogel induces regeneration of naturally degenerate human intervertebral discs in a loaded organ culture model. Acta Biomater 2024; 176:201-220. [PMID: 38160855 DOI: 10.1016/j.actbio.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Low back pain resulting from disc degeneration is a leading cause of disability worldwide. However, to date few therapies target the cause and fail to repair the intervertebral disc (IVD). This study investigates the ability of an injectable hydrogel (NPgel), to inhibit catabolic protein expression and promote matrix expression in human nucleus pulposus (NP) cells within a tissue explant culture model isolated from degenerate discs. Furthermore, the injection capacity of NPgel into naturally degenerate whole human discs, effects on mechanical function, and resistance to extrusion during loading were investigated. Finally, the induction of potential regenerative effects in a physiologically loaded human organ culture system was investigated following injection of NPgel with or without bone marrow progenitor cells. Injection of NPgel into naturally degenerate human IVDs increased disc height and Young's modulus, and was retained during extrusion testing. Injection into cadaveric discs followed by culture under physiological loading increased MRI signal intensity, restored natural biomechanical properties and showed evidence of increased anabolism and decreased catabolism with tissue integration observed. These results provide essential proof of concept data supporting the use of NPgel as an injectable therapy for disc regeneration. STATEMENT OF SIGNIFICANCE: Low back pain resulting from disc degeneration is a leading cause of disability worldwide. However, to date few therapies target the cause and fail to repair the intervertebral disc. This study investigated the potential regenerative properties of an injectable hydrogel system (NPgel) within human tissue samples. To mimic the human in vivo conditions and the unique IVD niche, a dynamically loaded intact human disc culture system was utilised. NPgel improved the biomechanical properties, increased MRI intensity and decreased degree of degeneration. Furthermore, NPgel induced matrix production and decreased catabolic factors by the native cells of the disc. This manuscript provides evidence for the potential use of NPgel as a regenerative biomaterial for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Hosni Cherif
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Li Li
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Joseph Snuggs
- Oncology and Metabolism Department, Medical School, & INSIGNEO Institute, University of Sheffield, Sheffield, UK; Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Christopher Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Jianyu Li
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lorne Beckman
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada; Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
| | - Christine L Le Maitre
- Oncology and Metabolism Department, Medical School, & INSIGNEO Institute, University of Sheffield, Sheffield, UK; Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
6
|
Panebianco CJ, Constant C, Vernengo AJ, Nehrbass D, Gehweiler D, DiStefano TJ, Martin J, Alpert DJ, Chaudhary SB, Hecht AC, Seifert AC, Nicoll SB, Grad S, Zeiter S, Iatridis JC. Combining adhesive and nonadhesive injectable hydrogels for intervertebral disc repair in an ovine discectomy model. JOR Spine 2023; 6:e1293. [PMID: 38156055 PMCID: PMC10751969 DOI: 10.1002/jsp2.1293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Intervertebral disc (IVD) disorders (e.g., herniation) directly contribute to back pain, which is a leading cause of global disability. Next-generation treatments for IVD herniation need advanced preclinical testing to evaluate their ability to repair large defects, prevent reherniation, and limit progressive degeneration. This study tested whether experimental, injectable, and nonbioactive biomaterials could slow IVD degeneration in an ovine discectomy model. Methods Ten skeletally mature sheep (4-5.5 years) experienced partial discectomy injury with cruciate-style annulus fibrosus (AF) defects and 0.1 g nucleus pulposus (NP) removal in the L1-L2, L2-L3, and L3-L4 lumbar IVDs. L4-L5 IVDs were Intact controls. IVD injury levels received: (1) no treatment (Injury), (2) poly (ethylene glycol) diacrylate (PEGDA), (3) genipin-crosslinked fibrin (FibGen), (4) carboxymethylcellulose-methylcellulose (C-MC), or (5) C-MC and FibGen (FibGen + C-MC). Animals healed for 12 weeks, then IVDs were assessed using computed tomography (CT), magnetic resonance (MR) imaging, and histopathology. Results All repaired IVDs retained ~90% of their preoperative disc height and showed minor degenerative changes by Pfirrmann grading. All repairs had similar disc height loss and Pfirrmann grade as Injury IVDs. Adhesive AF sealants (i.e., PEGDA and FibGen) did not herniate, although repair caused local endplate (EP) changes and inflammation. NP repair biomaterials (i.e., C-MC) and combination repair (i.e., FibGen + C-MC) exhibited lower levels of degeneration, less EP damage, and less severe inflammation; however, C-MC showed signs of herniation via biomaterial expulsion. Conclusions All repair IVDs were noninferior to Injury IVDs by IVD height loss and Pfirrmann grade. C-MC and FibGen + C-MC IVDs had the best outcomes, and may be appropriate for enhancement with bioactive factors (e.g., cells, growth factors, and miRNAs). Such bioactive factors appear to be necessary to prevent injury-induced IVD degeneration. Application of AF sealants alone (i.e., PEGDA and FibGen) resulted in EP damage and inflammation, particularly for PEGDA IVDs, suggesting further material refinements are needed.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Andrea J. Vernengo
- AO Research Institute DavosDavosSwitzerland
- Department of Chemical EngineeringRowan UniversityGlassboroNJUSA
| | | | | | - Tyler J. DiStefano
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jesse Martin
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - David J. Alpert
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - Saad B. Chaudhary
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrew C. Hecht
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alan C. Seifert
- Biomedical Engineering and Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Steven B. Nicoll
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | | | | | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
7
|
Levis H, Weston J, Austin B, Larsen B, Ginley-Hidinger M, Gullbrand SE, Lawrence B, Bowles RD. Multiplex gene editing to promote cell survival using low-pH clustered regularly interspaced short palindromic repeats activation (CRISPRa) gene perturbation. Cytotherapy 2023; 25:1069-1079. [PMID: 37245150 PMCID: PMC10527564 DOI: 10.1016/j.jcyt.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND AIMS Lower back pain is the leading cause of disability worldwide and is often linked to degenerative disc disease (DDD), the breakdown of intervertebral discs. The majority of treatment options for DDD are palliative, with clinicians prescribing medication or physical therapy to return the patient to work. Cell therapies are promising treatment options with the potential to restore functional physiological tissue and treat the underlying causes of DDD. DDD is characterized by biochemical changes in the microenvironment of the disc, including changes in nutrient levels, hypoxia, and changes in pH. Stem cell therapies are promising therapies to treat DDD, but the acidic environment in a degenerating disc significantly hinders the viability of stem cells, affecting their efficacy. Clustered regularly interspaced short palindromic repeats (CRISPR) systems allow us to engineer cell phenotypes in a well-regulated and controlled manner. Recently, CRISPR gene perturbation screens have assessed fitness, growth and provided a means for specific cell phenotype characterization. METHODS In this study, we use a CRISPR-activation (a) gene perturbation screen to identify gene upregulation targets that enhance adipose-derived stem cell survival in acidic culture conditions. RESULTS We identified 1213 prospective pro-survival genes and systematically narrowed these down to 20 genes for validation. We further narrowed down our selection to the top five prospective genes using Cell Counting Kit-8 cell viability assays in naïve adipose-derived stem cells and ACAN/Col2 CRISPRa upregulated stem cells. Finally, we examined the extracellular matrix-producing abilities of multiplex ACAN/Col2-pro-survival edited cells in pellet culture. CONCLUSIONS Using the results from the CRISPRa screen, we are able to engineer desirable cell phenotypes to improve cell viability for the potential treatment of DDD and other disease states that expose cell therapies to acidic environments, while also providing broader knowledge on genes regulating low-pH cell survival.
Collapse
Affiliation(s)
- Hunter Levis
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | - Jacob Weston
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | - Brooke Austin
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | - Bryce Larsen
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | | | - Sarah E Gullbrand
- Department of Orthopedic Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Brandon Lawrence
- Department of Orthopedic Surgery, The University of Utah, Salt Lake City, Utah, USA
| | - Robby D Bowles
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA; Department of Orthopedic Surgery, The University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
8
|
Munesada D, Sakai D, Nakamura Y, Schol J, Matsushita E, Tamagawa S, Sako K, Ogasawara S, Sato M, Watanabe M. Investigation of the Mitigation of DMSO-Induced Cytotoxicity by Hyaluronic Acid following Cryopreservation of Human Nucleus Pulposus Cells. Int J Mol Sci 2023; 24:12289. [PMID: 37569664 PMCID: PMC10419032 DOI: 10.3390/ijms241512289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
To develop an off-the-shelf therapeutic product for intervertebral disc (IVD) repair using nucleus pulposus cells (NPCs), it is beneficial to mitigate dimethyl sulfoxide (DMSO)-induced cytotoxicity caused by intracellular reactive oxygen species (ROS). Hyaluronic acid (HA) has been shown to protect chondrocytes against ROS. Therefore, we examined the potential of HA on mitigating DMSO-induced cytotoxicity for the enhancement of NPC therapy. Human NPC cryopreserved in DMSO solutions were thawed, mixed with equal amounts of EDTA-PBS (Group E) or HA (Group H), and incubated for 3-5 h. After incubation, DMSO was removed, and the cells were cultured for 5 days. Thereafter, we examined cell viability, cell proliferation rates, Tie2 positivity (a marker of NP progenitor cells), and the estimated numbers of Tie2 positive cells. Fluorescence intensity of DHE and MitoSOX staining, as indicators for oxidative stress, were evaluated by flow cytometry. Group H showed higher rates of cell proliferation and Tie2 expressing cells with a trend toward suppression of oxidative stress compared to Group E. Thus, HA treatment appears to suppress ROS induced by DMSO. These results highlight the ability of HA to maintain NPC functionalities, suggesting that mixing HA at the time of transplantation may be useful in the development of off-the-shelf NPC products.
Collapse
Affiliation(s)
- Daiki Munesada
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.N.); (E.M.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.N.); (E.M.)
| | - Erika Matsushita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.N.); (E.M.)
| | - Shota Tamagawa
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku 113-8431, Japan
| | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
| | - Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (D.M.); (J.S.); (S.T.); (K.S.); (S.O.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
9
|
Aabling RR, Alstrup T, Kjær EM, Poulsen KJ, Pedersen JO, Revenfeld AL, Møller BK, Eijken M. Reconstitution and post-thaw storage of cryopreserved human mesenchymal stromal cells: Pitfalls and optimizations for clinically compatible formulants. Regen Ther 2023; 23:67-75. [PMID: 37153832 PMCID: PMC10154666 DOI: 10.1016/j.reth.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction The regenerative and immunomodulatory properties of multipotent mesenchymal stromal cells (MSCs) make them an intriguing asset for therapeutic applications. An off-the-shelf approach, using pre-expanded cryopreserved allogenic MSCs, bypasses many practical difficulties of cellular therapy. Reconstitution of a MSC product away from cytotoxic cryoprotectants towards a preferred administration solution might be favorable for several indications. Variations in MSC handling accompanied by a non-standardized use of reconstitution solutions complicate a general clinical standardization of MSC cellular therapies. In this study, we aimed to identify a simple and clinically compatible approach for thawing, reconstitution, and post-thaw storage of cryopreserved MSCs. Methods Human adipose tissue-derived MSCs were expanded in human platelet lysate (hPL) supplemented culture medium and cryopreserved using a dimethyl sulfoxide (DMSO)-based cryoprotectant. Isotonic solutions (saline, Ringer's acetate and phosphate buffered saline (PBS)) with or without 2% human serum albumin (HSA) were used as thawing, reconstitution, and storage solutions. MSCs were reconstituted to 5 × 106 MSCs/mL for evaluating MSC stability. Total MSC numbers and viability were determined using 7-aminoactinomycin D (7-AAD) and flow cytometry. Results For thawing cryopreserved MSCs the presence of protein was proven to be essential. Up to 50% of MSCs were lost when protein-free thawing solutions were used. Reconstitution and post-thaw storage of MSCs in culture medium and widely used PBS demonstrated poor MSC stability (>40% cell loss) and viability (<80%) after 1 h of storage at room temperature. Reconstitution in simple isotonic saline appeared to be a good alternative for post-thaw storage, ensuring >90% viability with no observed cell loss for at least 4 h. Reconstitution of MSCs to low concentrations was identified as critical. Diluting MSCs to <105/mL in protein-free vehicles resulted in instant cell loss (>40% cell loss) and lower viability (<80%). Addition of clinical grade HSA could prevent cell loss during thawing and dilution. Conclusion This study identified a clinically compatible method for MSC thawing and reconstitution that ensures high MSC yield, viability, and stability. The strength of the method lies within the simplicity of implementation which offers an accessible way to streamline MSC therapies across different laboratories and clinical trials, improving standardization in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marco Eijken
- Corresponding author. Center of Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark.
| |
Collapse
|
10
|
Wang Z, Yang H, Xu X, Hu H, Bai Y, Hai J, Cheng L, Zhu R. Ion elemental-optimized layered double hydroxide nanoparticles promote chondrogenic differentiation and intervertebral disc regeneration of mesenchymal stem cells through focal adhesion signaling pathway. Bioact Mater 2023; 22:75-90. [PMID: 36203960 PMCID: PMC9520222 DOI: 10.1016/j.bioactmat.2022.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022] Open
Abstract
Chronic low back pain and dyskinesia caused by intervertebral disc degeneration (IDD) are seriously aggravated and become more prevalent with age. Current clinical treatments do not restore the biological structure and inherent function of the disc. The emergence of tissue engineering and regenerative medicine has provided new insights into the treatment of IDD. We synthesized biocompatible layered double hydroxide (LDH) nanoparticles and optimized their ion elemental compositions to promote chondrogenic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). The chondrogenic differentiation of LDH-treated MSCs was validated using Alcian blue staining, qPCR, and immunofluorescence analyses. LDH-pretreated hUC-MSCs were differentiated prior to transplantation into the degenerative site of a needle puncture IDD rat model. Repair and regeneration evaluated using X-ray, magnetic resonance imaging, and tissue immunostaining 4–12 weeks after transplantation showed recovery of the disc space height and integrated tissue structure. Transcriptome sequencing revealed significant regulatory roles of the extracellular matrix (ECM) and integrin receptors of focal adhesion signaling pathway in enhancing chondrogenic differentiation and thus prompting tissue regeneration. The construction of ion-specific LDH nanomaterials for in situ intervertebral disc regeneration through the focal adhesion signaling pathway provides theoretical basis for clinical transformation in IDD treatment. LDH nanoparticles with different elemental compositions are constructed to optimize the chondrogenic differentiation of hUC-MSCs. Optimized-LDH pretreated hUC-MSCs transplantation show recovery of disc space height and integrated tissue structure. ECM and focal adhesion signaling pathway play significant roles in LDH-promoted cell differentiation and tissue regeneration. Ion-specific optimizing LDH provides theoretical basis for clinical transformation on IDD treatment.
Collapse
|
11
|
Schol J, Sakai D. Comprehensive narrative review on the analysis of outcomes from cell transplantation clinical trials for discogenic low back pain. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 13:100195. [PMID: 36655116 PMCID: PMC9841054 DOI: 10.1016/j.xnsj.2022.100195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Background Intervertebral disc (IVD) degeneration is one of the primary causes of low back pain (LBP) and despite a prominent prevalence, present treatment options remain inadequate for a large portion of LBP patients. New developments in regenerative therapeutics offer potentially powerful medical tools to modify this pathology, with specific focus on (stem) cell transplantations. Multiple clinical trials have since reported overall beneficial outcomes favoring cell therapy. Nonetheless, the significance of these improvements is often not (clearly) discussed. As such, this narrative review aims to summarize the significance of the reported improvements from human clinical trials on IVD-targeted cell therapy. Methods Through a comprehensive narrative review we discuss the improvements in pain, disability, quality of life, and imaging modalities and reported adverse events following cell therapy for discogenic pain. Results Most clinical trials were able to report clear and significant improvements in pain and disability outcomes. Imaging and quality of life improvements however were not as clearly reported but did present some enhancements for a select number of patients. Finally, whether cell therapy can outperform placebo treatment remains intangible. Conclusions Our review highlights the clinical significance of observed trends in pain and disability improvement. Nevertheless, reporting quality was found unsatisfactory and large-scale randomized controlled studies remain small in number. Future studies and articles should put more emphasis on improvements in imaging modalities and compare outcomes to (placebo) control groups to fully elucidate the efficacy and safety of cellular therapeutics against LBP.
Collapse
Affiliation(s)
- Jordy Schol
- Tokai University School of Medicine, Department of Orthopedic Surgery, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Daisuke Sakai
- Tokai University School of Medicine, Department of Orthopedic Surgery, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
12
|
Schol J, Sakai D, Warita T, Nukaga T, Sako K, Wangler S, Tamagawa S, Zeiter S, Alini M, Grad S. Homing of vertebral-delivered mesenchymal stromal cells for degenerative intervertebral discs repair - an in vivo proof-of-concept study. JOR Spine 2023; 6:e1228. [PMID: 36994461 PMCID: PMC10041374 DOI: 10.1002/jsp2.1228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Cell transplantation shows promising results for intervertebral disc (IVD) repair, however, contemporary strategies present concerns regarding needle puncture damage, cell retention, and straining the limited nutrient availability. Mesenchymal stromal cell (MSC) homing is a natural mechanism of long-distance cellular migration to sites of damage and regeneration. Previous ex vivo studies have confirmed the potential of MSC to migrate over the endplate and enhance IVD-matrix production. In this study, we aimed to exploit this mechanism to engender IVD repair in a rat disc degeneration model. Methods Female Sprague Dawley rats were subjected to coccygeal disc degeneration through nucleus pulposus (NP) aspiration. In part 1; MSC or saline was transplanted into the vertebrae neighboring healthy or degenerative IVD subjected to irradiation or left untouched, and the ability to maintain the IVD integrity for 2 and 4 weeks was assessed by disc height index (DHI) and histology. For part 2, ubiquitously GFP expressing MSC were transplanted either intradiscally or vertebrally, and regenerative outcomes were compared at days 1, 5, and 14 post-transplantation. Moreover, the homing potential from vertebrae to IVD of the GFP+ MSC was assessed through cryosection mediated immunohistochemistry. Results Part 1 of the study revealed significantly improved maintenance of DHI for IVD vertebrally receiving MSC. Moreover, histological observations revealed a trend of IVD integrity maintenance. Part 2 of the study highlighted the enhanced DHI and matrix integrity for discs receiving MSC vertebrally compared with intradiscal injection. Moreover, GFP rates highlighted MSC migration and integration in the IVD at similar rates as the intradiscally treated cohort. Conclusion Vertebrally transplanted MSC had a beneficial effect on the degenerative cascade in their neighboring IVD, and thus potentially present an alternative administration strategy. Further investigation will be needed to determine the long-term effects, elucidate the role of cellular homing versus paracrine signaling, and validate our observations on a large animal model.
Collapse
Affiliation(s)
- Jordy Schol
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Research Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Daisuke Sakai
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Takayuki Warita
- Research Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
- TUNZ Pharma Co. Ltd.OsakaJapan
| | - Tadashi Nukaga
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Kosuke Sako
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Sebastian Wangler
- AO Research Institute DavosDavosSwitzerland
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Shota Tamagawa
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | | | | | - Sibylle Grad
- AO Research Institute DavosDavosSwitzerland
- ETH Zürich, Institute for BiomechanicsZürichSwitzerland
| |
Collapse
|
13
|
Basatvat S, Bach FC, Barcellona MN, Binch AL, Buckley CT, Bueno B, Chahine NO, Chee A, Creemers LB, Dudli S, Fearing B, Ferguson SJ, Gansau J, Gantenbein B, Gawri R, Glaeser JD, Grad S, Guerrero J, Haglund L, Hernandez PA, Hoyland JA, Huang C, Iatridis JC, Illien‐Junger S, Jing L, Kraus P, Laagland LT, Lang G, Leung V, Li Z, Lufkin T, van Maanen JC, McDonnell EE, Panebianco CJ, Presciutti SM, Rao S, Richardson SM, Romereim S, Schmitz TC, Schol J, Setton L, Sheyn D, Snuggs JW, Sun Y, Tan X, Tryfonidou MA, Vo N, Wang D, Williams B, Williams R, Yoon ST, Le Maitre CL. Harmonization and standardization of nucleus pulposus cell extraction and culture methods. JOR Spine 2023; 6:e1238. [PMID: 36994456 PMCID: PMC10041384 DOI: 10.1002/jsp2.1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Background In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide.
Collapse
Affiliation(s)
| | - Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marcos N. Barcellona
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Abbie L. Binch
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Brian Bueno
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nadeen O. Chahine
- Departments of Orthopedic Surgery and Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Ana Chee
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Laura B. Creemers
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Stefan Dudli
- Center for Experimental RheumatologyUniversity of ZurichZurichSwitzerland
| | - Bailey Fearing
- Department of Orthopedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | | | - Jennifer Gansau
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Benjamin Gantenbein
- Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department for Orthopedics and Traumatology, Insel University HospitalUniversity of BernBernSwitzerland
| | - Rahul Gawri
- Division of Orthopaedic Surgery, Department of SurgeryMcGill UniversityMontrealCanada
- Regenerative Orthopaedics and Innovation LaboratoryMcGill UniversityMontrealCanada
| | | | | | - Julien Guerrero
- Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Center of Dental Medicine, Oral Biotechnology & BioengineeringUniversity of ZurichZurichSwitzerland
| | - Lisbet Haglund
- Division of Orthopaedic Surgery, Department of SurgeryMcGill UniversityMontrealCanada
| | - Paula A. Hernandez
- Department of Orthopaedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Judith A. Hoyland
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Charles Huang
- Department of Biomedical EngineeringUniversity of MiamiCoral GablesFloridaUSA
| | - James C. Iatridis
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Liufang Jing
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Petra Kraus
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
- Department of BiologyClarkson UniversityPotsdamNew YorkUSA
| | - Lisanne T. Laagland
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Gernot Lang
- Department of Orthopedics and Trauma Surgery, Medical Center, Faculty of MedicineAlbert‐Ludwigs‐University of FreiburgFreiburg im BreisgauGermany
| | - Victor Leung
- Department of Orthopaedics & TraumatologyThe University of Hong KongHong KongSARChina
| | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| | - Thomas Lufkin
- Department of BiologyClarkson UniversityPotsdamNew YorkUSA
| | - Josette C. van Maanen
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Chris J. Panebianco
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Sanjna Rao
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Stephen M. Richardson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Sarah Romereim
- Department of Orthopedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | - Tara C. Schmitz
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jordy Schol
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
| | - Lori Setton
- Departments of Biomedical Engineering and Orthopedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Joseph W. Snuggs
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Y. Sun
- Department of Orthopaedics & TraumatologyThe University of Hong KongHong KongSARChina
| | - Xiaohong Tan
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Nam Vo
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dong Wang
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Brandon Williams
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Rebecca Williams
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - S. Tim Yoon
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
| | - Christine L. Le Maitre
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldSouth YorkshireUK
| |
Collapse
|
14
|
Lin M, Hu Y, An H, Guo T, Gao Y, Peng K, Zhao M, Zhang X, Zhou H. Silk fibroin-based biomaterials for disc tissue engineering. Biomater Sci 2023; 11:749-776. [PMID: 36537344 DOI: 10.1039/d2bm01343f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is the major cause of disability worldwide, and intervertebral disc degeneration (IVDD) is one of the most important causes of low back pain. Currently, there is no method to treat IVDD that can reverse or regenerate intervertebral disc (IVD) tissue, but the recent development of disc tissue engineering (DTE) offers a new means of addressing these disadvantages. Among numerous biomaterials for tissue engineering, silk fibroin (SF) is widely used due to its easy availability and excellent physical/chemical properties. SF is usually used in combination with other materials to construct biological scaffolds or bioactive substance delivery systems, or it can be used alone. The present article first briefly outlines the anatomical and physiological features of IVD, the associated etiology and current treatment modalities of IVDD, and the current status of DTE. Then, it highlights the characteristics of SF biomaterials and their latest research advances in DTE and discusses the prospects and challenges in the application of SF in DTE, with a view to facilitating the clinical process of developing interventions related to IVD-derived low back pain caused by IVDD.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Haiying An
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Kaichen Peng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Meiling Zhao
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China.
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
15
|
An ambiguity-aware classifier of lumbar disc degeneration. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Tamagawa S, Sakai D, Schol J, Sako K, Nakamura Y, Matsushita E, Warita T, Hazuki S, Nojiri H, Sato M, Ishijima M, Watanabe M. N-acetylcysteine attenuates oxidative stress-mediated cell viability loss induced by dimethyl sulfoxide in cryopreservation of human nucleus pulposus cells: A potential solution for mass production. JOR Spine 2022; 5:e1223. [PMID: 36601378 PMCID: PMC9799083 DOI: 10.1002/jsp2.1223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Abstract
Background Cell therapy is considered a promising strategy for intervertebral disc (IVD) regeneration. However, cell products often require long-term cryopreservation, which compromises cell viability and potency, thus potentially hindering commercialization and off-the-shelf availability. Dimethyl sulfoxide (DMSO) is a commonly used cryoprotectant, however, DMSO is associated with cytotoxicity and cell viability loss. This study aimed to investigate the effects of DMSO on human nucleus pulposus cells (NPC) and the role of oxidative stress in DMSO-induced cytotoxicity. Furthermore, we examined the potential of antioxidant N-acetylcysteine (NAC) supplementation to mitigate the negative effects of DMSO. Methods NPC were exposed to various concentrations of DMSO with or without a freezing cycle. Cell viability, cell apoptosis and necrosis rates, intracellular reactive oxygen species (ROS) levels, and gene expression of major antioxidant enzymes were evaluated. In addition, NAC was added to cryopreservation medium containing 10% DMSO and its effects on ROS levels and cell viability were assessed. Results DMSO concentrations ≤1% for 24 h did not significantly affect the NPC viability, whereas exposure to 5 and 10% DMSO (most commonly used concentration) caused cell viability loss (loss of 57% and 68% respectively after 24 h) and cell death in a dose- and time-dependent manner. DMSO increased intracellular and mitochondrial ROS (1.9-fold and 3.6-fold respectively after 12 h exposure to 10% DMSO) and downregulated gene expression levels of antioxidant enzymes in a dose-dependent manner. Tempering ROS through NAC treatment significantly attenuated DMSO-induced oxidative stress and supported maintenance of cell viability. Conclusions This study demonstrated dose- and time-dependent cytotoxic effects of DMSO on human NPC. The addition of NAC to the cryopreservation medium ameliorated cell viability loss by reducing DMSO-induced oxidative stress in the freeze-thawing cycle. These findings may be useful for future clinical applications of whole cells and cellular products.
Collapse
Affiliation(s)
- Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Kosuke Sako
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Yoshihiko Nakamura
- Research Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Erika Matsushita
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Takayuki Warita
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
- TUNZ Pharma Co., Ltd.OsakaJapan
| | - Soma Hazuki
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
- TUNZ Pharma Co., Ltd.OsakaJapan
| | - Hidetoshi Nojiri
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| |
Collapse
|
17
|
Her YF, Kubrova E, Martinez Alvarez GA, D’Souza RS. The Analgesic Efficacy of Intradiscal Injection of Bone Marrow Aspirate Concentrate and Culture-Expanded Bone Marrow Mesenchymal Stromal Cells in Discogenic Pain: A Systematic Review. J Pain Res 2022; 15:3299-3318. [PMID: 36299501 PMCID: PMC9590351 DOI: 10.2147/jpr.s373345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Pain originating from the intervertebral disc (discogenic pain) is a prevalent manifestation of low back pain and is often challenging to treat. Of recent interest, regenerative medicine options with injectable biologics have been trialed in discogenic pain and a wide variety of other painful musculoskeletal conditions. In particular, the role of bone marrow aspirate concentrate (BMAC) and culture-expanded bone marrow derived mesenchymal stromal cells (BM-MSCs) in treating discogenic pain remains unclear. The primary objective of this systematic review was to appraise the evidence of intradiscal injection with BMAC and culture-expanded BM-MSCs in alleviating pain intensity from discogenic pain. Secondary outcomes included changes in physical function after intradiscal injection, correlation between stromal cell count and pain intensity, and anatomical changes of the disc assessed by radiographic imaging after intradiscal injection. Overall, 16 studies consisting of 607 participants were included in qualitative synthesis without pooling. Our synthesis revealed that generally intradiscal autologous or allogeneic BMAC and culture-expanded BM-MSCs improved discogenic pain compared to baseline. Intradiscal injection was also associated with improvements in physical functioning and positive anatomical changes on spine magnetic resonance imaging (improved disc height, disc water content, Pfirrmann grading) although anatomical findings were inconsistent across studies. However, the overall GRADEscore for this study was very low due to heterogeneity and poor generalizability. There were no serious adverse events reported post intradiscal injection except for a case of discitis.
Collapse
Affiliation(s)
- Yeng F Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Hospital, Rochester, MN, 55905, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Hospital, Rochester, MN, 55905, USA
| | | | - Ryan S D’Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Hospital, Rochester, MN, 55905, USA,Correspondence: Ryan S D’Souza, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA, Tel +507-284-9696, Email
| |
Collapse
|
18
|
Herrera Quijano MA, Sharma N, Morissette Martin P, Séguin CA, Flynn LE. Development of 2-D and 3-D culture platforms derived from decellularized nucleus pulposus. Front Bioeng Biotechnol 2022; 10:937239. [PMID: 36237211 PMCID: PMC9551564 DOI: 10.3389/fbioe.2022.937239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Bioscaffolds derived from the extracellular matrix (ECM) have shown the capacity to promote regeneration by providing tissue-specific biological instructive cues that can enhance cell survival and direct lineage-specific differentiation. This study focused on the development and characterization of two-dimensional (2-D) and three-dimensional (3-D) cell culture platforms incorporating decellularized nucleus pulposus (DNP). First, a detergent-free protocol was developed for decellularizing bovine nucleus pulposus (NP) tissues that was effective at removing cellular content while preserving key ECM constituents including collagens, glycosaminoglycans, and the cell-adhesive glycoproteins laminin and fibronectin. Next, novel 2-D coatings were generated using the DNP or commercially-sourced bovine collagen type I (COL) as a non-tissue-specific control. In addition, cryo-milled DNP or COL particles were incorporated within methacrylated chondroitin sulphate (MCS) hydrogels as a 3-D cell culture platform for exploring the effects of ECM particle composition. Culture studies showed that the 2-D coatings derived from the DNP could support cell attachment and growth, but did not maintain or rescue the phenotype of primary bovine NP cells, which de-differentiated when serially passaged in monolayer culture. Similarly, while bovine NP cells remained highly viable following encapsulation and 14 days of culture within the hydrogel composites, the incorporation of DNP particles within the MCS hydrogels was insufficient to maintain or rescue changes in NP phenotype associated with extended in vitro culture based on gene expression patterns. Overall, DNP produced with our new decellularization protocol was successfully applied to generate both 2-D and 3-D bioscaffolds; however, further studies are required to assess if these platforms can be combined with additional components of the endogenous NP microenvironment to stimulate regeneration or lineage-specific cell differentiation.
Collapse
Affiliation(s)
- Marco A. Herrera Quijano
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Nadia Sharma
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
| | - Pascal Morissette Martin
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Cheryle A. Séguin
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| | - Lauren E. Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| |
Collapse
|
19
|
Single-Cell RNA-Seq Analysis of Cells from Degenerating and Non-Degenerating Intervertebral Discs from the Same Individual Reveals New Biomarkers for Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms23073993. [PMID: 35409356 PMCID: PMC8999935 DOI: 10.3390/ijms23073993] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we used single-cell transcriptomic analysis to identify new specific biomarkers for nucleus pulposus (NP) and inner annulus fibrosis (iAF) cells, and to define cell populations within non-degenerating (nD) and degenerating (D) human intervertebral discs (IVD) of the same individual. Cluster analysis based on differential gene expression delineated 14 cell clusters. Gene expression profiles at single-cell resolution revealed the potential functional differences linked to degeneration, and among NP and iAF subpopulations. GO and KEGG analyses discovered molecular functions, biological processes, and transcription factors linked to cell type and degeneration state. We propose two lists of biomarkers, one as specific cell type, including C2orf40, MGP, MSMP, CD44, EIF1, LGALS1, RGCC, EPYC, HILPDA, ACAN, MT1F, CHI3L1, ID1, ID3 and TMED2. The second list proposes predictive IVD degeneration genes, including MT1G, SPP1, HMGA1, FN1, FBXO2, SPARC, VIM, CTGF, MGST1, TAF1D, CAPS, SPTSSB, S100A1, CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MGP, SLPI, DCN, MT-ND2, MTCYB, ADIRF, FRZB, CLEC3A, UPP1, S100A2, PRG4, COL2A1, SOD2 and MT2A. Protein and mRNA expression of MGST1, vimentin, SOD2 and SYF2 (p29) genes validated our scRNA-seq findings. Our data provide new insights into disc cells phenotypes and biomarkers of IVD degeneration that could improve diagnostic and therapeutic options.
Collapse
|
20
|
Ligorio C, Hoyland JA, Saiani A. Self-Assembling Peptide Hydrogels as Functional Tools to Tackle Intervertebral Disc Degeneration. Gels 2022; 8:gels8040211. [PMID: 35448112 PMCID: PMC9028266 DOI: 10.3390/gels8040211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Low back pain (LBP), caused by intervertebral disc (IVD) degeneration, is a major contributor to global disability. In its healthy state, the IVD is a tough and well-hydrated tissue, able to act as a shock absorber along the spine. During degeneration, the IVD is hit by a cell-driven cascade of events, which progressively lead to extracellular matrix (ECM) degradation, chronic inflammation, and pain. Current treatments are divided into palliative care (early stage degeneration) and surgical interventions (late-stage degeneration), which are invasive and poorly efficient in the long term. To overcome these limitations, alternative tissue engineering and regenerative medicine strategies, in which soft biomaterials are used as injectable carriers of cells and/or biomolecules to be delivered to the injury site and restore tissue function, are currently being explored. Self-assembling peptide hydrogels (SAPHs) represent a promising class of de novo synthetic biomaterials able to merge the strengths of both natural and synthetic hydrogels for biomedical applications. Inherent features, such as shear-thinning behaviour, high biocompatibility, ECM biomimicry, and tuneable physiochemical properties make these hydrogels appropriate and functional tools to tackle IVD degeneration. This review will describe the pathogenesis of IVD degeneration, list biomaterials requirements to attempt IVD repair, and focus on current peptide hydrogel materials exploited for this purpose.
Collapse
Affiliation(s)
- Cosimo Ligorio
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M1 3BB, UK;
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PG, UK;
- Correspondence:
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PG, UK;
| | - Alberto Saiani
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M1 3BB, UK;
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
21
|
Tamagawa S, Sakai D, Nojiri H, Sato M, Ishijima M, Watanabe M. Imaging Evaluation of Intervertebral Disc Degeneration and Painful Discs-Advances and Challenges in Quantitative MRI. Diagnostics (Basel) 2022; 12:707. [PMID: 35328260 PMCID: PMC8946895 DOI: 10.3390/diagnostics12030707] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 01/07/2023] Open
Abstract
In recent years, various quantitative and functional magnetic resonance imaging (MRI) sequences have been developed and used in clinical practice for the diagnosis of patients with low back pain (LBP). Until now, T2-weighted imaging (T2WI), a visual qualitative evaluation method, has been used to diagnose intervertebral disc (IVD) degeneration. However, this method has limitations in terms of reproducibility and inter-observer agreement. Moreover, T2WI observations do not directly relate with LBP. Therefore, new sequences such as T2 mapping, T1ρ mapping, and MR spectroscopy have been developed as alternative quantitative evaluation methods. These new quantitative MRIs can evaluate the anatomical and physiological changes of IVD degeneration in more detail than conventional T2WI. However, the values obtained from these quantitative MRIs still do not directly correlate with LBP, and there is a need for more widespread use of techniques that are more specific to clinical symptoms such as pain. In this paper, we review the state-of-the-art methodologies and future challenges of quantitative MRI as an imaging diagnostic tool for IVD degeneration and painful discs.
Collapse
Affiliation(s)
- Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.T.); (H.N.); (M.I.)
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Hidetoshi Nojiri
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.T.); (H.N.); (M.I.)
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.T.); (H.N.); (M.I.)
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
22
|
McDonnell EE, Buckley CT. Consolidating and re-evaluating the human disc nutrient microenvironment. JOR Spine 2022; 5:e1192. [PMID: 35386756 PMCID: PMC8966889 DOI: 10.1002/jsp2.1192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Despite exciting advances in regenerative medicine, cell-based strategies for treating degenerative disc disease remain in their infancy. To maximize the potential for successful clinical translation, a more thorough understanding of the in vivo microenvironment is needed to better determine and predict how cell therapies will respond when administered in vivo. Aims This work aims to reflect on the in vivo nutrient microenvironment of the degenerating IVD through consolidating what has already been measured together with investigative in silico models. Materials and Methods This work uses in silico modeling, underpinned by more recent experimentally determined parameters of degeneration and nutrient transport from the literature, to re-evaluate the current knowledge in terms of grade-specific stages of degeneration. Results Through modeling only the metabolically active cell population, this work predicts slightly higher glucose concentrations compared to previous in silico models, while the predicted results show good agreement with previous intradiscal pH and oxygen measurements. Increasing calcification with degeneration limits nutrient transport into the IVD and initiates a build-up of acidity; however, its effect is compensated somewhat by a reduction in diffusional distance due to decreasing disc height. Discussion This work advances in silico modeling through a strong foundation of experimentally determined grade-specific input parameters. Taken together, pre-existing measurements and predicted results suggest that metabolite concentrations may not be as critically low as commonly believed, with calcification not appearing to have a detrimental effect at stages of degeneration when cell therapies are an appropriate intervention. Conclusion Overall, our initiative is to provoke greater deliberation and consideration of the nutrient microenvironment when performing in vitro cell culture and cell therapy development. This work highlights urgency for robust experimental glucose measurements in healthy and degenerating IVDs, not only to validate in silico models but to significantly advance the field in fully elucidating the nutrient microenvironment and refining in vitro techniques to accelerate clinical translation.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
23
|
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, Krupkova O, Mehrkens A. Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. Int J Mol Sci 2022; 23:2530. [PMID: 35269672 PMCID: PMC8910276 DOI: 10.3390/ijms23052530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease, a painful pathology of the intervertebral disc (IVD), often causes disability and reduces quality of life. Although regenerative cell-based strategies have shown promise in clinical trials, none have been widely adopted clinically. Recent developments demonstrated that spheroid-based approaches might help overcome challenges associated with cell-based IVD therapies. Spheroids are three-dimensional multicellular aggregates with architecture that enables the cells to differentiate and synthesize endogenous ECM, promotes cell-ECM interactions, enhances adhesion, and protects cells from harsh conditions. Spheroids could be applied in the IVD both in scaffold-free and scaffold-based configurations, possibly providing advantages over cell suspensions. This review highlights areas of future research in spheroid-based regeneration of nucleus pulposus (NP) and annulus fibrosus (AF). We also discuss cell sources and methods for spheroid fabrication and characterization, mechanisms related to spheroid fusion, as well as enhancement of spheroid performance in the context of the IVD microenvironment.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- Lepage Research Institute, University of Prešov, 17. Novembra 1, 081 16 Prešov, Slovakia
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| |
Collapse
|
24
|
Li T, Peng Y, Chen Y, Huang X, Li X, Zhang Z, Du J. Long intergenic non-coding RNA -00917 regulates the proliferation, inflammation, and pyroptosis of nucleus pulposus cells via targeting miR-149-5p/NOD-like receptor protein 1 axis. Bioengineered 2022; 13:6036-6047. [PMID: 35184666 PMCID: PMC8974084 DOI: 10.1080/21655979.2022.2043100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Tengfei Li
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Ye Peng
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Yufei Chen
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Xiaogang Huang
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Xiaojie Li
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Zhenyu Zhang
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| | - Junjie Du
- Department of Orthopedics, Air Force Medical Center of Pla, Beijing, Haidian District, China
| |
Collapse
|
25
|
Sakai D, Schol J, Watanabe M. Clinical Development of Regenerative Medicine Targeted for Intervertebral Disc Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:267. [PMID: 35208590 PMCID: PMC8878570 DOI: 10.3390/medicina58020267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Low back pain is critical health, social, and economic issue in modern societies. This disease is often associated with intervertebral disc degeneration; however, contemporary treatments are unable to target this underlying pathology to alleviate the pain symptoms. Cell therapy offers a promising novel therapeutic that, in theory, should be able to reduce low back pain through mitigating the degenerative disc environment. With the clinical development of cell therapeutics ongoing, this review aims to summarize reporting on the different clinical trials and assess the different regenerative strategies being undertaken to collectively obtain an impression on the potential safety and effectiveness of cell therapeutics against intervertebral disc-related diseases.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, Isehara 259-1193, Japan; (J.S.); (M.W.)
| | | | | |
Collapse
|
26
|
Mainardi A, Cambria E, Occhetta P, Martin I, Barbero A, Schären S, Mehrkens A, Krupkova O. Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Front Bioeng Biotechnol 2022; 9:826867. [PMID: 35155416 PMCID: PMC8832503 DOI: 10.3389/fbioe.2021.826867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Discogenic back pain is one of the most diffused musculoskeletal pathologies and a hurdle to a good quality of life for millions of people. Existing therapeutic options are exclusively directed at reducing symptoms, not at targeting the underlying, still poorly understood, degenerative processes. Common intervertebral disc (IVD) disease models still do not fully replicate the course of degenerative IVD disease. Advanced disease models that incorporate mechanical loading are needed to investigate pathological causes and processes, as well as to identify therapeutic targets. Organs-on-chip (OoC) are microfluidic-based devices that aim at recapitulating tissue functions in vitro by introducing key features of the tissue microenvironment (e.g., 3D architecture, soluble signals and mechanical conditioning). In this review we analyze and depict existing OoC platforms used to investigate pathological alterations of IVD cells/tissues and discuss their benefits and limitations. Starting from the consideration that mechanobiology plays a pivotal role in both IVD homeostasis and degeneration, we then focus on OoC settings enabling to recapitulate physiological or aberrant mechanical loading, in conjunction with other relevant features (such as inflammation). Finally, we propose our view on design criteria for IVD-on-a-chip systems, offering a future perspective to model IVD mechanobiology.
Collapse
Affiliation(s)
- Andrea Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Arne Mehrkens
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Olga Krupkova
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Spine Surgery, University Hospital Basel, Basel, Switzerland
- Lepage Research Institute, University of Prešov, Prešov, Slovakia
| |
Collapse
|
27
|
Xuan A, Ruan D, Wang C, He Q, Wang D, Hou L, Zhang C, Li C, Ji W, Wen T, Xu C, Zhu Z. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:490-503. [PMID: 35427416 PMCID: PMC9154349 DOI: 10.1093/stcltm/szac013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The treatment of intervertebral disc degeneration (IVDD) is still a huge challenge for clinical updated surgical techniques and basic strategies of intervertebral disc regeneration. Few studies have ever tried to combine surgery and cell therapy to bridge the gap between clinical and basic research. A prospective clinical study with a 72-month follow-up was conducted to assess the safety and feasibility of autologous discogenic cells transplantation combined with discectomy in the treatment of lumbar disc herniation (LDH) and to evaluate the regenerative ability of discogenic cells in IVDD. Forty patients with LDH who were scheduled to have discectomy enrolled in our study and were divided into the observed group (transplantation of autologous discogenic cells after discectomy) and control group (only-discectomy). Serial MRI and X-ray were used to evaluate the degenerative extent of index discs, and clinical scores were used to determine the symptomatic improvement. No adverse events were observed in the observed group, and seven patients in the control group underwent revisions. Both groups had significant improvement of all functional scores post-operatively, with the observed group improving more considerably at 36-month and 72-month follow-up. The height and water content of discs in both groups decreased significantly since 36 months post-op with the control group decreased more obviously. Discectomy combined with autologous discogenic cells transplantation is safe and feasible in the treatment of LDH. Radiological analysis demonstrated that discogenic cells transplantation could slow down the further degeneration of index discs and decrease the complications of discectomy.
Collapse
Affiliation(s)
- Anwu Xuan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
- Corresponding author: Dike Ruan, MD, The Second School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, People’s Republic of China, and the Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, Haidian District, Beijing 100048, People’s Republic of China.
| | - Chaofeng Wang
- Department of Orthopedics, Xi’an Honghui Hospital, Xi’an, People’s Republic of China
| | - Qing He
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Deli Wang
- Department of Orthopedics, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Lisheng Hou
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Chao Zhang
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Chao Li
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Wei Ji
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Tianyong Wen
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Cheng Xu
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Zhenbiao Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Orthopedics, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
28
|
Sudo T, Akeda K, Kawaguchi K, Hasegawa T, Yamada J, Inoue N, Masuda K, Sudo A. Intradiscal injection of monosodium iodoacetate induces intervertebral disc degeneration in an experimental rabbit model. Arthritis Res Ther 2021; 23:297. [PMID: 34876212 PMCID: PMC8653558 DOI: 10.1186/s13075-021-02686-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Establishing an optimal animal model for intervertebral disc (IVD) degeneration is essential for developing new IVD therapies. The intra-articular injection of monosodium iodoacetate (MIA), which is commonly used in animal models of osteoarthritis, induces cartilage degeneration and progressive arthritis in a dose- and time-dependent manner. The purpose of this study was to determine the effect of MIA injections into rabbit IVDs on the progression of IVD degeneration evaluated by radiographic, micro-computerized tomography (micro-CT), magnetic resonance imaging (MRI), and histological analyses. Methods In total, 24 New Zealand White (NZW) rabbits were used in this study. Under general anesthesia, lumbar discs from L1–L2 to L4–L5 had a posterolateral percutaneous injection of MIA in contrast agent (CA) (L1–L2: CA only; L2–L3: MIA 0.01 mg; L3–L4: 0.1 mg; L4–L5: 1.0 mg; L5–L6: non-injection (NI) control). Disc height was radiographically monitored biweekly until 12 weeks after injection. Six rabbits were sacrificed at 2, 4, 8, and 12 weeks post-injection and processed for micro-CT, MRI (T2-mapping), and histological analyses. Three-dimensional (3D) disc height in five anatomical zones was evaluated by 3D reconstruction of micro-CT data. Results Disc height of MIA-injected discs (L2–L3 to L4–L5) gradually decreased time-dependently (P < 0.0001). The disc height of MIA 0.01 mg-injected discs was significantly higher than those of MIA 0.1 and 1.0 mg-injected discs (P < 0.01, respectively). 3D micro-CT analysis showed the dose- and time-dependent decrease of 3D disc height of MIA-injected discs predominantly in the posterior annulus fibrosus (AF) zone. MRI T2 values of MIA 0.1 and 1.0 mg-injected discs were significantly decreased compared to those of CA and/or NI controls (P < 0.05). Histological analyses showed progressive time- and dose-degenerative changes in the discs injected with MIA (P < 0.01). MIA induced cell death in the rabbit nucleus pulposus with a high percentage, while the percentage of cell clones was low. Conclusions The results of this study showed, for the first time, that the intradiscal injection of MIA induced degenerative changes of rabbit IVDs in a time- and dose-dependent manner. This study suggests that MIA injection into rabbit IVDs could be used as an animal model of IVD degeneration for developing future treatments.
Collapse
Affiliation(s)
- Takao Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Koji Akeda
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan.
| | - Koki Kawaguchi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Takahiro Hasegawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Junichi Yamada
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Nozomu Inoue
- Department of Orthopedic Surgery, Rush Medical College, Chicago, IL, 60612-3833, USA
| | - Koichi Masuda
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Dr, La Jolla, 92093-0863, USA
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| |
Collapse
|
29
|
Shalash W, Ahrens SR, Bardonova LA, Byvaltsev VA, Giers MB. Patient-specific apparent diffusion maps used to model nutrient availability in degenerated intervertebral discs. JOR Spine 2021; 4:e1179. [PMID: 35005445 PMCID: PMC8717112 DOI: 10.1002/jsp2.1179] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION In this study, magnetic resonance imaging data was used to (1) model IVD-specific gradients of glucose, oxygen, lactate, and pH; and (2) investigate possible effects of covariate factors (i.e., disc geometry, and mean apparent diffusion coefficient values) on the IVD's microenvironment. Mathematical modeling of the patient's specific IVD microenvironment could be important when selecting patients for stem cell therapy due to the increased nutrient demand created by that treatment. MATERIALS AND METHODS Disc geometry and water diffusion coefficients were extracted from MRIs of 37 patients using sagittal T1-weighted images, T2-weighted images, and ADC Maps. A 2-D steady state finite element mathematical model was developed in COMSOL Multiphysics® 5.4 to compute concentration maps of glucose, oxygen, lactate and pH. RESULTS Concentration of nutrients (i.e., glucose, and oxygen) dropped with increasing distance from the cartilaginous endplates (CEP), whereas acidity levels increased. Most discs experienced poor nutrient levels along with high acidity values in the inner annulus fibrosus (AF). The disc's physiological microenvironment became more deficient as degeneration progressed. For example, minimum glucose concentration in grade 4 dropped by 31.1% compared to grade 3 (p < 0.0001). The model further suggested a strong effect of the following parameters: disc size, AF and CEP diffusivities, metabolic reactions, and cell density on solute concentrations in the disc (p < 0.05). CONCLUSION The significance of this work implies that the individual morphology and physiological conditions of each disc, even among discs of the same Pfirrmann grade, should be evaluated when modeling IVD solute concentrations.
Collapse
Affiliation(s)
- Ward Shalash
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| | - Sonia R. Ahrens
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| | - Liudmila A. Bardonova
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
- Irkutsk State Medical UniversityIrkutskRussia
| | - Vadim A. Byvaltsev
- Irkutsk State Medical UniversityIrkutskRussia
- Railway Clinical Hospital at the Irkutsk‐Passazhirsky StationIrkutskRussia
| | - Morgan B. Giers
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
30
|
Exosomes Derived from Bone Mesenchymal Stem Cells Alleviate Compression-Induced Nucleus Pulposus Cell Apoptosis by Inhibiting Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2310025. [PMID: 34733401 PMCID: PMC8560283 DOI: 10.1155/2021/2310025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023]
Abstract
Oxidative stress is relevant in compression-induced nucleus pulposus (NP) cell apoptosis and intervertebral disc (IVD) degeneration. Exosomes derived from bone mesenchymal stem cells (BMSCs-Exos) are key secretory products of MSCs, with important roles in tissue regeneration. This research is aimed at studying the protective impact of BMSCs-Exos on NP cell apoptosis caused by compression and investigating the underlying mechanisms. Our results indicated that we isolated BMSCs successfully. Exosomes were isolated from the BMSCs and found to alleviate the inhibitory effect that compression has on proliferation and viability in NP cells, decreasing the toxic effects of compression-induced NP cells. AnnexinV/PI double staining and TUNEL assays indicated that the BMSCs-Exos reduced compression-induced apoptosis. In addition, our research found that BMSCs-Exos suppressed compression-mediated NP oxidative stress by detecting the ROS and malondialdehyde level. Furthermore, BMSCs-Exos increased the mitochondrial membrane potential and alleviated compression-induced mitochondrial damage. These results indicate that BMSCs-Exos alleviate compression-mediated NP apoptosis by suppressing oxidative stress, which may provide a promising cell-free therapy for treating IVD degeneration.
Collapse
|
31
|
Gryadunova A, Kasamkattil J, Gay MHP, Dasen B, Pelttari K, Mironov V, Martin I, Schären S, Barbero A, Krupkova O, Mehrkens A. Nose to Spine: spheroids generated by human nasal chondrocytes for scaffold-free nucleus pulposus augmentation. Acta Biomater 2021; 134:240-251. [PMID: 34339870 DOI: 10.1016/j.actbio.2021.07.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022]
Abstract
Cell-based strategies for nucleus pulposus (NP) regeneration that adequately support the engraftment and functionality of therapeutic cells are still lacking. This study explores a scaffold-free approach for NP repair, which is based on spheroids derived from human nasal chondrocytes (NC), a resilient cell type with robust cartilage-regenerative capacity. We generated NC spheroids (NCS) in two types of medium (growth or chondrogenic) and analyzed their applicability for NP repair with regard to injectability, biomechanical and biochemical attributes, and integration potential in conditions simulating degenerative disc disease (DDD). NCS engineered in both media were compatible with a typical spinal needle in terms of size (lower than 600µm), shape (roundness greater than 0.8), and injectability (no changes in morphology and catabolic gene expression after passing through the needle). While growth medium ensured stable elastic modulus (E) at 5 kPa, chondrogenic medium time-dependently increased E of NCS, in correlation with gene/protein expression of collagen. Notably, DDD-mimicking conditions did not impair NCS viability nor NCS fusion with NP spheroids simulating degenerated NP in vitro. To assess the feasibility of this approach, NCS were injected into an ex vivo-cultured bovine intervertebral disc (IVD) without damage using a spinal needle. In conclusion, our data indicated that NC cultured as spheroids can be compatible with strategies for minimally invasive NP repair in terms of injectability, tuneability, biomechanical features, and resilience. Future studies will address the capacity of NCS to integrate within degenerated NP under long-term loading conditions. STATEMENT OF SIGNIFICANCE: Current regenerative strategies still do not sufficiently support the engraftment of therapeutic cells in the nucleus pulposus (NP). We present an injectable approach based on spheroids derived from nasal chondrocytes (NC), a resilient cell type with robust cartilage-regenerative capacity. NC spheroids (NCS) generated with their own matrix and demonstrated injectability, tuneability of biomechanical/biochemical attributes, and integration potential in conditions simulating degenerative disc disease. To our knowledge, this is the first study that explored an injectable spheroid-based scaffold-free approach, which showed potential to support the adhesion and viability of therapeutic cells in degenerated NP. The provided information can be of substantial interest to a wide audience, including biomaterial scientists, biomedical engineers, biologists and medical researchers.
Collapse
Affiliation(s)
- Anna Gryadunova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel & University Hospital Basel, Tissue Engineering, ZLF 402, Hebelstrasse 20, 4031 Basel, Switzerland; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
| | - Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel & University Hospital Basel, Tissue Engineering, ZLF 402, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Max Hans Peter Gay
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel & University Hospital Basel, Tissue Engineering, ZLF 402, Hebelstrasse 20, 4031 Basel, Switzerland; Institute of Anatomy, Department of Biomedicine, University of Basel & University Hospital Basel, Pestalozzistrasse 20, 4031, Bael Switzerland
| | - Boris Dasen
- Department of Biomedicine, University of Basel & University Hospital Basel, Tissue Engineering, ZLF 402, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Karoliina Pelttari
- Department of Biomedicine, University of Basel & University Hospital Basel, Tissue Engineering, ZLF 402, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Vladimir Mironov
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation; Laboratory for Biotechnological Research 3D Bioprinting Solutions, Kashirskoe Highway, 68-2, Moscow, 115409 Russian Federation
| | - Ivan Martin
- Department of Biomedicine, University of Basel & University Hospital Basel, Tissue Engineering, ZLF 402, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University of Basel & University Hospital Basel, Tissue Engineering, ZLF 402, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel & University Hospital Basel, Tissue Engineering, ZLF 402, Hebelstrasse 20, 4031 Basel, Switzerland; Lepage Research Institute, University of Prešov, 17. Novembra 1, 081 16 Prešov, Slovakia.
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel & University Hospital Basel, Tissue Engineering, ZLF 402, Hebelstrasse 20, 4031 Basel, Switzerland
| |
Collapse
|
32
|
Zhou Z, Wang Y, Liu H, Wang L, Liu Z, Yuan H, Liu L, Guo M, Wang D. PBN protects NP cells from AAPH-induced degenerative changes by inhibiting the ERK1/2 pathway. Connect Tissue Res 2021; 62:359-368. [PMID: 32183547 DOI: 10.1080/03008207.2020.1743697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: Intervertebral disc (IVD) degeneration (IDD) is one of the main causes for spinal degenerative diseases, such as disk herniation, spinal canal stenosis, and spinal deformities. Growing evidence has highlighted the contribution of oxidative stress in pathogenesis of IDD, and antioxidant treatment is thus considered to be a promising therapeutic strategy for IDD. The aim of this study was to investigate whether N-tert-butyl-α-phenylnitrone (PBN), a free radical scavenger, could attenuate the pathological changes of IDD by alleviating oxidative stress.Materials and Methods: Nucleus pulposus (NP) cells were isolated from rabbit lumbar disks. MTT assay, real-time PCR and western blotting were employed to evaluate the effects of PBN on oxidative damages induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) in NP cells.Results: AAPH induced oxidative stress and the subsequent degenerative changes in NP cells via the ERK/MAPK pathway. On the contrary, the oxidative stress induced by AAPH was significantly ameliorated by PBN. Moreover, PBN also attenuated AAPH-induced expression of matrix degradation proteases and apoptosis. PBN suppresses AAPH-induced activation of ERK/MAPK pathway, which may be the underlying mechanism for the protective effects of PBN.Conclusions: Our study for the first time identified a novel role and mechanism for PBN in protecting the IVD against oxidative stress, matrix catabolism and apoptosis, which may have implications for its further application in combating IVD degenerative diseases.Abbreviations: AAPH: 2,2'-azobis(2-methylpropanimidamidine) dihydrochloride; ADAMTS: a disintegrin and metalloproteinase with thrombospondin motifs; AF: annulus fibrosus; CEP: cartilage endplate; DCF: 2'7'-dichlorofluorescein; IDD: intervertebral disc degeneration; IVD: intervertebral disc; LPS: lipopolysaccharide; MMP: matrix metalloproteinase; MTT: methyl-thiazolyl-tetrazolium; NP: nucleus pulposus; PBN: N-tert-butyl-alfa-phenylnitrone; PGs: proteoglycans; ROS: reactive oxygen species; SDS: sodium dodecyl sulfate.
Collapse
Affiliation(s)
- Zhenggang Zhou
- Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yini Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haifei Liu
- Qingdao Municipal Hospital, Department of Spine Surgery Center, The 3rd Clinical College of Qingdao University, Qingdao, Shandong, China
| | - Lu Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Zonghan Liu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Huimei Yuan
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lantao Liu
- Qingdao Municipal Hospital, Department of Spine Surgery Center, The 3rd Clinical College of Qingdao University, Qingdao, Shandong, China
| | - Mingbo Guo
- Department of Osteology, Sunshine Union Hospital, Weifang, Shandong, China
| | - Dechun Wang
- Qingdao Municipal Hospital, Department of Spine Surgery Center, The 3rd Clinical College of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
33
|
The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021. [DOI: 10.3390/ijms22094917
expr 996488947 + 961598850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
|
34
|
Calió M, Gantenbein B, Egli M, Poveda L, Ille F. The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021; 22:ijms22094917. [PMID: 34066404 PMCID: PMC8124861 DOI: 10.3390/ijms22094917] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
Affiliation(s)
- Martina Calió
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Lucy Poveda
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland;
| | - Fabian Ille
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
- Correspondence: ; Tel.: +41-41-349-36-15
| |
Collapse
|
35
|
Sako K, Sakai D, Nakamura Y, Schol J, Matsushita E, Warita T, Horikita N, Sato M, Watanabe M. Effect of Whole Tissue Culture and Basic Fibroblast Growth Factor on Maintenance of Tie2 Molecule Expression in Human Nucleus Pulposus Cells. Int J Mol Sci 2021; 22:ijms22094723. [PMID: 33946902 PMCID: PMC8124367 DOI: 10.3390/ijms22094723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Previous work showed a link between Tie2+ nucleus pulposus progenitor cells (NPPC) and disc degeneration. However, NPPC remain difficult to maintain in culture. Here, we report whole tissue culture (WTC) combined with fibroblast growth factor 2 (FGF2) and chimeric FGF (cFGF) supplementation to support and enhance NPPC and Tie2 expression. We also examined the role of PI3K/Akt and MEK/ERK pathways in FGF2 and cFGF-induced Tie2 expression. Young herniating nucleus pulposus tissue was used. We compared WTC and standard primary cell culture, with or without 10 ng/mL FGF2. PI3K/Akt and MEK/ERK signaling pathways were examined through western blotting. Using WTC and primary cell culture, Tie2 positivity rates were 7.0 ± 2.6% and 1.9 ± 0.3% (p = 0.004), respectively. Addition of FGF2 in WTC increased Tie2 positivity rates to 14.2 ± 5.4% (p = 0.01). FGF2-stimulated expression of Tie2 was reduced 3-fold with the addition of the MEK inhibitor PD98059 (p = 0.01). However, the addition of 1 μM Akt inhibitor, 124015-1MGCN, only reduced small Tie2 expression (p = 0.42). cFGF similarly increased the Tie2 expression, but did not result in significant phosphorylation in both the MEK/ERK and PI3K/Akt pathways. WTC with FGF2 addition significantly increased Tie2 maintenance of human NPPC. Moreover, FGF2 supports Tie2 expression via MEK/ERK and PI3K/Akt signals. These findings offer promising tools and insights for the development of NPPC-based therapeutics.
Collapse
Affiliation(s)
- Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Correspondence: (K.S.); (D.S.)
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
- Correspondence: (K.S.); (D.S.)
| | - Yoshihiko Nakamura
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Jordy Schol
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Erika Matsushita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Takayuki Warita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Natsumi Horikita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
36
|
Luo L, Gong J, Zhang H, Qin J, Li C, Zhang J, Tang Y, Zhang Y, Chen J, Zhou Y, Tian Z, Liu Y, Liu M. Cartilage Endplate Stem Cells Transdifferentiate Into Nucleus Pulposus Cells via Autocrine Exosomes. Front Cell Dev Biol 2021; 9:648201. [PMID: 33748142 PMCID: PMC7970302 DOI: 10.3389/fcell.2021.648201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells derived from cartilage endplate (CEP) cells (CESCs) repair intervertebral disc (IVD) injury; however, the mechanism remains unclear. Here, we evaluated whether CESCs could transdifferentiate into nucleus pulposus cells (NPCs) via autocrine exosomes and subsequently inhibit IVD degeneration. Exosomes derived from CESCs (CESC-Exos) were extracted and identified by ultra-high-speed centrifugation and transmission electron microscopy. The effects of exosomes on the invasion, migration, and differentiation of CESCs were assessed. The exosome-activating hypoxia-inducible factor (HIF)-1α/Wnt pathway was investigated using lenti-HIF-1α and Wnt agonists/inhibitors in cells and gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis in normal and degenerated human CEP tissue. The effects of GATA binding protein 4 (GATA4) on transforming growth factor (TGF)-β expression and on the invasion, migration, and transdifferentiation of CESCs were investigated using lenti-GATA4, TGF-β agonists, and inhibitors. Additionally, IVD repair was investigated by injecting CESCs overexpressing GATA4 into rats. The results indicated that CESC-Exos promoted the invasion, migration, and differentiation of CESCs by autocrine exosomes via the HIF-1α/Wnt pathway. Additionally, increased HIF-1α enhanced the activation of Wnt signaling and activated GATA4 expression. GATA4 effectively promoted TGF-β secretion and enhanced the invasion, migration, and transdifferentiation of CESCs into NPCs, resulting in promotion of rat IVD repair. CESCs were also converted into NPCs as endplate degeneration progressed in human samples. Overall, we found that CESC-Exos activated HIF-1α/Wnt signaling via autocrine mechanisms to increase the expression of GATA4 and TGF-β1, thereby promoting the migration of CESCs into the IVD and the transformation of CESCs into NPCs and inhibiting IVDD.
Collapse
Affiliation(s)
- Liwen Luo
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China.,Institute of Immunology, PLA, Army Medical University, Third Military Medical University, Chongqing, China
| | - Junfeng Gong
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Hongyu Zhang
- Department of Emergency, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinghao Qin
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Changqing Li
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yu Tang
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Yang Zhang
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Jian Chen
- Institute of Immunology, PLA, Army Medical University, Third Military Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Army Medical University, Third Military Medical University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - MingHan Liu
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| |
Collapse
|
37
|
Fiani B, Dahan A, El-Farra MH, Kortz MW, Runnels JM, Suliman Y, Miranda A, Nguy A. Cellular transplantation and platelet-rich plasma injections for discogenic pain: a contemporary review. Regen Med 2021; 16:161-174. [PMID: 33650437 DOI: 10.2217/rme-2020-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease (DDD) is the leading cause of chronic back pain. It is a pathologic condition associated with aging and is believed to result from catabolic excess in the intervertebral discs' (IVD) extracellular matrix. Two new treatment options are intradiscal cellular transplantation and growth factor therapy. Recent investigations on the use of these therapies are discussed and compared with emerging evidence supporting novel cellular injections. At present, human and animal studies provide a compelling rationale for the use of cellular injections in the treatment of discogenic pain. Since DDD results from the IVD extracellular matrix's unmitigated catabolism, cellular injections are used to induce regeneration and homeostasis in the IVD. Here, we review intervertebral disc anatomy, DDD pathophysiology and clinical considerations, as well as the current and emerging literature investigating outcomes associated with cellular transplantation and platelet-rich plasma for discogenic pain. Further high-quality trials are certainly warranted.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, 92262 CA, USA
| | - Alden Dahan
- University of California Riverside School of Medicine, Riverside, 92507 CA, USA
| | - Mohamed H El-Farra
- University of California Riverside School of Medicine, Riverside, 92507 CA, USA
| | - Michael W Kortz
- Department of Neurosurgery, University of Colorado Hospital, Aurora, 80045 CO, USA
| | - Juliana M Runnels
- University of New Mexico School of Medicine, Albuquerque, 87106 NM, USA
| | - Yasmine Suliman
- University of California Riverside School of Medicine, Riverside, 92507 CA, USA
| | - Anita Miranda
- University of California Riverside School of Medicine, Riverside, 92507 CA, USA
| | - Austin Nguy
- University of California Riverside School of Medicine, Riverside, 92507 CA, USA
| |
Collapse
|
38
|
Amirdelfan K, Bae H, McJunkin T, DePalma M, Kim K, Beckworth WJ, Ghiselli G, Bainbridge JS, Dryer R, Deer TR, Brown RD. Allogeneic mesenchymal precursor cells treatment for chronic low back pain associated with degenerative disc disease: a prospective randomized, placebo-controlled 36-month study of safety and efficacy. Spine J 2021; 21:212-230. [PMID: 33045417 DOI: 10.1016/j.spinee.2020.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT PURPOSE Evaluate the safety and efficacy of a single intradiscal injection of STRO-3+ adult allogeneic mesenchymal precursor cells (MPCs) combined with hyaluronic acid (HA) in subjects with chronic low back pain (CLBP) associated with degenerative disc disease (DDD) through 36-month follow-up. STUDY DESIGN/SETTING A multicenter, randomized, controlled study conducted at 13 clinical sites (12 in the United States and 1 in Australia). SUBJECT SAMPLE A total of 100 subjects with chronic low back pain associated with moderate DDD (modified Pfirrmann score of 3-6) at one level from L1 to S1 for at least 6 months and failing 3 months of conservative treatment, including physical therapy were randomized in a 3:3:2:2 ratio to receive 6 million MPCs with HA, 18 million MPCs with HA, HA vehicle control, or saline control (placebo) treatment. OUTCOME MEASURES Subjects were clinically and radiographically evaluated at 1, 3, 6, 12, 24, and 36 months postinjection. Subject-reported outcomes including adverse events, LBP on a Visual Analog Scale (VAS), Oswestry Disability Index (ODI), SF-36 and Work Productivity and Activity Index were collected. METHODS Clinical and radiographic measures were collected at each visit. All randomized subjects were included in the safety assessments and analyzed based on the treatment received. Safety assessments included assessments of AEs, physical and radiographic examinations and laboratory testing. Efficacy assessments evaluated changes in VAS, ODI, and modified Pfirrmann (MP) scores between all active and control groups, respectively. Assessments included least squares mean (Mean), LS mean change from baseline (Mean Change) and responder analyses in order to assess the clinical significance of observed changes from baseline. The population for efficacy assessments was adjusted for the confounding effects of post-treatment interventions (PTIs). This study was conducted under an FDA Investigational New Drug application sponsored and funded by Mesoblast. RESULTS There were significant differences between the control and MPC groups for improvement in VAS and ODI. The PTI-corrected VAS and ODI Means and Mean Change analyses; the proportion of subjects with VAS ≥30% and ≥50% improvement from baseline; absolute VAS score ≤20; and ODI reduction ≥10 and ≥15 points from baseline showed MPC therapy superior to controls at various time points through 36 months. Additionally, the proportion of subjects achieving the minimally important change and clinically significant change composite endpoints for the MPC groups was also superior compared with controls at various time points from baseline to 36 months. There were no significant differences in change in MP score from baseline across the groups. There were also no statistically significant differences in change in modified MP score at the level above or below the level treated between study arms. Both the procedure and treatment were well tolerated and there were no clinical symptoms of immune reaction to allogeneic MPCs. There was a low rate of Treatment Emergent Adverse Events (TEAEs) and Serious Adverse Events, and the rates of these events in the MPC groups were not significantly different from the control groups. One TEAE of severe back pain was possibly related to study agent and one TEAE of implantation site infection was considered to be related to the study procedure. CONCLUSIONS Results provide evidence that intradiscal injection of MPCs could be a safe, effective, durable, and minimally invasive therapy for subjects who have CLBP associated with moderate DDD.
Collapse
Affiliation(s)
- Kasra Amirdelfan
- IPM Medical Group, Inc., 450 Wiget Lane, Walnut Creek, CA 94598, USA.
| | - Hyun Bae
- The Spine Institute, 2811 Wilshire Blvd, Suite 850, Santa Monica, CA 90403, USA
| | - Tory McJunkin
- Arizona Pain Specialists, 9787 N. 91st St, Suite 101, Scottsdale, AZ 85258, USA
| | - Michael DePalma
- Virginia Spine Research Institute, Inc., 9020 Stony Point Parkway, Suite 140, Richmond, VA 23235, USA
| | - Kee Kim
- UC Davis Spine Center, 3301 C St, Suite 1500, Sacramento, CA 95816, USA
| | - William J Beckworth
- Department of Orthopaedics, Emory University School of Medicine, 59 Executive Park South, Suite 3000, Atlanta, GA 30329, USA
| | - Gary Ghiselli
- Denver Spine, 7800 E. Orchard Rd, Suite 100, Greenwood Village, CO 80111, USA
| | | | - Randall Dryer
- Central Texas Spine Institute, 6818 Austin Center Blvd, Suite 200, Austin, TX 78731, USA
| | - Timothy R Deer
- The Center for Pain Relief, Inc., 400 Court St, Suite 100, Charleston, WV 25301, USA
| | - Roger D Brown
- Mesoblast Inc., 12912 Hill Country Blvd, Building F, Suite 230, Bee Cave, TX 78738, USA
| |
Collapse
|
39
|
Silverman LI, Heaton W, Farhang N, Saxon LH, Dulatova G, Rodriguez-Granrose D, Flanagan F, Foley KT. Perspectives on the Treatment of Lumbar Disc Degeneration: The Value Proposition for a Cell-Based Therapy, Immunomodulatory Properties of Discogenic Cells and the Associated Clinical Evaluation Strategy. Front Surg 2020; 7:554382. [PMID: 33392242 PMCID: PMC7772215 DOI: 10.3389/fsurg.2020.554382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Low back pain (LBP) is a serious medical condition that affects a large percentage of the population worldwide. One cause of LBP is disc degeneration (DD), which is characterized by progressive breakdown of the disc and an inflamed disc environment. Current treatment options for patients with symptomatic DD are limited and are often unsuccessful, so many patients turn to prescription opioids for pain management in a time when opioid usage, addiction, and drug-related deaths are at an all-time high. In this paper, we discuss the etiology of lumbar DD and currently available treatments, as well as the potential for cell therapy to offer a biologic, non-opioid alternative to patients suffering from the condition. Finally, we present an overview of an investigational cell therapy called IDCT (Injectable Discogenic Cell Therapy), which is currently under evaluation in multiple double-blind clinical trials overseen by major regulatory agencies. The active ingredient in IDCT is a novel allogeneic cell population known as Discogenic Cells. These cells, which are derived from intervertebral disc tissue, have been shown to possess both regenerative and immunomodulatory properties. Cell therapies have unique properties that may ultimately lead to decreased pain and improved function, as well as curb the numbers of patients pursuing opioids. Their efficacy is best assessed in rigorous double-blinded and placebo-controlled clinical studies.
Collapse
Affiliation(s)
- Lara Ionescu Silverman
- DiscGenics Inc., Salt Lake City, UT, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Will Heaton
- DiscGenics Inc., Salt Lake City, UT, United States
| | | | | | | | | | | | - Kevin T Foley
- DiscGenics Inc., Salt Lake City, UT, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States.,Semmes-Murphey Clinic, Memphis, TN, United States
| |
Collapse
|
40
|
Panebianco C, Meyers J, Gansau J, Hom W, Iatridis J. Balancing biological and biomechanical performance in intervertebral disc repair: a systematic review of injectable cell delivery biomaterials. Eur Cell Mater 2020; 40:239-258. [PMID: 33206993 PMCID: PMC7706585 DOI: 10.22203/ecm.v040a15] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discogenic back pain is a common condition without approved intervertebral disc (IVD) repair therapies. Cell delivery using injectable biomaterial carriers offers promise to restore disc height and biomechanical function, while providing a functional niche for delivered cells to repair degenerated tissues. This systematic review advances the injectable IVD cell delivery biomaterials field by characterising its current state and identifying themes of promising strategies. Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) guidelines were used to screen the literature and 183 manuscripts met the inclusion criteria. Cellular and biomaterial inputs, and biological and biomechanical outcomes were extracted from each study. Most identified studies targeted nucleus pulposus (NP) repair. No consensus exists on cell type or biomaterial carrier, yet most common strategies used mesenchymal stem cell (MSC) delivery with interpenetrating network/co-polymeric (IPN/CoP) biomaterials composed of natural biomaterials. All studies reported biological outcomes with about half the studies reporting biomechanical outcomes. Since the IVD is a load-bearing tissue, studies reporting compressive and shear moduli were analysed and two major themes were found. First, a competitive balance, or 'seesaw' effect, between biomechanical and biological performance was observed. Formulations with higher moduli had inferior cellular performance, and vice versa. Second, several low-modulus biomaterials had favourable biological performance and matured throughout culture duration with enhanced extracellular matrix synthesis and biomechanical moduli. Findings identify an opportunity to develop next-generation biomaterials that provide high initial biomechanical competence to stabilise and repair damaged IVDs with a capacity to promote cell function for long-term healing.
Collapse
Affiliation(s)
| | | | | | | | - J.C. Iatridis
- Address for correspondence: James C. Iatridis, Ph.D., One Gustave Levy Place, Box 1188, Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Telephone number: +1 2122411517
| |
Collapse
|
41
|
Farhang N, Davis B, Weston J, Ginley-Hidinger M, Gertz J, Bowles RD. Synergistic CRISPRa-Regulated Chondrogenic Extracellular Matrix Deposition Without Exogenous Growth Factors. Tissue Eng Part A 2020; 26:1169-1179. [PMID: 32460686 PMCID: PMC7869877 DOI: 10.1089/ten.tea.2020.0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 12/30/2022] Open
Abstract
Stem cell therapies have shown promise for regenerative treatment for musculoskeletal conditions, but their success is mixed. To enhance regenerative effects, growth factors are utilized to induce differentiation into native cell types, but uncontrollable in vivo conditions inhibit differentiation, and precise control of expressed matrix proteins is difficult to achieve. To address these issues, we investigated a novel method of enhancing regenerative phenotype through direct upregulation of major cartilaginous tissue proteins, aggrecan (ACAN), and collagen II (COL2A1) using dCas9-VPR CRISPR gene activation systems. We demonstrated increased expression and deposition of targeted proteins independent of exogenous growth factors in pellet culture. Singular upregulation of COL2A1/ACAN interestingly indicates that COL2A1 upregulation mediates the highest sulfated glycosaminoglycan (sGAG) deposition, in addition to collagen II deposition. Through RNA-seq analysis, this was shown to occur by COL2A1 upregulation mediating broader chondrogenic gene expression changes. Multiplex upregulation of COL2A1 and ACAN together resulted in the highest sGAG, and collagen II deposition, with levels comparable to those in chondrogenic growth factor-differentiated pellets. Overall, this work indicates dCas9-VPR systems can robustly upregulate COL2A1 and ACAN deposition without growth factors, to provide a novel, precise method of controlling stem cell phenotype for cartilage and intervertebral disc cell therapies and tissue engineering. Impact statement Stem cell therapies have come about as a potential regenerative treatment for musculoskeletal disease, but clinically, they have mixed results. To improve stem cell therapies, growth factors are used to aid a regenerative cell phenotype, but their effects are inhibited by in vivo musculoskeletal disease environments. This article describes CRISPR gene activation-based cell engineering methods that provide a growth factor-free method of inducing chondrogenic extracellular matrix deposition. This method is demonstrated to be as/more potent as growth factors in inducing a chondrogenic phenotype in pellet culture, indicating potential utility as a method of enhancing stem cell therapies for musculoskeletal disease.
Collapse
Affiliation(s)
- Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Bryton Davis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Jacob Weston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | | - Jason Gertz
- Department of Oncological Sciences, and University of Utah, Salt Lake City, Utah, USA
| | - Robby D. Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
42
|
Wang Y, Bai Y, Ma H, Wang S. Comparison of total disc arthroplasty and fusion in treatment of lumbar disc disease: A cohort study protocol. Medicine (Baltimore) 2020; 99:e22024. [PMID: 32871957 PMCID: PMC7458242 DOI: 10.1097/md.0000000000022024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In recent years, the clinical efficacy of spinal fusion (SF) or total disc arthroplasty (TDA) in the treatment of the degenerative lumbar disc disease is still controversial. The objective of this retrospective clinical trial was to investigate whether TDA was superior to the SF in the complication rates and clinical outcome scores. METHODS This retrospective research was based on the Strengthening the Reporting of Observational studies in Epidemiology checklist. Internal clinical data sets for 2014 to 2018 were acquired and consolidated with the approval of the Institutional Review Committee of Shaoxing Hospital of Zhejiang University. Inclusion criteria in this present research included: low back pain without or with the leg pain for more than one year; failure of conservative treatment planned for more than three months; age was 25 to 60 years old; followed up for at least one year. The main outcome measure was disability and pain measured via the Norwegian version of Oswestry disability index 2.0. The other clinical outcomes included Short-Form Health Survey, reoperations, duration of surgery, complications, hospital stay length, as well as the blood loss. The significance was set at 0.05 level with the confidence intervals of 95%. The software package of SPSS (version 21.0; SPSS Inc, Chicago, IL, USA) was applied for all the analyses of statistics. RESULTS The null hypothesis is that there is no significant difference in outcomes between TDA and SF in the treatment of degenerative lumbar disc disease. TRIAL REGISTRATION This study protocol was registered in Research Registry (researchregistry5847).
Collapse
Affiliation(s)
- Yi Wang
- Department of Orthopaedics, People's Hospital of Mianzhu, Mianzhu 618200, Sichuan
| | - Yunting Bai
- Department of Orthopaedics, The Fifth People's Hospital of Jinan, Jinan 250022
| | - Haoguang Ma
- Department of Surgery, Hot Spring Sanatorium of Linyi, Shandong Coal (Linyi Hedong Central Hospital), Linyi 276032, Shandong
| | - Shaolei Wang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University School of Medicine), Shaoxing 312000, Zhejiang, China
| |
Collapse
|
43
|
Tessier S, Risbud MV. Understanding embryonic development for cell-based therapies of intervertebral disc degeneration: Toward an effort to treat disc degeneration subphenotypes. Dev Dyn 2020; 250:302-317. [PMID: 32564440 DOI: 10.1002/dvdy.217] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic low back and neck pain are associated with intervertebral disc degeneration and are major contributors to the global burden of disability. New evidence now suggests that disc degeneration comprises a spectrum of subphenotypes influenced by genetic background, age, and environmental factors, which may be contributing to the mixed outcomes seen in clinical trials of cell-based therapies that aim to treat disc degeneration. This problem is further compounded by the fact that disc degeneration and aging coincide with an exhaustion of endogenous progenitor cells, imposing limitations on the regenerative capacity of the disc. At the bench-side, current work is focused on applying our knowledge of embryonic disc development to direct and refine differentiation of adult and human-induced pluripotent stem cells into notochord-like and nucleus pulposus-like cells for use in novel cell-based therapies. Accordingly, this review presents the salient features of intervertebral disc development, post-natal maintenance, and regeneration, with emphasis on recent advancements. We also discuss how a stratified approach can be undertaken for the development of future cell-based therapies to bring emerging subphenotypes into consideration.
Collapse
Affiliation(s)
- Steven Tessier
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Frapin L, Clouet J, Chédeville C, Moraru C, Samarut E, Henry N, André M, Bord E, Halgand B, Lesoeur J, Fusellier M, Guicheux J, Le Visage C. Controlled release of biological factors for endogenous progenitor cell migration and intervertebral disc extracellular matrix remodelling. Biomaterials 2020; 253:120107. [PMID: 32450408 DOI: 10.1016/j.biomaterials.2020.120107] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The recent description of resident stem/progenitor cells in degenerated intervertebral discs (IVDs) supports the notion that their regenerative capacities could be harnessed to stimulate endogenous repair of the nucleus pulposus (NP). In this study, we developed a delivery system based on pullulan microbeads (PMBs) for sequential release of the chemokine CCL-5 to recruit these disc stem/progenitor cells to the NP tissue, followed by the release of the growth factors TGF-β1 and GDF-5 to induce the synthesis of a collagen type II- and aggrecan-rich extracellular matrix (ECM). Bioactivity of released CCL5 on human adipose-derived stem cells (hASCs), selected to mimic disc stem/progenitors, was demonstrated using a Transwell® chemotaxis assay. The regenerative effects of loaded PMBs were investigated in ex vivo spontaneously degenerated ovine IVDs. Fluorescent hASCs were seeded on the top cartilaginous endplates (CEPs); the degenerated NPs were injected with PMBs loaded with CCL5, TGF-β1, and GDF-5; and the IVDs were then cultured for 3, 7, and 28 days to allow for cell migration and disc regeneration. The PMBs exhibited sustained release of biological factors for 21 days. Ex vivo migration of seeded hASCs from the CEP toward the NP was demonstrated, with the cells migrating a significantly greater distance when loaded PMBs were injected (5.8 ± 1.3 mm vs. 3.5 ± 1.8 mm with no injection of PMBs). In ovine IVDs, the overall NP cellularity, the collagen type II and the aggrecan staining intensities, and the Tie2+ progenitor cell density in the NP were increased at day 28 compared to the control groups. Considered together, PMBs loaded with CCL5/TGF-β1/GDF-5 constitute an innovative and promising strategy for controlled release of growth factors to promote cell recruitment and extracellular matrix remodelling.
Collapse
Affiliation(s)
- Leslie Frapin
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Johann Clouet
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes, F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes, F-44035, France
| | - Claire Chédeville
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Constantin Moraru
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Edouard Samarut
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Nina Henry
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Manon André
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France
| | - Eric Bord
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Boris Halgand
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France
| | - Julie Lesoeur
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France
| | - Marion Fusellier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; Department of Diagnostic Imaging, CRIP, National Veterinary School (ONIRIS), Nantes, F-44307, France
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France.
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France.
| |
Collapse
|
45
|
Panebianco C, DiStefano T, Mui B, Hom W, Iatridis J. Crosslinker concentration controls TGFβ-3 release and annulus fibrosus cell apoptosis in genipin-crosslinked fibrin hydrogels. Eur Cell Mater 2020; 39:211-226. [PMID: 32396210 PMCID: PMC7372750 DOI: 10.22203/ecm.v039a14] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Back pain is a leading cause of global disability associated with intervertebral disc (IVD) pathologies. Discectomy alleviates disabling pain caused by IVD herniation without repairing annulus fibrosus (AF) defects, which can cause accelerated degeneration and recurrent pain. Biological therapies show promise for IVD repair but developing high-modulus biomaterials capable of providing biomechanical stabilisation and delivering biologics remains an unmet challenge. The present study identified critical factors and developed an optimal formulation to enhance the delivery of AF cells and transforming growth beta-3 (TGFβ-3) in genipin-crosslinked fibrin (FibGen) hydrogels. Part 1 showed that AF cells encapsulated in TGFβ-3-supplemented high-modulus FibGen synthesised little extracellular matrix (ECM) but could release TGFβ-3 at physiologically relevant levels. Part 2 showed that AF cells underwent apoptosis when encapsulated in FibGen, even after reducing fibrin concentration from 70 to 5 mg/mL. Mechanistic experiments, modifying genipin concentration and integrin binding site presence demonstrated that genipin crosslinking caused AF cell apoptosis by inhibiting cell-biomaterial binding. Adding integrin binding sites with fibronectin partially rescued apoptosis, indicating genipin also caused acute cytotoxicity. Part 3 showed that FibGen formulations with 1 mg/mL genipin had enhanced ECM synthesis when supplemented with fibronectin and TGFβ-3. In conclusion, FibGen could be used for delivering biologically active compounds and AF cells, provided that formulations supplied additional sites for cell-biomaterial binding and genipin concentrations were low. Results also highlighted a need for developing strategies that protect cells against acute crosslinker cytotoxicity to overcome challenges of engineering high-modulus cell carriers for musculoskeletal tissues that experience high mechanical demands.
Collapse
Affiliation(s)
| | | | | | | | - J.C. Iatridis
- Address for correspondence: James C. Iatridis, PhD, 1468 Madison Avenue-Annenberg Building, floor 20, Room A20-086, New York, 10029 NY, USA., Telephone number: +1 2122411517
| |
Collapse
|
46
|
Volleman TNE, Schol J, Morita K, Sakai D, Watanabe M. Wnt3a and wnt5a as Potential Chondrogenic Stimulators for Nucleus Pulposus Cell Induction: A Comprehensive Review. Neurospine 2020; 17:19-35. [PMID: 32252152 PMCID: PMC7136098 DOI: 10.14245/ns.2040040.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain remains a highly prevalent pathology engendering a tremendous socioeconomic burden. Low back pain is generally associated with intervertebral disc (IVD) degeneration, a process involving the deterioration of nucleus pulpous (NP) cells and IVD matrix. Scientific interest has directed efforts to restoring cell numbers as a strategy to enable IVD regeneration. Currently, mesenchymal stromal cells (MSCs) are being explored as cell therapy agents, due to their easy accessibility and differentiation potential. For enhancement of MSCs, growth factor supplementation is commonly applied to induce differentiation towards a chondrogenic (NP) cell phenotype. The wnt signaling pathways play a crucial role in chondrogenesis, nonetheless, literature appears to present controversies with regard to wnt3a and wnt5a for the induction of NP cells, chondrocytes, and MSCs. This review aims to summarize the reporting on wnt3a/wnt5a mediated NP cell differentiation, and to elucidate the mechanisms involved in wnt3a and wnt5a mediated chondrogenesis for potential application as cell therapy supplements for IVD regeneration. Our review suggests that wnt3a, subsequently replaced with a chondrogenic stimulating growth factor, can enhance the chondrogenic potential of MSCs in vitro. Contrariwise, wnt5a is suggested to play a role in maintaining cell potency of differentiated NP or chondrogenic cells.
Collapse
Affiliation(s)
- Tibo Nico Emmie Volleman
- Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kosuke Morita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
47
|
Farhang N, Silverman L, Bowles RD. Improving Cell Therapy Survival and Anabolism in Harsh Musculoskeletal Disease Environments. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:348-366. [PMID: 32070243 DOI: 10.1089/ten.teb.2019.0324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell therapies are an up and coming technology in orthopedic medicine that has the potential to provide regenerative treatments for musculoskeletal disease. Despite numerous cell therapies showing preclinical success for common musculoskeletal indications of disc degeneration and osteoarthritis, there have been mixed results when testing these therapies in humans during clinical trials. A theory behind the mixed success of these cell therapies is that the harsh microenvironments of the disc and knee they are entering inhibit their anabolism and survival. Therefore, there is much ongoing research looking into how to improve the survival and anabolism of cell therapies within these musculoskeletal disease environments. This includes research into improving cell function under specific microenvironmental conditions known to exist in the intervertebral disc (IVD) and knee environment such as hypoxia, low-nutrient conditions, hyperosmolarity, acidity, and inflammation. This research also includes improving differentiation of cells into desired native cell phenotypes to better enhance their survival and anabolism in the knee and IVD. This review highlights the effects of specific musculoskeletal microenvironmental challenges on cell therapies and what research is being done to overcome these challenges. Impact statement While there has been significant clinical interest in using cell therapies for musculoskeletal pathologies in the knee and intervertebral disc, cell therapy clinical trials have had mixed outcomes. The information presented in this review includes the environmental challenges (i.e., acidic pH, inflammation, hyperosmolarity, hypoxia, and low nutrition) that cell therapies experience in these pathological musculoskeletal environments. This review summarizes studies that describe various approaches to improving the therapeutic capability of cell therapies in these harsh environments. The result is an overview of what approaches can be targeted and/or combined to develop a more consistent cell therapy for musculoskeletal pathologies.
Collapse
Affiliation(s)
- Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | | | - Robby D Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
48
|
Sun C, Lan W, Li B, Zuo R, Xing H, Liu M, Li J, Yao Y, Wu J, Tang Y, Liu H, Zhou Y. Glucose regulates tissue-specific chondro-osteogenic differentiation of human cartilage endplate stem cells via O-GlcNAcylation of Sox9 and Runx2. Stem Cell Res Ther 2019; 10:357. [PMID: 31779679 PMCID: PMC6883626 DOI: 10.1186/s13287-019-1440-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The degenerative disc disease (DDD) is a major cause of low back pain. The physiological low-glucose microenvironment of the cartilage endplate (CEP) is disrupted in DDD. Glucose influences protein O-GlcNAcylation via the hexosamine biosynthetic pathway (HBP), which is the key to stem cell fate. Thiamet-G is an inhibitor of O-GlcNAcase for accumulating O-GlcNAcylated proteins while 6-diazo-5-oxo-L-norleucine (DON) inhibits HBP. Mechanisms of DDD are incompletely understood but include CEP degeneration and calcification. We aimed to identify the molecular mechanisms of glucose in CEP calcification in DDD. METHODS We assessed normal and degenerated CEP tissues from patients, and the effects of chondrogenesis and osteogenesis of the CEP were determined by western blot and immunohistochemical staining. Cartilage endplate stem cells (CESCs) were induced with low-, normal-, and high-glucose medium for 21 days, and chondrogenic and osteogenic differentiations were measured by Q-PCR, western blot, and immunohistochemical staining. CESCs were induced with low-glucose and high-glucose medium with or without Thiamet-G or DON for 21 days, and chondrogenic and osteogenic differentiations were measured by Q-PCR, western blot, and immunohistochemical staining. Sox9 and Runx2 O-GlcNAcylation were measured by immunofluorescence. The effects of O-GlcNAcylation on the downstream genes of Sox9 and Runx2 were determined by Q-PCR and western blot. RESULTS Degenerated CEPs from DDD patients lost chondrogenesis, acquired osteogenesis, and had higher protein O-GlcNAcylation level compared to normal CEPs from LVF patients. CESC chondrogenic differentiation gradually decreased while osteogenic differentiation gradually increased from low- to high-glucose differentiation medium. Furthermore, Thiamet-G promoted CESC osteogenic differentiation and inhibited chondrogenic differentiation in low-glucose differentiation medium; however, DON acted opposite role in high-glucose differentiation medium. Interestingly, we found that Sox9 and Runx2 were O-GlcNAcylated in differentiated CESCs. Finally, O-GlcNAcylation of Sox9 and Runx2 decreased chondrogenesis and increased osteogenesis in CESCs. CONCLUSIONS Our findings demonstrate the effect of glucose concentration on regulating the chondrogenic and osteogenic differentiation potential of CESCs and provide insight into the mechanism of how glucose concentration regulates Sox9 and Runx2 O-GlcNAcylation to affect the differentiation of CESCs, which may represent a target for CEP degeneration therapy.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Weiren Lan
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bin Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rui Zuo
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jie Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yuan Yao
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Junlong Wu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yu Tang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Huan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Southwest Medical University, Lu Zhou, 646000, Sichuan, People's Republic of China.
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
49
|
Frauchiger DA, Tekari A, May RD, Džafo E, Chan SCW, Stoyanov J, Bertolo A, Zhang X, Guerrero J, Sakai D, Schol J, Grad S, Tryfonidou M, Benneker LM, Gantenbein B. Fluorescence-Activated Cell Sorting Is More Potent to Fish Intervertebral Disk Progenitor Cells Than Magnetic and Beads-Based Methods. Tissue Eng Part C Methods 2019; 25:571-580. [PMID: 31154900 DOI: 10.1089/ten.tec.2018.0375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Low back pain related to intervertebral disk (IVD) degeneration has a major socioeconomic impact on our aging society. Therefore, stem cell therapy to activate self-repair of the IVD remains an exciting treatment strategy. In this respect, tissue-specific progenitors may play a crucial role in IVD regeneration, as these cells are perfectly adapted to this niche. Such a rare progenitor cell population residing in the nucleus pulposus (NP) (NP progenitor cells [NPPCs]) was found positive for the angiopoietin-1 receptor (Tie2+), and was demonstrated to possess self-renewal capacity and in vitro multipotency. Here, we compared three sorting protocols; that is, fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), and a mesh-based label-free cell sorting system (pluriSelect), with respect to cell yield, potential to form colonies (colony-forming units), and in vitro functional differentiation assays for tripotency. The aim of this study was to demonstrate the efficiency of three widespread cell sorting methods for picking rare cells (<5%) and how these isolated cells then behave in downstream functional differentiation in adipogenesis, osteogenesis, and chondrogenesis. The cell yields among the isolation methods differed widely, with FACS presenting the highest yield (5.0% ± 4.0%), followed by MACS (1.6% ± 2.9%) and pluriSelect (1.1% ± 1.0%). The number of colonies formed was not significantly different between Tie2+ and Tie2- NPPCs. Only FACS was able to separate into two functionally different populations that showed trilineage multipotency, while MACS and pluriSelect failed to maintain a clear separation between Tie2+ and Tie2- populations in differentiation assays. To conclude, the isolation of NPPCs was possible with all three sorting methods, while FACS was the preferred technique for separation of functional Tie2+ cells. Impact Statement Tissue-specific progenitor cells such as nucleus pulposus progenitor cells of the IVD could become an ultimate cell source for tissue engineering strategies as these cells are presumably best adapted to the tissue's microenvironment. Fluorescence-activated cell sorting seemed to outcompete magnetic-activated cell sorting and pluriSelect concerning selecting a rare cell population from IVD tissue as could be demonstrated by improved cell yield and functional differentiation assays.
Collapse
Affiliation(s)
- Daniela A Frauchiger
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Rahel D May
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Emina Džafo
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Samantha C W Chan
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | | | | | - Xingshuo Zhang
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Julien Guerrero
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daisuke Sakai
- Department for Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Jordy Schol
- Department for Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | | | - Marianna Tryfonidou
- Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lorin M Benneker
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Benjamin Gantenbein
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
50
|
Frapin L, Clouet J, Delplace V, Fusellier M, Guicheux J, Le Visage C. Lessons learned from intervertebral disc pathophysiology to guide rational design of sequential delivery systems for therapeutic biological factors. Adv Drug Deliv Rev 2019; 149-150:49-71. [PMID: 31445063 DOI: 10.1016/j.addr.2019.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/05/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022]
Abstract
Intervertebral disc (IVD) degeneration has been associated with low back pain, which is a major musculoskeletal disorder and socio-economic problem that affects as many as 600 million patients worldwide. Here, we first review the current knowledge of IVD physiology and physiopathological processes in terms of homeostasis regulation and consecutive events that lead to tissue degeneration. Recent progress with IVD restoration by anti-catabolic or pro-anabolic approaches are then analyzed, as are the design of macro-, micro-, and nano-platforms to control the delivery of such therapeutic agents. Finally, we hypothesize that a sequential delivery strategy that i) firstly targets the inflammatory, pro-catabolic microenvironment with release of anti-inflammatory or anti-catabolic cytokines; ii) secondly increases cell density in the less hostile microenvironment by endogenous cell recruitment or exogenous cell injection, and finally iii) enhances cellular synthesis of extracellular matrix with release of pro-anabolic factors, would constitute an innovative yet challenging approach to IVD regeneration.
Collapse
|