1
|
Paczolt KA, Welsh GT, Wilkinson GS. X chromosome drive is constrained by sexual selection and influences ornament evolution. Proc Biol Sci 2023; 290:20230929. [PMID: 37491962 PMCID: PMC10369026 DOI: 10.1098/rspb.2023.0929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Experimental evolution provides an integrative method for revealing complex interactions among evolutionary processes. One such interaction involves sex-linked selfish genetic elements and sexual selection. X-linked segregation distorters, a type of selfish genetic element, influence sperm transmission to increase in frequency and consequently alter the population sex ratio and the opportunity for sexual selection, while sexual selection may impact the spread of X-linked distorters. Here we manipulated sexual selection by controlling female mating opportunities and the presence of a distorting X chromosome in experimental lines of the stalk-eyed fly, Teleopsis dalmanni, over 11 generations. We find that removal of sexual selection leads to an increase in the frequency of the X-linked distorter and sex ratio across generations and that post-copulatory sexual selection alone is sufficient to limit the frequency of distorters. In addition, we find that male eyestalk length, a trait under pre-copulatory sexual selection, evolves in response to changes in the strength of sexual selection with the magnitude of the response dependent on X chromosome type and the frequency of distorting X chromosomes. These results reveal how a selfish X can interact with sexual selection to influence the evolution of sexually selected traits in multiple ways.
Collapse
Affiliation(s)
- Kimberly A. Paczolt
- Department of Biology, University of Maryland at College Park, College Park, MD 20742, USA
| | - Gabrielle T. Welsh
- Department of Biology, University of Maryland at College Park, College Park, MD 20742, USA
| | - Gerald S. Wilkinson
- Department of Biology, University of Maryland at College Park, College Park, MD 20742, USA
| |
Collapse
|
2
|
Keaney TA, Jones TM, Holman L. Sexual selection can partly explain low frequencies of Segregation Distorter alleles. Proc Biol Sci 2021; 288:20211190. [PMID: 34583584 PMCID: PMC8479333 DOI: 10.1098/rspb.2021.1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
The Segregation Distorter (SD) allele found in Drosophila melanogaster distorts Mendelian inheritance in heterozygous males by causing developmental failure of non-SD spermatids, such that greater than 90% of the surviving sperm carry SD. This within-individual advantage should cause SD to fix, and yet SD is typically rare in wild populations. Here, we explore whether this paradox can be resolved by sexual selection, by testing if males carrying three different variants of SD suffer reduced pre- or post-copulatory reproductive success. We find that males carrying the SD allele are just as successful at securing matings as control males, but that one SD variant (SD-5) reduces sperm competitive ability and increases the likelihood of female remating. We then used these results to inform a theoretical model; we found that sexual selection could limit SD to natural frequencies when sperm competitive ability and female remating rate equalled the values observed for SD-5. However, sexual selection was unable to explain natural frequencies of the SD allele when the model was parameterized with the values found for two other SD variants, indicating that sexual selection alone is unlikely to explain the rarity of SD.
Collapse
Affiliation(s)
- Thomas A. Keaney
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Therésa M. Jones
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Luke Holman
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| |
Collapse
|
3
|
Wedell N. Selfish genes and sexual selection: the impact of genomic parasites on host reproduction. J Zool (1987) 2020. [DOI: 10.1111/jzo.12780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- N. Wedell
- Biosciences University of Exeter, Penryn Campus Penryn UK
| |
Collapse
|
4
|
Price TAR, Verspoor R, Wedell N. Ancient gene drives: an evolutionary paradox. Proc Biol Sci 2019; 286:20192267. [PMID: 31847767 PMCID: PMC6939918 DOI: 10.1098/rspb.2019.2267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
Selfish genetic elements such as selfish chromosomes increase their transmission rate relative to the rest of the genome and can generate substantial cost to the organisms that carry them. Such segregation distorters are predicted to either reach fixation (potentially causing population extinction) or, more commonly, promote the evolution of genetic suppression to restore transmission to equality. Many populations show rapid spread of segregation distorters, followed by the rapid evolution of suppression. However, not all drivers display such flux, some instead persisting at stable frequencies in natural populations for decades, perhaps hundreds of thousands of years, with no sign of suppression evolving or the driver spreading to fixation. This represents a major evolutionary paradox. How can drivers be maintained in the long term at stable frequencies? And why has suppression not evolved as in many other gene drive systems? Here, we explore potential factors that may explain the persistence of drive systems, focusing on the ancient sex-ratio driver in the fly Drosophila pseudoobscura. We discuss potential solutions to the evolutionary mystery of why suppression does not appear to have evolved in this system, and address how long-term stable frequencies of gene drive can be maintained. Finally, we speculate whether ancient drivers may be functionally and evolutionarily distinct to young drive systems.
Collapse
Affiliation(s)
- T. A. R. Price
- Institution for Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - R. Verspoor
- Institution for Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - N. Wedell
- Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, Cornwall, UK
| |
Collapse
|
5
|
Dyer KA, Hall DW. Fitness consequences of a non-recombining sex-ratio drive chromosome can explain its prevalence in the wild. Proc Biol Sci 2019; 286:20192529. [PMID: 31847762 DOI: 10.1098/rspb.2019.2529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the pleiotropic consequences of gene drive systems on host fitness is essential to predict their spread through a host population. Here, we study sex-ratio (SR) X-chromosome drive in the fly Drosophila recens, where SR causes the death of Y-bearing sperm in male carriers. SR males only sire daughters, which all carry SR, thus giving the chromosome a transmission advantage. The prevalence of the SR chromosome appears stable, suggesting pleiotropic costs. It was previously shown that females homozygous for SR are sterile, and here, we test for additional fitness costs of SR. We found that females heterozygous for SR have reduced fecundity and that male SR carriers have reduced fertility in conditions of sperm competition. We then use our fitness estimates to parametrize theoretical models of SR drive and show that the decrease in fecundity and sperm competition performance can account for the observed prevalence of SR in natural populations. In addition, we found that the expected equilibrium frequency of the SR chromosome is particularly sensitive to the degree of multiple mating and performance in sperm competition. Together, our data suggest that the mating system of the organism should be carefully considered during the development of gene drive systems.
Collapse
Affiliation(s)
- Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - David W Hall
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Finnegan SR, White NJ, Koh D, Camus MF, Fowler K, Pomiankowski A. Meiotic drive reduces egg-to-adult viability in stalk-eyed flies. Proc Biol Sci 2019; 286:20191414. [PMID: 31480972 PMCID: PMC6742991 DOI: 10.1098/rspb.2019.1414] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/09/2019] [Indexed: 11/12/2022] Open
Abstract
A number of species are affected by Sex-Ratio (SR) meiotic drive, a selfish genetic element located on the X-chromosome that causes dysfunction of Y-bearing sperm. SR is transmitted to up to 100% of offspring, causing extreme sex ratio bias. SR in several species is found in a stable polymorphism at a moderate frequency, suggesting there must be strong frequency-dependent selection resisting its spread. We investigate the effect of SR on female and male egg-to-adult viability in the Malaysian stalk-eyed fly, Teleopsis dalmanni. SR meiotic drive in this species is old, and appears to be broadly stable at a moderate (approx. 20%) frequency. We use large-scale controlled crosses to estimate the strength of selection acting against SR in female and male carriers. We find that SR reduces the egg-to-adult viability of both sexes. In females, homozygous females experience greater reduction in viability (sf = 0.242) and the deleterious effects of SR are additive (h = 0.511). The male deficit in viability (sm = 0.214) is not different from that in homozygous females. The evidence does not support the expectation that deleterious side effects of SR are recessive or sex-limited. We discuss how these reductions in egg-to-adult survival, as well as other forms of selection acting on SR, may maintain the SR polymorphism in this species.
Collapse
Affiliation(s)
- Sam Ronan Finnegan
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nathan Joseph White
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| | - Dixon Koh
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - M. Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Kevin Fowler
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
7
|
Manser A, Lindholm AK, Weissing FJ. The evolution of costly mate choice against segregation distorters. Evolution 2017; 71:2817-2828. [PMID: 29071709 DOI: 10.1111/evo.13376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
The evolution of female preference for male genetic quality remains a controversial topic in sexual selection research. One well-known problem, known as the lek paradox, lies in understanding how variation in genetic quality is maintained in spite of natural selection and sexual selection against low-quality alleles. Here, we theoretically investigate a scenario where females pay a direct fitness cost to avoid males carrying an autosomal segregation distorter. We show that preference evolution is greatly facilitated under such circumstances. Because the distorter is transmitted in a non-Mendelian fashion, it can be maintained in the population despite directional sexual selection. The preference helps females avoid fitness costs associated with the distorter. Interestingly, we find that preference evolution is limited if the choice allele induces a very strong preference or if distortion is very strong. Moreover, the preference can only persist in the presence of a signal that reliably indicates a male's distorter genotype. Hence, even in a system where the lek paradox does not play a major role, costly preferences can only spread under specific circumstances. We discuss the importance of distorter systems for the evolution of costly female choice and potential implications for the use of artificial distorters in pest control.
Collapse
Affiliation(s)
- Andri Manser
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, United Kingdom.,Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Anna K Lindholm
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Franz J Weissing
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
8
|
Sutter A, Lindholm AK. No evidence for female discrimination against male house mice carrying a selfish genetic element. Curr Zool 2016; 62:675-685. [PMID: 29491955 PMCID: PMC5804255 DOI: 10.1093/cz/zow063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022] Open
Abstract
Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers commonly inflict costs on their mates through genetic incompatibility, reduced fecundity, or biased brood sex ratios. Given these costs, evidence for female discrimination against male carriers is surprisingly rare. One of few examples is the t haplotype in house mice, a meiotic driver that shows strong transmission distortion in males and is typically homozygote lethal. As a consequence, mating between 2 t heterozygous (+/t) mice leads to high embryo mortality. Previous experiments showing that +/t females avoid this incompatibility cost by preferring +/+ versus +/t males have inferred preference based on olfactory cues or brief social interactions. Evidence from mating contexts in laboratory settings and semi-natural populations has been inconclusive. Here, we investigated female choice from a large number of no-choice mating trials. We found no evidence for discrimination against +/t males based on mating, remating, and copulatory behavior. Further, we found no evidence for avoidance of incompatibility through selective interactions between gametes. The likelihood of mating showed significant effects of female weight and genotype, suggesting that our test paradigm enabled females to exhibit mate choice. We discuss the strengths and limitations of our approach. By explicitly considering selection at both the individual and gene level, we argue why precopulatory female discrimination by +/t females may be less evolutionarily stable than discrimination by all females based on postcopulatory mechanisms.
Collapse
Affiliation(s)
- Andreas Sutter
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Anna K Lindholm
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
9
|
Verspoor RL, Hurst GD, Price TA. The ability to gain matings, not sperm competition, reduces the success of males carrying a selfish genetic element in a fly. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Maguire CP, Lizé A, Price TAR. Assessment of rival males through the use of multiple sensory cues in the fruitfly Drosophila pseudoobscura. PLoS One 2015; 10:e0123058. [PMID: 25849643 PMCID: PMC4388644 DOI: 10.1371/journal.pone.0123058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/10/2015] [Indexed: 12/01/2022] Open
Abstract
Environments vary stochastically, and animals need to behave in ways that best fit the conditions in which they find themselves. The social environment is particularly variable, and responding appropriately to it can be vital for an animal's success. However, cues of social environment are not always reliable, and animals may need to balance accuracy against the risk of failing to respond if local conditions or interfering signals prevent them detecting a cue. Recent work has shown that many male Drosophila fruit flies respond to the presence of rival males, and that these responses increase their success in acquiring mates and fathering offspring. In Drosophila melanogaster males detect rivals using auditory, tactile and olfactory cues. However, males fail to respond to rivals if any two of these senses are not functioning: a single cue is not enough to produce a response. Here we examined cue use in the detection of rival males in a distantly related Drosophila species, D. pseudoobscura, where auditory, olfactory, tactile and visual cues were manipulated to assess the importance of each sensory cue singly and in combination. In contrast to D. melanogaster, male D. pseudoobscura require intact olfactory and tactile cues to respond to rivals. Visual cues were not important for detecting rival D. pseudoobscura, while results on auditory cues appeared puzzling. This difference in cue use in two species in the same genus suggests that cue use is evolutionarily labile, and may evolve in response to ecological or life history differences between species.
Collapse
Affiliation(s)
- Chris P. Maguire
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Anne Lizé
- UMR 6553 ECOBIO, Université de Rennes 1, Rennes, France
| | - Tom A. R. Price
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
|
12
|
Holman L, Price TAR, Wedell N, Kokko H. Coevolutionary dynamics of polyandry and sex-linked meiotic drive. Evolution 2015; 69:709-20. [DOI: 10.1111/evo.12595] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/15/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Luke Holman
- Centre of Excellence in Biological Interactions, Division of Ecology, Evolution & Genetics, Research School of Biology; Australian National University; Canberra ACT 2601 Australia
| | - Thomas A. R. Price
- Institute of Integrative Biology; University of Liverpool; Liverpool L69 7ZB United Kingdom
| | - Nina Wedell
- Biosciences, University of Exeter; Cornwall Campus; Penryn TR10 9FE United Kingdom
| | - Hanna Kokko
- Centre of Excellence in Biological Interactions, Division of Ecology, Evolution & Genetics, Research School of Biology; Australian National University; Canberra ACT 2601 Australia
- Institute of Evolutionary Biology and Environmental Sciences; University of Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
13
|
Wedell N, Price TAR. Selfish Genetic Elements and Sexual Selection. CURRENT PERSPECTIVES ON SEXUAL SELECTION 2015. [DOI: 10.1007/978-94-017-9585-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Price TAR, Bretman A, Gradilla AC, Reger J, Taylor ML, Giraldo-Perez P, Campbell A, Hurst GDD, Wedell N. Does polyandry control population sex ratio via regulation of a selfish gene? Proc Biol Sci 2014; 281:20133259. [PMID: 24695427 PMCID: PMC3996604 DOI: 10.1098/rspb.2013.3259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The extent of female multiple mating (polyandry) can strongly impact on the intensity of sexual selection, sexual conflict, and the evolution of cooperation and sociality. More subtly, polyandry may protect populations against intragenomic conflicts that result from the invasion of deleterious selfish genetic elements (SGEs). SGEs commonly impair sperm production, and so are likely to be unsuccessful in sperm competition, potentially reducing their transmission in polyandrous populations. Here, we test this prediction in nature. We demonstrate a heritable latitudinal cline in the degree of polyandry in the fruitfly Drosophila pseudoobscura across the USA, with northern population females remating more frequently in both the field and the laboratory. High remating was associated with low frequency of a sex-ratio-distorting meiotic driver in natural populations. In the laboratory, polyandry directly controls the frequency of the driver by undermining its transmission. Hence we suggest that the cline in polyandry represents an important contributor to the cline in sex ratio in nature. Furthermore, as the meiotic driver causes sex ratio bias, variation in polyandry may ultimately determine population sex ratio across the USA, a dramatic impact of female mating decisions. As SGEs are ubiquitous it is likely that the reduction of intragenomic conflict by polyandry is widespread.
Collapse
Affiliation(s)
- Tom A R Price
- Biosciences, College of Life and Environmental Sciences, University of Exeter, , Cornwall Campus, Penryn TR10 9EZ, UK, School of Biology, University of Leeds, , Leeds LS2 9JT, UK, Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, , Cantoblanco, 28049 Madrid, Spain, Department of Animal and Plant Sciences, University of Sheffield, , Sheffield S10 2TN, UK, Institute of Integrative Biology, University of Liverpool, , Liverpool L69 7ZB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lindholm AK, Musolf K, Weidt A, König B. Mate choice for genetic compatibility in the house mouse. Ecol Evol 2013; 3:1231-47. [PMID: 23762510 PMCID: PMC3678478 DOI: 10.1002/ece3.534] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 11/08/2022] Open
Abstract
In house mice, genetic compatibility is influenced by the t haplotype, a driving selfish genetic element with a recessive lethal allele, imposing fundamental costs on mate choice decisions. Here, we evaluate the cost of genetic incompatibility and its implication for mate choice in a wild house mice population. In laboratory reared mice, we detected no fertility (number of embryos) or fecundity (ability to conceive) costs of the t, and yet we found a high cost of genetic incompatibility: heterozygote crosses produced 40% smaller birth litter sizes because of prenatal mortality. Surprisingly, transmission of t in crosses using +/t males was influenced by female genotype, consistent with postcopulatory female choice for + sperm in +/t females. Analysis of paternity patterns in a wild population of house mice showed that +/t females were more likely than +/+ females to have offspring sired by +/+ males, and unlike +/+ females, paternity of their offspring was not influenced by +/t male frequency, further supporting mate choice for genetic compatibility. As the major histocompatibility complex (MHC) is physically linked to the t, we investigated whether females could potentially use variation at the MHC to identify male genotype at the sperm or individual level. A unique MHC haplotype is linked to the t haplotype. This MHC haplotype could allow the recognition of t and enable pre- and postcopulatory mate choice for genetic compatibility. Alternatively, the MHC itself could be the target of mate choice for genetic compatibility. We predict that mate choice for genetic compatibility will be difficult to find in many systems, as only weak fertilization biases were found despite an exceptionally high cost of genetic incompatibility.
Collapse
Affiliation(s)
- Anna K Lindholm
- Institute of Evolutionary Biology und Environmental Studies, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | | | | | | |
Collapse
|
16
|
Wedell N. The dynamic relationship between polyandry and selfish genetic elements. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120049. [PMID: 23339240 DOI: 10.1098/rstb.2012.0049] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Selfish genetic elements (SGEs) are ubiquitous in eukaryotes and bacteria, and make up a large part of the genome. They frequently target sperm to increase their transmission success, but these manipulations are often associated with reduced male fertility. Low fertility of SGE-carrying males is suggested to promote polyandry as a female strategy to bias paternity against male carriers. Support for this hypothesis is found in several taxa, where SGE-carrying males have reduced sperm competitive ability. In contrast, when SGEs give rise to reproductive incompatibilities between SGE-carrying males and females, polyandry is not necessarily favoured, irrespective of the detrimental impact on male fertility. This is due to the frequency-dependent nature of these incompatibilities, because they will decrease in the population as the frequency of SGEs increases. However, reduced fertility of SGE-carrying males can prevent the successful population invasion of SGEs. In addition, SGEs can directly influence male and female mating behaviour, mating rates and reproductive traits (e.g. female reproductive tract length and male sperm). This reveals a potent and dynamic interaction between SGEs and polyandry highlighting the potential to generate sexual selection and conflict, but also indicates that polyandry can promote harmony within the genome by undermining the spread of SGEs.
Collapse
Affiliation(s)
- Nina Wedell
- Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9EZ, UK.
| |
Collapse
|
17
|
Holman L, Kokko H. The consequences of polyandry for population viability, extinction risk and conservation. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120053. [PMID: 23339244 DOI: 10.1098/rstb.2012.0053] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polyandry, by elevating sexual conflict and selecting for reduced male care relative to monandry, may exacerbate the cost of sex and thereby seriously impact population fitness. On the other hand, polyandry has a number of possible population-level benefits over monandry, such as increased sexual selection leading to faster adaptation and a reduced mutation load. Here, we review existing information on how female fitness evolves under polyandry and how this influences population dynamics. In balance, it is far from clear whether polyandry has a net positive or negative effect on female fitness, but we also stress that its effects on individuals may not have visible demographic consequences. In populations that produce many more offspring than can possibly survive and breed, offspring gained or lost as a result of polyandry may not affect population size. Such ecological 'masking' of changes in population fitness could hide a response that only manifests under adverse environmental conditions (e.g. anthropogenic change). Surprisingly few studies have attempted to link mating system variation to population dynamics, and in general we urge researchers to consider the ecological consequences of evolutionary processes.
Collapse
Affiliation(s)
- Luke Holman
- Centre of Excellence in Biological Interactions, Division of Ecology, Evolution and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | |
Collapse
|