1
|
Should I stay or should I go now: dispersal decisions and reproductive success in male white-faced capuchins (Cebus imitator). Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03197-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Danaher-Garcia N, Connor R, Fay G, Melillo-Sweeting K, Dudzinski KM. Using Social Network Analysis to Confirm the ‘Gambit of the Group’ Hypothesis for a Small Cetacean. Behav Processes 2022; 200:104694. [DOI: 10.1016/j.beproc.2022.104694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
|
3
|
van Haeringen E, Hemelrijk C. Hierarchical development of dominance through the winner-loser effect and socio-spatial structure. PLoS One 2022; 17:e0243877. [PMID: 35108262 PMCID: PMC8809560 DOI: 10.1371/journal.pone.0243877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
In many groups of animals the dominance hierarchy is linear. What mechanisms underlie this linearity of the dominance hierarchy is under debate. Linearity is often attributed to cognitively sophisticated processes, such as transitive inference and eavesdropping. An alternative explanation is that it develops via the winner-loser effect. This effect implies that after a fight has been decided the winner is more likely to win again, and the loser is more likely to lose again. Although it has been shown that dominance hierarchies may develop via the winner-loser effect, the degree of linearity of such hierarchies is unknown. The aim of the present study is to investigate whether a similar degree of linearity, like in real animals, may emerge as a consequence of the winner-loser effect and the socio-spatial structure of group members. For this purpose, we use the model DomWorld, in which agents group and compete and the outcome of conflicts is self-reinforcing. Here dominance hierarchies are shown to emerge. We analyse the dominance hierarchy, behavioural dynamics and network triad motifs in the model using analytical methods from a previous study on dominance in real hens. We show that when one parameter, representing the intensity of aggression, was set high in the model DomWorld, it reproduced many patterns of hierarchical development typical of groups of hens, such as its high linearity. When omitting from the model the winner-loser effect or spatial location of individuals, this resemblance decreased markedly. We conclude that the combination of the spatial structure and the winner-loser effect provide a plausible alternative for hierarchical linearity to processes that are cognitively more sophisticated. Further research should determine whether the winner-loser effect and spatial structure of group members also explains the characteristics of hierarchical development in other species with a different dominance style than hens.
Collapse
Affiliation(s)
- Erik van Haeringen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Charlotte Hemelrijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Li C, Zhang X, Cui P, Zhang F, Zhang B. Male mate choice in mosquitofish: personality outweighs body size. Front Zool 2022; 19:5. [PMID: 35062965 PMCID: PMC8780319 DOI: 10.1186/s12983-022-00450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Despite its important implications in behavioural and evolutionary ecology, male mate choice has been poorly studied, and the relative contribution of personality and morphological traits remains largely unknown. We used standard two-choice mating trials to explore whether two personality traits (i.e., shyness and activity) and/or body size of both sexes affect mate choice in male mosquitofish Gambusia affinis. In the first set of trials involving 40 males, we tested whether males would prefer larger females and whether the preference would be affected by males’ body length and personality traits, and females’ activity level. In the second set of trials (using another 40 males), we tested whether males would prefer more active females and whether the preference would be affected by males’ body length and personality traits. Results Both shyness and activity in males were significantly repeatable and constituted a behavioural syndrome. No overall directional preference for large (or small) females with the same activity levels was detected because larger males preferred larger females and smaller males chose smaller females. Males’ strength of preference for larger females was also positively correlated with the activity level of larger females but negatively with the activity level of smaller females. Males spent more time associating with active females regardless of their body lengths, indicating males’ selection was more influenced by female activity level than body size. Males’ preference for inactive females was enhanced when females became active. There was no convincing evidence for the effect of males’ personality traits or body length on their preferences for females’ activity level. Conclusions Our study supports the importance of body size in male mate choice but highlights that personality traits may outweigh body size preferences when males choose mating partners. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-022-00450-3.
Collapse
|
5
|
MacGregor HEA, Ioannou CC. Collective motion diminishes, but variation between groups emerges, through time in fish shoals. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210655. [PMID: 34703618 PMCID: PMC8527212 DOI: 10.1098/rsos.210655] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Despite extensive interest in the dynamic interactions between individuals that drive collective motion in animal groups, the dynamics of collective motion over longer time frames are understudied. Using three-spined sticklebacks, Gasterosteus aculeatus, randomly assigned to 12 shoals of eight fish, we tested how six key traits of collective motion changed over shorter (within trials) and longer (between days) timescales under controlled laboratory conditions. Over both timescales, groups became less social with reduced cohesion, polarization, group speed and information transfer. There was consistent inter-group variation (i.e. collective personality variation) for all collective motion parameters, but groups also differed in how their collective motion changed over days in their cohesion, polarization, group speed and information transfer. This magnified differences between groups, suggesting that over time the 'typical' collective motion cannot be easily characterized. Future studies are needed to understand whether such between-group differences in changes over time are adaptive and represent improvements in group performance or are suboptimal but represent a compromise between individuals in their preferences for the characteristics of collective behaviour.
Collapse
|
6
|
Piefke TJ, Bonnell TR, DeOliveira GM, Border SE, Dijkstra PD. Social network stability is impacted by removing a dominant male in replicate dominance hierarchies of a cichlid fish. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Size Selective Harvesting Does Not Result in Reproductive Isolation among Experimental Lines of Zebrafish, Danio rerio: Implications for Managing Harvest-Induced Evolution. BIOLOGY 2021; 10:biology10020113. [PMID: 33557025 PMCID: PMC7913724 DOI: 10.3390/biology10020113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Mortality in fish populations is commonly size-selective. In fisheries, larger fish are preferentially caught while natural predators preferentially consume smaller fish. Removal of certain sized fish from populations and elevated fishing mortality constitute a selection pressure which may change life-history, behaviour and reduce adult body-size. Because behaviour and body-size are related and influence mating preferences and reproductive output, size-selective mortality may favour subpopulations that less readily mate with each other. Our aim is to test this possibility using three experimental lines of zebrafish (Danio rerio) generated in laboratory by removing large-sized, small-sized and random-sized fish for five generations. We tested mating preferences among males and females and tested if they spawned together. We found males and females of all subpopulations to reproduce among themselves. Females generally preferred large-sized males. Females of all lines spawned with males, and males of all lines fertilised eggs of females independent of the subpopulation origin. Our study shows that size-selective mortality typical of fisheries or in populations facing heavy predation does not result in evolution of reproductive barriers. Thus, when populations adapted to fishing pressure come in contact with populations unexposed to such pressures, interbreeding may happen thereby helping exploited populations recover from harvest-induced evolution. Abstract Size-selective mortality is common in fish stocks. Positive size-selection happens in fisheries where larger size classes are preferentially targeted while gape-limited natural predation may cause negative size-selection for smaller size classes. As body size and correlated behavioural traits are sexually selected, harvest-induced trait changes may promote prezygotic reproductive barriers among selection lines experiencing differential size-selective mortality. To investigate this, we used three experimental lines of zebrafish (Danio rerio) exposed to positive (large-harvested), negative (small-harvested) and random (control line) size-selective mortality for five generations. We tested prezygotic preferences through choice tests and spawning trials. In the preference tests without controlling for body size, we found that females of all lines preferred males of the generally larger small-harvested line. When the body size of stimulus fish was statistically controlled, this preference disappeared and a weak evidence of line-assortative preference emerged, but only among large-harvested line fish. In subsequent spawning trials, we did not find evidence for line-assortative reproductive allocation in any of the lines. Our study suggests that size-selection due to fisheries or natural predation does not result in reproductive isolation. Gene flow between wild-populations and populations adapted to size-selected mortality may happen during secondary contact which can speed up trait recovery.
Collapse
|
8
|
Makowicz AM, Daniel MJ, Jones BC, Rivers PR, Dye M, Kuzel MR, Guerrera AG, Kettelkamp S, Whitcher C, DuVal EH. Foundations and Frontiers in Mate Choice Review of: Rosenthal, G. 2017. Mate Choice: The Evolution of Sexual Decision Making from Microbes to Humans. Princeton Univ. Press, Princeton, NJ, 648 pp. ISBN: 978‐0‐691‐15067‐3; $US55.00 HB. Evolution 2020. [DOI: 10.1111/evo.14018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amber M. Makowicz
- Department of Biological Sciences Florida State University Tallahassee Florida 32306
| | - Mitchel J. Daniel
- Department of Biological Sciences Florida State University Tallahassee Florida 32306
| | - Blake C. Jones
- Department of Biological Sciences Florida State University Tallahassee Florida 32306
| | - Pearl R. Rivers
- Department of Biological Sciences Florida State University Tallahassee Florida 32306
| | - Mysia Dye
- Department of Biological Sciences Florida State University Tallahassee Florida 32306
| | - Meredith R. Kuzel
- Department of Biological Sciences Florida State University Tallahassee Florida 32306
| | - Alexa G. Guerrera
- Department of Biological Sciences Florida State University Tallahassee Florida 32306
| | - Sarah Kettelkamp
- Department of Biological Sciences Florida State University Tallahassee Florida 32306
| | - Courtney Whitcher
- Department of Biological Sciences Florida State University Tallahassee Florida 32306
| | - Emily H. DuVal
- Department of Biological Sciences Florida State University Tallahassee Florida 32306
| |
Collapse
|
9
|
Bierbach D, Mönck HJ, Lukas J, Habedank M, Romanczuk P, Landgraf T, Krause J. Guppies Prefer to Follow Large (Robot) Leaders Irrespective of Own Size. Front Bioeng Biotechnol 2020; 8:441. [PMID: 32500065 PMCID: PMC7243707 DOI: 10.3389/fbioe.2020.00441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Body size is often assumed to determine how successfully an individual can lead others with larger individuals being better leaders than smaller ones. But even if larger individuals are more readily followed, body size often correlates with specific behavioral patterns and it is thus unclear whether larger individuals are more often followed than smaller ones because of their size or because they behave in a certain way. To control for behavioral differences among differentially-sized leaders, we used biomimetic robotic fish (Robofish) of different sizes. Live guppies (Poecilia reticulata) are known to interact with Robofish in a similar way as with live conspecifics. Consequently, Robofish may serve as a conspecific-like leader that provides standardized behaviors irrespective of its size. We asked whether larger Robofish leaders are preferentially followed and whether the preferences of followers depend on own body size or risk-taking behavior ("boldness"). We found that live female guppies followed larger Robofish leaders in closer proximity than smaller ones and this pattern was independent of the followers' own body size as well as risk-taking behavior. Our study shows a "bigger is better" pattern in leadership that is independent of behavioral differences among differentially-sized leaders, followers' own size and risk-taking behavior.
Collapse
Affiliation(s)
- David Bierbach
- Faculty of Life Sciences, Thaer Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Hauke J. Mönck
- Department of Mathematics and Computer Science, Institute for Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Juliane Lukas
- Faculty of Life Sciences, Thaer Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Marie Habedank
- Faculty of Life Sciences, Thaer Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Pawel Romanczuk
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tim Landgraf
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Institute for Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Jens Krause
- Faculty of Life Sciences, Thaer Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Excellence Cluster ‘Science of Intelligence’, Technische Universität Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
10
|
Bierbach D, Krause S, Romanczuk P, Lukas J, Arias-Rodriguez L, Krause J. An interaction mechanism for the maintenance of fission-fusion dynamics under different individual densities. PeerJ 2020; 8:e8974. [PMID: 32461823 PMCID: PMC7231501 DOI: 10.7717/peerj.8974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/24/2020] [Indexed: 11/20/2022] Open
Abstract
Animals often show high consistency in their social organisation despite facing changing environmental conditions. Especially in shoaling fish, fission-fusion dynamics that describe for which periods individuals are solitary or social have been found to remain unaltered even when density changed. This compensatory ability is assumed to be an adaptation towards constant predation pressure, but the mechanism through which individuals can actively compensate for density changes is yet unknown. The aim of the current study is to identify behavioural patterns that enable this active compensation. We compared the fission-fusion dynamics of two populations of the live-bearing Atlantic molly (Poecilia mexicana) that live in adjacent habitats with very different predator regimes: cave mollies that inhabit a low-predation environment inside a sulfidic cave with a low density of predatory water bugs (Belostoma sp.), and mollies that live directly outside the cave (henceforth called "surface" mollies) in a high-predation environment. We analysed their fission-fusion dynamics under two different fish densities of 12 and 6 fish per 0.36 m2. As expected, surface mollies spent more time being social than cave mollies, and this difference in social time was a result of surface mollies being less likely to discontinue social contact (once they had a social partner) and being more likely to resume social contact (once alone) than cave mollies. Interestingly, surface mollies were also less likely to switch among social partners than cave mollies. A random walk simulation predicted each population to show reduced social encounters in the low density treatment. While cave mollies largely followed this prediction, surface mollies maintained their interaction probabilities even at low density. Surface mollies achieved this by a reduction in the size of a convex polygon formed by the group as density decreased. This may allow them to largely maintain their fission-fusion dynamics while still being able to visit large parts of the available area as a group. A slight reduction (21%) in the area visited at low densities was also observed but insufficient to explain how the fish maintained their fission-fusion dynamics. Finally, we discuss potential movement rules that could account for the reduction of polygon size and test their performance.
Collapse
Affiliation(s)
- David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Faculty of Life Sciences, Thaer Institute, Humboldt Universität Berlin, Berlin, Germany
| | - Stefan Krause
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Lübeck, Germany
| | - Pawel Romanczuk
- Department of Biology, Institute for Theoretical Biology, Humboldt Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt Universität Berlin, Berlin, Germany
| | - Juliane Lukas
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Faculty of Life Sciences, Thaer Institute, Humboldt Universität Berlin, Berlin, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Jens Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Faculty of Life Sciences, Thaer Institute, Humboldt Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Sommer-Trembo C, Schreier M, Plath M. Different preference functions act in unison: mate choice and risk-taking behaviour in the Atlantic molly (Poecilia mexicana). J ETHOL 2020. [DOI: 10.1007/s10164-020-00643-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Webber QM, Vander Wal E. Trends and perspectives on the use of animal social network analysis in behavioural ecology: a bibliometric approach. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Zimmer C, Riesch R, Jourdan J, Bierbach D, Arias-Rodriguez L, Plath M. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies ( Poecilia mexicana). Genes (Basel) 2018; 9:E232. [PMID: 29724050 PMCID: PMC5977172 DOI: 10.3390/genes9050232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system.
Collapse
Affiliation(s)
- Claudia Zimmer
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Department of Ecology and Evolution, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Rüdiger Riesch
- Centre for Ecology, Evolution and Behaviour, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, D-63571 Gelnhausen, Germany.
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany.
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 86150 Villahermosa, Tabasco, Mexico.
| | - Martin Plath
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Hellmann JK, Hamilton IM. Intragroup social dynamics vary with the presence of neighbors in a cooperatively breeding fish. Curr Zool 2018; 65:21-31. [PMID: 30697235 PMCID: PMC6347054 DOI: 10.1093/cz/zoy025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/22/2018] [Indexed: 11/19/2022] Open
Abstract
Conflict is an inherent part of social life in group-living species. Group members may mediate conflict through submissive and affiliative behaviors, which can reduce aggression, stabilize dominance hierarchies, and foster group cohesion. The frequency and resolution of within-group conflict may vary with the presence of neighboring groups. Neighbors can threaten the territory or resources of the whole group, promoting behaviors that foster within-group cohesion. However, neighbors may also foster conflict of interests among group members: opportunities for subordinate dispersal may alter conflict among dominants and subordinates while opportunities for extra-pair reproduction may increase conflict between mates. To understand how neighbors mediate within-group conflict in the cooperatively breeding fish Neolamprologus pulcher, we measured behavioral dynamics and social network structure in isolated groups, groups recently exposed to neighbors, and groups with established neighbors. Aggression and submission between the dominant male and female pair were high in isolated groups, but dominant aggression was directly primarily at subordinates when groups had neighbors. This suggests that neighbors attenuate conflict between mates and foster conflict between dominants and subordinates. Further, aggression and submission between similarly sized group members were most frequent when groups had neighbors, suggesting that neighbors induce rank-related conflict. We found relatively little change in within-group affiliative networks across treatments, suggesting that the presence of neighbors does not alter behaviors associated with promoting group cohesion. Collectively, these results provide some of the first empirical insights into the extent to which intragroup behavioral networks are mediated by intergroup interactions and the broader social context.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Bierbach D, Arias-Rodriguez L, Plath M. Intrasexual competition enhances reproductive isolation between locally adapted populations. Curr Zool 2017; 64:125-133. [PMID: 29492045 PMCID: PMC5809038 DOI: 10.1093/cz/zox071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
During adaptation to different habitat types, both morphological and behavioral traits can undergo divergent selection. Males often fight for status in dominance hierarchies and rank positions predict reproductive success. Ecotypes with reduced fighting abilities should have low reproductive success when migrating into habitats that harbor ecotypes with superior fighting abilities. Livebearing fishes in the Poecilia mexicana-species complex inhabit not only regular freshwater environments, but also independently colonized sulfidic (H2S-containing) habitats in three river drainages. In the current study, we found fighting intensities in staged contests to be considerably lower in some but not all sulfidic surface ecotypes and the sulfidic cave ecotype compared with populations from non-sulfidic surface sites. This is perhaps due to selection imposed by H2S, which hampers oxygen uptake and transport, as well as cellular respiration. Furthermore, migrants from sulfidic habitats may lose fights even if they do not show overall reduced aggressiveness, as physiological performance is likely to be challenged in the non-sulfidic environment to which they are not adapted. To test this hypothesis, we simulated migration of H2S-adapted males into H2S-free waters, as well as H2S-adapted cave-dwelling males into sulfidic surface waters. We found that intruders established dominance less often than resident males, independent of whether or not they showed reduced aggressiveness overall. Our study shows that divergent evolution of male aggressive behavior may also contribute to the maintenance of genetic differentiation in this system and we call for more careful evaluation of male fighting abilities in studies on ecological speciation.
Collapse
Affiliation(s)
- David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 86150 Villahermosa, Tabasco, México
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
16
|
Laskowski KL, Wolf M, Bierbach D. The making of winners (and losers): how early dominance interactions determine adult social structure in a clonal fish. Proc Biol Sci 2017; 283:rspb.2016.0183. [PMID: 27170711 DOI: 10.1098/rspb.2016.0183] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/12/2016] [Indexed: 11/12/2022] Open
Abstract
Across a wide range of animal taxa, winners of previous fights are more likely to keep winning future contests, just as losers are more likely to keep losing. At present, such winner and loser effects are considered to be fairly transient. However, repeated experiences with winning and/or losing might increase the persistence of these effects, generating long-lasting consequences for social structure. To test this, we exposed genetically identical individuals of a clonal fish, the Amazon molly (Poecilia formosa), to repeated winning and/or losing dominance interactions during the first two months of their life. We subsequently investigated whether these experiences affected the fish's ability to achieve dominance in a hierarchy five months later after sexual maturity, a major life-history transition. Individuals that had only winning interactions early in life consistently ranked at the top of the hierarchy. Interestingly, individuals with only losing experience tended to achieve the middle dominance rank, whereas individuals with both winning and losing experiences generally ended up at the bottom of the hierarchy. In addition to demonstrating that early social interactions can have dramatic and long-lasting consequences for adult social behaviour and social structure, our work also shows that higher cumulative winning experience early in life can counterintuitively give rise to lower social rank later in life.
Collapse
Affiliation(s)
- Kate L Laskowski
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Max Wolf
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| |
Collapse
|
17
|
Evans JP, Garcia-Gonzalez F. The total opportunity for sexual selection and the integration of pre- and post-mating episodes of sexual selection in a complex world. J Evol Biol 2016; 29:2338-2361. [PMID: 27520979 DOI: 10.1111/jeb.12960] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 12/30/2022]
Abstract
It is well known that sexual selection can target reproductive traits during successive pre- and post-mating episodes of selection. A key focus of recent studies has been to understand and quantify how these episodes of sexual selection interact to determine overall variance in reproductive success. In this article, we review empirical developments in this field but also highlight the considerable variability in patterns of pre- and post-mating sexual selection, attributable to variation in patterns of resource acquisition and allocation, ecological and social factors, genotype-by-environment interaction and possible methodological factors that might obscure such patterns. Our aim is to highlight how (co)variances in pre- and post-mating sexually selected traits can be sensitive to changes in a range of ecological and environmental variables. We argue that failure to capture this variation when quantifying the opportunity for sexual selection may lead to erroneous conclusions about the strength, direction or form of sexual selection operating on pre- and post-mating traits. Overall, we advocate for approaches that combine measures of pre- and post-mating selection across contrasting environmental or ecological gradients to better understand the dynamics of sexual selection in polyandrous species. We also discuss some directions for future research in this area.
Collapse
Affiliation(s)
- J P Evans
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia
| | - F Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia.,Doñana Biological Station, Spanish Research Council CSIC, Sevilla, Spain
| |
Collapse
|
18
|
Sommer-Trembo C, Bierbach D, Arias-Rodriguez L, Verel Y, Jourdan J, Zimmer C, Riesch R, Streit B, Plath M. Does personality affect premating isolation between locally-adapted populations? BMC Evol Biol 2016; 16:138. [PMID: 27338278 PMCID: PMC4918032 DOI: 10.1186/s12862-016-0712-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background One aspect of premating isolation between diverging, locally-adapted population pairs is female mate choice for resident over alien male phenotypes. Mating preferences often show considerable individual variation, and whether or not certain individuals are more likely to contribute to population interbreeding remains to be studied. In the Poecilia mexicana-species complex different ecotypes have adapted to hydrogen sulfide (H2S)-toxic springs, and females from adjacent non-sulfidic habitats prefer resident over sulfide-adapted males. We asked if consistent individual differences in behavioral tendencies (animal personality) predict the strength and direction of the mate choice component of premating isolation in this system. Results We characterized focal females for their personality and found behavioral measures of ‘novel object exploration’, ‘boldness’ and ‘activity in an unknown area’ to be highly repeatable. Furthermore, the interaction term between our measures of exploration and boldness affected focal females’ strength of preference (SOP) for the resident male phenotype in dichotomous association preference tests. High exploration tendencies were coupled with stronger SOPs for resident over alien mating partners in bold, but not shy, females. Shy and/or little explorative females had an increased likelihood of preferring the non-resident phenotype and thus, are more likely to contribute to rare population hybridization. When we offered large vs. small conspecific stimulus males instead, less explorative females showed stronger preferences for large male body size. However, this effect disappeared when the size difference between the stimulus males was small. Conclusions Our results suggest that personality affects female mate choice in a very nuanced fashion. Hence, population differences in the distribution of personality types could be facilitating or impeding reproductive isolation between diverging populations depending on the study system and the male trait(s) upon which females base their mating decisions, respectively. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0712-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolin Sommer-Trembo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China. .,Department of Ecology and Evolution, J.W. Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany.
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, CP. 86150, Mexico
| | - Yesim Verel
- Department of Ecology and Evolution, J.W. Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Jonas Jourdan
- Department of Ecology and Evolution, J.W. Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany.,Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Claudia Zimmer
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.,Department of Ecology and Evolution, J.W. Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Rüdiger Riesch
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX, UK
| | - Bruno Streit
- Department of Ecology and Evolution, J.W. Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| |
Collapse
|
19
|
Ilany A, Booms AS, Holekamp KE. Topological effects of network structure on long-term social network dynamics in a wild mammal. Ecol Lett 2015; 18:687-95. [PMID: 25975663 PMCID: PMC4486283 DOI: 10.1111/ele.12447] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 11/26/2022]
Abstract
Social structure influences ecological processes such as dispersal and invasion, and affects survival and reproductive success. Recent studies have used static snapshots of social networks, thus neglecting their temporal dynamics, and focused primarily on a limited number of variables that might be affecting social structure. Here, instead we modelled effects of multiple predictors of social network dynamics in the spotted hyena, using observational data collected during 20 years of continuous field research in Kenya. We tested the hypothesis that the current state of the social network affects its long-term dynamics. We employed stochastic agent-based models that allowed us to estimate the contribution of multiple factors to network changes. After controlling for environmental and individual effects, we found that network density and individual centrality affected network dynamics, but that social bond transitivity consistently had the strongest effects. Our results emphasise the significance of structural properties of networks in shaping social dynamics.
Collapse
Affiliation(s)
- Amiyaal Ilany
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA
| | - Andrew S. Booms
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kay E. Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Bierbach D, Sommer-Trembo C, Hanisch J, Wolf M, Plath M. Personality affects mate choice: bolder males show stronger audience effects under high competition. Behav Ecol 2015. [DOI: 10.1093/beheco/arv079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|