1
|
Zhu B, Zhang H, Chen Q, He Q, Zhao X, Sun X, Wang T, Wang J, Cui J. Noise affects mate choice based on visual information via cross-sensory interference. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119680. [PMID: 35787421 DOI: 10.1016/j.envpol.2022.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Animal communication is often hampered by noise interference. Noise masking has primarily been studied in terms of its unimodal effect on sound information provision and use, while little is known about its cross-modal effect and how animals weigh unimodal and multimodal courtship cues in noisy environments. Here, we examined the cross-modal effects of background noise on female visual perception of mate choice and female preference for multimodal displays (sound + vocal sac) in a species of treefrog. We tested female mate choices using audio/video playbacks in the presence and absence of noise (white noise band-filtered to match or mismatch female sensitive hearing range, heterospecific chorus). Surprisingly, multimodal displays do not improve receiver performance in noise. The heterospecific chorus and white noise band-filtered to match female sensitive hearing ranges, significantly reduced female responses to the attractive visual stimuli in addition to directly impairing auditory information use. Meanwhile, the cross-modal impacts of background noise are influenced to some extent by whether the noise band matches female sensitive hearing range and the difficulty of distinguishing tasks. Our results add to the evidence for cross-modal effects of noise and are the first to demonstrate that background noise can disrupt female responses to visual information related to mate choice, which may reduce the communication efficiency of audiovisual signals in noisy environments and impose fitness consequences. This study has key ecological and evolutionary implications because it illustrates how noise influences mate choice in wildlife via cross-sensory interference, which is crucial in revealing the function and evolution of multimodal signals in noisy environments as well as informing evidence-based conservation strategies for forecasting and mitigating the multimodal impacts of noise interference on wildlife.
Collapse
Affiliation(s)
- Bicheng Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Haodi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Chen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, Guangdong, China
| | - Qiaoling He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomeng Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongliang Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Jianguo Cui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Zhang H, Zhu B, Zhou Y, He Q, Sun X, Wang J, Cui J. Females and males respond differently to calls impaired by noise in a tree frog. Ecol Evol 2021; 11:9159-9167. [PMID: 34257950 PMCID: PMC8258198 DOI: 10.1002/ece3.7761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Both human and nonhuman animals communicating acoustically face the problem of noise interference, especially anurans during mating activities. Previous studies concentrated on the effect of continuous noise on signal recognition, but it is still unknown whether different notes in advertisement calls impaired by noise affect female choice and male-male competition or not. In this study, we tested female preferences and male-evoked vocal responses in serrate-legged small tree frog (Kurixalus odontotarsus), by broadcasting the five-note advertisement call and the advertisement call with the second, third, or fourth note replaced by noise, respectively. In phonotaxis experiments, females significantly discriminated against the advertisement call with the fourth note impaired by noise, although they did not discriminate against other two calls impaired by noise, which indicates that the negative effect of noise on female preference is related to the order of impaired notes in the advertisement call. In playback experiments, males increased the total number of notes in response to noise-impaired calls compared with spontaneous calls. More interestingly, the vocal responses evoked by noise-impaired calls were generally similar to those evoked by complete advertisement calls, suggesting that males may recognize the noise-impaired calls as complete advertisement calls. Taken together, our study shows that different notes in advertisement calls replaced by noise have distinct effects on female choice and male-male competition.
Collapse
Affiliation(s)
- Haodi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bicheng Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Ya Zhou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiaoling He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoqian Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Jianguo Cui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan ProvinceChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| |
Collapse
|
3
|
Rodella Manzano MC, Chagas DG, de Sena Ferreira JM, Sawaya RJ, Llusia D. Reinforced acoustic divergence in two syntopic neotropical treefrogs. BIOACOUSTICS 2021. [DOI: 10.1080/09524622.2021.1899987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Maria Carolina Rodella Manzano
- Programa de Pós-Graduação em Evolução e Diversidade, Universidade Federal do ABC – UFABC, São Bernardo do Campo, Brazil
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, UNIFESP, Diadema, Brazil
| | - Daniel Garcia Chagas
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, UNIFESP, Diadema, Brazil
| | | | - Ricardo J. Sawaya
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC – UFABC, São Bernardo do Campo, Brazil
| | - Diego Llusia
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, Madrid, Spain
- Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Brazil
| |
Collapse
|
4
|
Kime NM, Goutte S, Ryan MJ. Arginine vasotocin affects vocal behavior but not selective responses to conspecific calls in male túngara frogs. Horm Behav 2021; 128:104891. [PMID: 33197465 DOI: 10.1016/j.yhbeh.2020.104891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Arginine vasotocin (AVT) and its homolog arginine vasopressin (AVP) modulate social behavior, including social communication. In anuran amphibians, male-male competition and female mate choice rely heavily on acoustic signaling. Behavioral experiments show that AVT influences motivation to call and vocal production. It may also influence how males process and respond to socially relevant auditory stimuli, but few studies have explored this possibility in this taxon. Túngara frogs produce a "whine" that is used for species recognition; in competition with other males they append one or more attractive "chucks" to the whine. Frequency modulation in the whine is an important cue for recognizing conspecifics, and gating of conspecific signals begins in the auditory midbrain. We used dynamic playback experiments to investigate the effects of exogenous AVT on males' responses to stimuli with species-typical and altered frequency modulation. We used avoidance of call overlap as evidence that a male recognizes a stimulus as salient and the production of attractive chucks as evidence of his competitive response to a proximate rival. We used call rate, whine duration, and whine frequency as measures of motivation and motor production. Males responded selectively to a stimulus with species-typical frequency modulation. Following treatment with AVT, they increased call rate and altered whines and chucks in a way that suggests increased air flow during the whine. We did not, however, find evidence that treatment with AVT alters the salience of frequency modulation in recognizing and responding to acoustic signals, at least for the stimuli used in this study.
Collapse
Affiliation(s)
- Nicole M Kime
- Department of Biological Sciences, Edgewood College, 1000 Edgewood College Drive, Madison, WI 53711, USA.
| | - Sandra Goutte
- Ecole Normale Supérieure, 45 rue d'Ulm, Paris, France.
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway Avenue C0930, Austin, TX 78712, USA; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama.
| |
Collapse
|