1
|
Li Y, Yin L, Guo R, Du Y, Wang B, Liu L, Li Z, Liu W, Zhang G, An S, Yin X, Su L. Juvenile Hormone Involved in the Defensive Behaviors of Soldiers in Termite Reticulitermes aculabialis. INSECTS 2024; 15:130. [PMID: 38392549 PMCID: PMC10889337 DOI: 10.3390/insects15020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Eusocial insects have evolved specific defensive strategies to protect their colonies. In termite colonies, soldiers perform a colony-level defense by displaying mechanical biting, head-banging and mandible opening-closing behaviors. However, few studies have been reported on the factors modulating defensive behaviors in termites. Owing to JH (juvenile hormone) being involved in soldier differentiation, JH was speculated to affect defensive behaviors in termite soldiers. To determine the effect of JH on the defensive behaviors of termite soldiers, we performed a JHA-feeding and RaSsp1-silencing experiment and then tested the changes in defense-related behaviors, alarm pheromones and key JH signaling genes. The observed result was that after feeding workers with JHA, soldiers displayed the following: (1) decreased biting events and increased head-banging events; (2) a reduced expression of RaSsp1 and increased expression of Met (methoprene-tolerant, the nuclear receptor of JH) and Kr-h1 (the JH-inducible transcription factor Krüppel homolog 1); and (3) a decreased concentration of alarm pheromones, including α-pinene, β-pinene and limonene (+, -). Further study showed that soldiers silenced for RaSsp1 also exhibited (1) decreased biting events and increased head-banging events and (2) increased expression of Met and Kr-h1. In addition, soldiers stimulated by the alarm pheromone limonene displayed an increase in the frequency of mandible opening-closing and biting behavior. All of these results show that JHA influenced the defensive behaviors of termite soldiers, possibly via downregulating RaSsp1 expression, up-regulating Met and Kr-h1 and stimulating the secretion of alarm pheromones, suggesting that the JH pathway plays important roles in modulating social behaviors in termite colonies.
Collapse
Affiliation(s)
- Yiying Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Letong Yin
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruiyao Guo
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yunliang Du
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Bo Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Long Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhenya Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Guozhi Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Lijuan Su
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
2
|
de Mendonça THC, Silva CR, Watanabe SYM, Silva AFN, Santos REC, Cristaldo PF. How to perceive the insecticide? The Neotropical termite Nasutitermes corniger (Termitidae: Nasutitermitinae) triggers alert behavior after exposure to imidacloprid. Behav Processes 2023; 209:104887. [PMID: 37150334 DOI: 10.1016/j.beproc.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
In eusocial insects, alarm signaling is used to inform nestmates about threats such as predators, competitors, and pathogens. Such behavior is important for the survival of colonies. However, studies evaluating the effect of insecticides on the alarm in termites have not yet been reported. Here, we inspected the effects of insecticide on alarm communication in Nasutitermes corniger. Specifically, we test the following hypotheses: (1) termite groups exposed to insecticide imidacloprid increase the body shaking movements, displaying an alert behavior; and (2) the alert behavior displayed after exposition to insecticide is dose dependent. Bioassays were conducted evaluating the body shaking movements and walking activity of termite groups exposed and non-exposed to insecticide. Thereafter, body shaking movements were evaluated in groups submitted to different doses of insecticide. In general, exposing termite groups to insecticide resulted in significantly higher body shaking movements compared to non-exposed groups. There was a positive effect of imidacloprid doses on the shaking movements. Walking activity, however, decreases in those groups exposed to the insecticide. Our results demonstrate the existence of 'insecticide alert behavior' in N. corniger and it appears to be a previously unrecognized communication mechanism in termites that allows for reducing the intoxication risks in the colony.
Collapse
Affiliation(s)
- Thiago H C de Mendonça
- Programa de Pós-Graduação em Entomologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil; Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Cátila R Silva
- Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Sara Y M Watanabe
- Programa de Pós-Graduação em Entomologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil; Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Aline F N Silva
- Programa de Pós-Graduação em Entomologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil; Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Renan E C Santos
- Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Paulo F Cristaldo
- Programa de Pós-Graduação em Entomologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil; Laboratório de Ecologia de Insetos, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil.
| |
Collapse
|
3
|
Virant-Doberlet M, Stritih-Peljhan N, Žunič-Kosi A, Polajnar J. Functional Diversity of Vibrational Signaling Systems in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:191-210. [PMID: 36198397 DOI: 10.1146/annurev-ento-120220-095459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Communication by substrate-borne mechanical waves is widespread in insects. The specifics of vibrational communication are related to heterogeneous natural substrates that strongly influence signal transmission. Insects generate vibrational signals primarily by tremulation, drumming, stridulation, and tymbalation, most commonly during sexual behavior but also in agonistic, social, and mutualistic as well as defense interactions and as part of foraging strategies. Vibrational signals are often part of multimodal communication. Sensilla and organs detecting substrate vibration show great diversity and primarily occur in insect legs to optimize sensitivity and directionality. In the natural environment, signals from heterospecifics, as well as social and enemy interactions within vibrational communication networks, influence signaling and behavioral strategies. The exploitation of substrate-borne vibrational signaling offers a promising application for behavioral manipulation in pest control.
Collapse
Affiliation(s)
- Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Nataša Stritih-Peljhan
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Alenka Žunič-Kosi
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Jernej Polajnar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| |
Collapse
|
4
|
Sillam-Dussès D, Jandák V, Stiblik P, Delattre O, Chouvenc T, Balvín O, Cvačka J, Soulet D, Synek J, Brothánek M, Jiříček O, Engel MS, Bourguignon T, Šobotník J. Alarm communication predates eusociality in termites. Commun Biol 2023; 6:83. [PMID: 36681783 PMCID: PMC9867704 DOI: 10.1038/s42003-023-04438-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Termites (Blattodea: Isoptera) have evolved specialized defensive strategies for colony protection. Alarm communication enables workers to escape threats while soldiers are recruited to the source of disturbance. Here, we study the vibroacoustic and chemical alarm communication in the wood roach Cryptocercus and in 20 termite species including seven of the nine termite families, all life-types, and all feeding and nesting habits. Our multidisciplinary approach shows that vibratory alarm signals represent an ethological synapomorphy of termites and Cryptocercus. In contrast, chemical alarms have evolved independently in several cockroach groups and at least twice in termites. Vibroacoustic alarm signaling patterns are the most complex in Neoisoptera, in which they are often combined with chemical signals. The alarm characters correlate to phylogenetic position, food type and hardness, foraging area size, and nesting habits. Overall, species of Neoisoptera have developed the most sophisticated communication system amongst termites, potentially contributing to their ecological success.
Collapse
Affiliation(s)
- David Sillam-Dussès
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology UR4443, 93430, Villetaneuse, France
| | - Vojtěch Jandák
- Czech Technical University in Prague, Faculty of Electrical Engineering, 166 27, Prague 6, Czech Republic
| | - Petr Stiblik
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic
| | - Olivier Delattre
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology UR4443, 93430, Villetaneuse, France
| | - Thomas Chouvenc
- Entomology and Nematology Department, Fort Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Fort Lauderdale, Florida, 33314, USA
| | - Ondřej Balvín
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic
| | - Delphine Soulet
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology UR4443, 93430, Villetaneuse, France
| | - Jiří Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic
| | - Marek Brothánek
- Czech Technical University in Prague, Faculty of Electrical Engineering, 166 27, Prague 6, Czech Republic
| | - Ondřej Jiříček
- Czech Technical University in Prague, Faculty of Electrical Engineering, 166 27, Prague 6, Czech Republic
| | - Michael S Engel
- Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Drive-Suite 140, University of Kansas, Lawrence, Kansas, 66045, USA.
| | - Thomas Bourguignon
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic.
| |
Collapse
|
5
|
Beránková T, Buček A, Bourguignon T, Arias JR, Akama PD, Sillam-Dussès D, Šobotník J. The ultrastructure of the intramandibular gland in soldiers of the termite Machadotermes rigidus (Blattodea: Termitidae: Apicotermitinae). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 67:101136. [PMID: 35152166 DOI: 10.1016/j.asd.2021.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Machadotermes is one of the basal Apicotermitinae genera, living in tropical West Africa. Old observations suggested the presence of a new gland, the intramandibular gland, in Machadotermes soldiers. Here, by combining micro-computed tomography, optical and electron microscopy, we showed that the gland exists in Machadotermes soldiers only as an active exocrine organ, consisting of numerous class III cells (bicellular units made of secretory and canal cells), within which the secretion is produced in rough endoplasmic reticulum, and modified and stored in Golgi apparatus. The final secretion is released out from the body through epicuticular canals running through the mandible cuticle to the exterior. We also studied three other Apicotermitinae, Indotermes, Duplidentitermes, and Jugositermes, in which this gland is absent. We speculate that the secretion of this gland may be used as a general protectant or antimicrobial agent. In addition, we observed that the frontal gland, a specific defensive organ in termites, is absent in Machadotermes soldiers while it is tiny in Indotermes soldiers and small in Duplidentitermes and Jugositermes soldiers. At last, we could also observe in all these species the labral, mandibular and labial glands, other exocrine glands present in all termite species studied so far.
Collapse
Affiliation(s)
- Tereza Beránková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Aleš Buček
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Thomas Bourguignon
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic; Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Johanna Romero Arias
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pierre D Akama
- Département des Sciences Biologiques, Ecole Normale Supérieure, Université de Yaoundé I, Yaoundé, Cameroon
| | - David Sillam-Dussès
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic; Laboratory of Experimental and Comparative Ethology, LEEC, UR 4443, University Sorbonne Paris Nord, Villetaneuse, France.
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| |
Collapse
|
6
|
Pailler L, Desvignes S, Ruhland F, Pineirua M, Lucas C. Vibratory behaviour produces different vibrations patterns in presence of reproductives in a subterranean termite species. Sci Rep 2021; 11:9902. [PMID: 33972576 PMCID: PMC8110524 DOI: 10.1038/s41598-021-88292-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/26/2021] [Indexed: 11/09/2022] Open
Abstract
Vibratory behaviours are widespread in social insects, but the produced vibrations remain poorly explored. Communication using vibrations is an efficient way to transmit information in subterranean environments where visual and odorant signals are less efficient. In termites, different vibratory behaviours are performed in different contexts like reproductive regulation and alarm signalling, but only few studies explored the structure of the produced vibrations (i.e., duration, number of pulses, amplitude). Here, we described several types of vibrations produced by a vibratory behaviour widespread in termites (body-shaking), which can be transmitted through the substrate and detected by other colony members. We analysed the structures of the emitted vibrations and the occurrence of the body-shaking events in presence/absence of reproductives and/or in presence/absence of a stress stimuli (flashlight) in the subterranean termite Reticulitermes flavipes. Interestingly, only the presence of the reproductives did influence the number of pulses and the duration of the emitted vibrations. Moreover, the first part of the emitted vibrations seems to be enough to encode reproductive information, but other parts might hold other type of information. Body-shaking occurrence did increase in presence of reproductives but only briefly under a flashlight. These results show that vibratory cues are complex in termites and their diversity might encode a plurality of social cues.
Collapse
Affiliation(s)
- Louis Pailler
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Samuel Desvignes
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Fanny Ruhland
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Miguel Pineirua
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Christophe Lucas
- Institut de Recherche Sur La Biologie de L'Insecte (UMR7261), CNRS - University of Tours, Tours, France.
| |
Collapse
|
7
|
Low ML, Naranjo M, Yack JE. Survival Sounds in Insects: Diversity, Function, and Evolution. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect defense sounds have been reported for centuries. Yet, aside from the well-studied anti-bat sounds of tiger moths, little is understood about the occurrence, function, and evolution of these sounds. We define a defense sound as an acoustic signal (air- or solid-borne vibration) produced in response to attack or threat of attack by a predator or parasitoid and that promotes survival. Defense sounds have been described in 12 insect orders, across different developmental stages, and between sexes. The mechanisms of defensive sound production include stridulation, percussion, tymbalation, tremulation, and forced air. Signal characteristics vary between species, and we discuss how morphology, the intended receiver, and specific functions of the sounds could explain this variation. Sounds can be directed at predators or non-predators, and proposed functions include startle, aposematism, jamming, and alarm, although experimental evidence for these hypotheses remains scant for many insects. The evolutionary origins of defense sounds in insects have not been rigorously investigated using phylogenetic methodology, but in most cases it is hypothesized that they evolved from incidental sounds associated with non-signaling behaviors such as flight or ventilatory movements. Compared to our understanding of visual defenses in insects, sonic defenses are poorly understood. We recommend that future investigations focus on testing hypotheses explaining the functions and evolution of these survival sounds using predator-prey experiments and comparative phylogenetics.
Collapse
|
8
|
Mitaka Y, Akino T. A Review of Termite Pheromones: Multifaceted, Context-Dependent, and Rational Chemical Communications. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.595614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Termite colonies, composed of large numbers of siblings, develop an important caste-based division of labor; individuals in these societies interact via intra- or intercaste chemical communications. For more than 50 years, termites have been known to use a variety of pheromones to perform tasks necessary for maintenance of their societies, similar to eusocial hymenopterans. Although trail-following pheromones have been chemically identified in various termites, other types of pheromones have not been elucidated chemically or functionally. In the past decade, however, chemical compositions and biological functions have been successfully identified for several types of termite pheromones; accordingly, the details of the underlying pheromone communications have been gradually revealed. In this review, we summarize both the functions of all termite pheromones identified so far and the chemical interactions among termites and other organisms. Subsequently, we argue how termites developed their sophisticated pheromone communication. We hypothesize that termites have diverted defensive and antimicrobial substances to pheromones associated in caste recognition and caste-specific roles. Furthermore, termites have repeatedly used a pre-existing pheromone or have added supplementary compounds to it in accordance with the social context, leading to multifunctionalization of pre-existing pheromones and emergence of new pheromones. These two mechanisms may enable termites to transmit various context-dependent information with a small number of chemicals, thus resulting in formation of coordinated, complex, and rational chemical communication systems.
Collapse
|
9
|
Appalasamy S, Diyana MHA, Arumugam N, Boon JG. Evaluation of the chemical defense fluids of Macrotermes carbonarius and Globitermes sulphureus as possible household repellents and insecticides. Sci Rep 2021; 11:153. [PMID: 33420232 PMCID: PMC7794475 DOI: 10.1038/s41598-020-80018-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/09/2020] [Indexed: 11/09/2022] Open
Abstract
The use of chemical insecticides has had many adverse effects. This study reports a novel perspective on the application of insect-based compounds to repel and eradicate other insects in a controlled environment. In this work, defense fluid was shown to be a repellent and insecticide against termites and cockroaches and was analyzed using gas chromatography-mass spectrometry (GC–MS). Globitermes sulphureus extract at 20 mg/ml showed the highest repellency for seven days against Macrotermes gilvus and for thirty days against Periplaneta americana. In terms of toxicity, G. sulphureus extract had a low LC50 compared to M. carbonarius extract against M. gilvus. Gas chromatography–mass spectrometry analysis of the M. carbonarius extract indicated the presence of six insecticidal and two repellent compounds in the extract, whereas the G. sulphureus extract contained five insecticidal and three repellent compounds. The most obvious finding was that G. sulphureus defense fluid had higher potential as a natural repellent and termiticide than the M. carbonarius extract. Both defense fluids can play a role as alternatives in the search for new, sustainable, natural repellents and termiticides. Our results demonstrate the potential use of termite defense fluid for pest management, providing repellent and insecticidal activities comparable to those of other green repellent and termiticidal commercial products.
Collapse
Affiliation(s)
- S Appalasamy
- Institute of Food Security and Sustainable Agriculture (IFSSA), Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia. .,Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| | - M H Alia Diyana
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - N Arumugam
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - J G Boon
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| |
Collapse
|
10
|
Synek J, Beránková T, Stiblik P, Pflegerová J, Akama PD, Bourguignon T, Sillam-Dussès D, Šobotník J. The oral gland, a new exocrine organ of termites. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 51:32-36. [PMID: 31325649 DOI: 10.1016/j.asd.2019.100876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Termites have a rich set of exocrine glands. These glands are located all over the body, appearing in the head, thorax, legs and abdomen. Here, we describe the oral gland, a new gland formed by no more than a few tens of Class I secretory cells. The gland is divided into two secretory regions located just behind the mouth, on the dorsal and ventral side of the pharynx, respectively. The dominant secretory organelle is a smooth endoplasmic reticulum. Secretion release is under direct control of axons located within basal invaginations of the secretory cells. The secretion is released through a modified porous cuticle located at the mouth opening. We confirmed the presence of the oral gland in workers and soldiers of several wood- and soil-feeding species of Rhinotermitidae and Termitidae, suggesting a broader distribution of the oral gland among termites. The oral gland is the smallest exocrine gland described in termites so far. We hypothesise that the oily secretion can either ease the passage of food or serve as a primer pheromone.
Collapse
Affiliation(s)
- Jiří Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6 Suchdol, Czech Republic
| | - Tereza Beránková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6 Suchdol, Czech Republic
| | - Petr Stiblik
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6 Suchdol, Czech Republic
| | - Jitka Pflegerová
- Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Pierre D Akama
- Département des Sciences Biologiques, Ecole Normale Superieure, Université de Yaoundé I, BP 47 Yaoundé, Cameroon
| | - Thomas Bourguignon
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6 Suchdol, Czech Republic; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - David Sillam-Dussès
- Université Paris 13 - Sorbonne Paris Cité, LEEC, EA 4443, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6 Suchdol, Czech Republic.
| |
Collapse
|
11
|
Virant-Doberlet M, Kuhelj A, Polajnar J, Šturm R. Predator-Prey Interactions and Eavesdropping in Vibrational Communication Networks. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00203] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Gössinger E. Chemistry of the Secondary Metabolites of Termites. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 109:1-384. [PMID: 31637529 DOI: 10.1007/978-3-030-12858-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isolation, structure determination, synthesis, and biochemistry of the low-molecular-weight compounds of the secretion of exocrine glands of termites are described, with an emphasis on pheromones and defensive compounds.
Collapse
Affiliation(s)
- Edda Gössinger
- Institute of Chemistry, University of Vienna, Vienna, Austria.
- , Mistelbach, Austria.
| |
Collapse
|
13
|
Ferreira DV, Cristaldo PF, Rocha MLC, Santana DL, Santos L, Lima PSS, Araújo APA. Attraction and vibration: Effects of previous exposure and type of food resource in the perception of allocolonial odors in termites. Ethology 2018. [DOI: 10.1111/eth.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Dinamarta V. Ferreira
- Laboratório de Interações Ecológicas, Departamento de Ecologia, Centro de Ciências Biológicas e da Saúde; Universidade Federal de Sergipe; São Cristóvão-SE Brazil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe; São Cristóvão-SE Brazil
| | - Paulo F. Cristaldo
- Programa de Pós-Graduação em Agricultura e Biodiversidade; Universidade Federal de Sergipe; São Cristóvão-SE Brazil
| | - Marcos L. C. Rocha
- Laboratório de Interações Ecológicas, Departamento de Ecologia, Centro de Ciências Biológicas e da Saúde; Universidade Federal de Sergipe; São Cristóvão-SE Brazil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe; São Cristóvão-SE Brazil
| | - Daniela L. Santana
- Laboratório de Interações Ecológicas, Departamento de Ecologia, Centro de Ciências Biológicas e da Saúde; Universidade Federal de Sergipe; São Cristóvão-SE Brazil
| | - Lucineide Santos
- Laboratório de Interações Ecológicas, Departamento de Ecologia, Centro de Ciências Biológicas e da Saúde; Universidade Federal de Sergipe; São Cristóvão-SE Brazil
| | - Paulo S. S. Lima
- Laboratório de Interações Ecológicas, Departamento de Ecologia, Centro de Ciências Biológicas e da Saúde; Universidade Federal de Sergipe; São Cristóvão-SE Brazil
| | - Ana P. A. Araújo
- Laboratório de Interações Ecológicas, Departamento de Ecologia, Centro de Ciências Biológicas e da Saúde; Universidade Federal de Sergipe; São Cristóvão-SE Brazil
| |
Collapse
|
14
|
Feinerman O, Korman A. Individual versus collective cognition in social insects. ACTA ACUST UNITED AC 2017; 220:73-82. [PMID: 28057830 DOI: 10.1242/jeb.143891] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The concerted responses of eusocial insects to environmental stimuli are often referred to as collective cognition at the level of the colony. To achieve collective cognition, a group can draw on two different sources: individual cognition and the connectivity between individuals. Computation in neural networks, for example, is attributed more to sophisticated communication schemes than to the complexity of individual neurons. The case of social insects, however, can be expected to differ. This is because individual insects are cognitively capable units that are often able to process information that is directly relevant at the level of the colony. Furthermore, involved communication patterns seem difficult to implement in a group of insects as they lack a clear network structure. This review discusses links between the cognition of an individual insect and that of the colony. We provide examples for collective cognition whose sources span the full spectrum between amplification of individual insect cognition and emergent group-level processes.
Collapse
Affiliation(s)
- Ofer Feinerman
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amos Korman
- Institut de Recherche en Informatique Fondamentale (IRIF), CNRS and University Paris Diderot, Paris 75013, France
| |
Collapse
|
15
|
Cristaldo PF, Rodrigues VB, Elliot SL, Araújo AP, DeSouza O. Heterospecific detection of host alarm cues by an inquiline termite species (Blattodea: Isoptera: Termitidae). Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Cristaldo PF, Jandák V, Kutalová K, Rodrigues VB, Brothánek M, Jiříček O, DeSouza O, Šobotník J. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals. Biol Open 2015; 4:1649-59. [PMID: 26538635 PMCID: PMC4736033 DOI: 10.1242/bio.014084] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory signals, and higher levels causing general alarm or retreat being communicated through the alarm pheromone. Summary: We inspected the functional significance of both vibroacoustic and chemical communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive but rather complementary processes.
Collapse
Affiliation(s)
- Paulo F Cristaldo
- Laboratório de Interações Ecológicas, Departamento de Ecologia, Universidade Federal de Sergipe, São Cristovão, SE 49000-000, Brazil
| | - Vojtĕch Jandák
- Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague 6, Czech Republic
| | - Kateřina Kutalová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Prague 6-Suchdol, Czech Republic Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic Institute of Organic Chemistry and Biochemistry, Academic of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
| | - Vinícius B Rodrigues
- Laboratório de Termitologia, Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Marek Brothánek
- Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague 6, Czech Republic
| | - Ondřej Jiříček
- Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague 6, Czech Republic
| | - Og DeSouza
- Laboratório de Termitologia, Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Prague 6-Suchdol, Czech Republic
| |
Collapse
|