1
|
Cai H, Wang H, Bei Z, Zhou D, Gao H. Biomimetic swarm fission driven algorithm with preassigned target subgroup size. BIOINSPIRATION & BIOMIMETICS 2025; 20:026021. [PMID: 39879659 DOI: 10.1088/1748-3190/adaff5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
Inspired by killer whale hunting strategies, this study presents a biomimetic algorithm for controlled subgroup fission in swarms. The swarm agents adopt the classic social force model with some practical modifications. The proposed algorithm consists of three phases: cluster selection phase via a constrained K-means algorithm, driven phase with strategic agent movement, including center pushing, coordinated oscillation, and flank pushing by specialized driven agents, and judgment phase confirming subgroup separation using the Kruskal algorithm. Simulation results confirm the algorithm's high success rate and efficiency in subgroup division, demonstrating its potential for advancing swarm-based technologies.
Collapse
Affiliation(s)
- He Cai
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education, Guangzhou, People's Republic of China
- Guangdong Engineering Technology Research Center of Unmanned Aerial Vehicle Systems, Guangzhou, People's Republic of China
| | - Hao Wang
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Zixin Bei
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Dongkuan Zhou
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Huanli Gao
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education, Guangzhou, People's Republic of China
- Guangdong Engineering Technology Research Center of Unmanned Aerial Vehicle Systems, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Smith KJ, Evans MJ, Gordon IJ, Pierson JC, Newport J, Manning AD. Analyzing captive breeding outcomes to inform reintroduction practice: lessons from the pookila ( Pseudomys novaehollandiae). J Mammal 2023; 104:1047-1061. [PMID: 37800101 PMCID: PMC10550247 DOI: 10.1093/jmammal/gyad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 05/04/2023] [Indexed: 10/07/2023] Open
Abstract
Captive breeding is often used to produce individuals for reintroduction programs in order to reestablish a species in an area where it has become locally extinct. To maximize the likelihood of establishing a self-sustaining population in the wild, an analysis of data from captive breeding programs is commonly undertaken to (1) increase the quantity of individuals and rate at which they can be released, and (2) maintain or improve the genetic and phenotypic quality of individuals. Here we demonstrate how the knowledge gained from these analyses can also be applied to decision-making during the design of subsequent reintroductions to further advance a reintroduction program toward success. We conducted an analysis of data from a captive breeding program for the threatened pookila (Pseudomys novaehollandiae, New Holland mouse) spanning 6 years. We found evidence for relationships between the reproductive output of pookila and behavioral, demographic, experiential, health, and physiological predictors. Based on a biological interpretation of these results, and with reference to a checklist of all known translocation tactics, we recommend 11 specific design elements to maximize the probability of pookila reproduction postrelease (thereby improving the likelihood of reintroduction success). These recommendations should be interpreted as hypotheses to be evaluated and refined in future reintroduction trials for the pookila. The uncertainty around the postrelease survival and reproduction of a species that is common in reintroduction practice warrants the creative use of existing data to inform adaptive management. Indeed, there is a wealth information in well-kept captive breeding records that is currently underused by reintroduction practitioners. The direct integration of knowledge derived from captive breeding (where available) with decision-making for reintroductions, as described here, will help navigate these uncertainties, which would benefit the conservation of both understudied and well-known species around the world.
Collapse
Affiliation(s)
- Kiarrah J Smith
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Maldwyn J Evans
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Iain J Gordon
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- The James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Central Queensland University, Townsville, Queensland 4810, Australia
- Land and Water, CSIRO, Townsville, Queensland 4810, Australia
- Lead, Protected Places Mission, National Environmental Science Program, Reef and Rainforest Research Centre, Cairns, Queensland 4870, Australia
| | - Jennifer C Pierson
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
- Australian Wildlife Conservancy, Subiaco East, Western Australia 6008, Australia
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2617, Australia
| | - Jenny Newport
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Adrian D Manning
- Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
3
|
Ito W, Palmer AJ, Morozov A. Social Synchronization of Conditioned Fear in Mice Requires Ventral Hippocampus Input to the Amygdala. Biol Psychiatry 2023; 93:322-330. [PMID: 36244803 PMCID: PMC10069289 DOI: 10.1016/j.biopsych.2022.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Social organisms synchronize behaviors as an evolutionary-conserved means of thriving. Synchronization under threat, in particular, benefits survival and occurs across species, including humans, but the underlying mechanisms remain unknown because of the scarcity of relevant animal models. Here, we developed a rodent paradigm in which mice synchronized a classically conditioned fear response and identified an underlying neuronal circuit. METHODS Male and female mice were trained individually using auditory fear conditioning and then tested 24 hours later as dyads while allowing unrestricted social interaction during exposure to the conditioned stimulus under visible or infrared illumination to eliminate visual cues. The synchronization of the immobility or freezing bouts was quantified by calculating the effect size Cohen's d for the difference between the actual freezing time overlap and the overlap by chance. The inactivation of the dorsomedial prefrontal cortex, dorsal hippocampus, or ventral hippocampus was achieved by local infusions of muscimol. The chemogenetic disconnection of the hippocampus-amygdala pathway was performed by expressing hM4D(Gi) in the ventral hippocampal neurons and infusing clozapine N-oxide in the amygdala. RESULTS Mice synchronized cued but not contextual fear. It was higher in males than in females and attenuated in the absence of visible light. Inactivation of the ventral but not dorsal hippocampus or dorsomedial prefrontal cortex abolished fear synchronization. Finally, the disconnection of the hippocampus-amygdala pathway diminished fear synchronization. CONCLUSIONS Mice synchronize expression of conditioned fear relying on the ventral hippocampus-amygdala pathway, suggesting that the hippocampus transmits social information to the amygdala to synchronize threat response.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia.
| | - Alexander J Palmer
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia
| | - Alexei Morozov
- Fralin Biomedical Research Institute at Virginia Tech Carilion Center for Neurobiology Research, Roanoke, Virginia; Carilion Clinic Department of Psychiatry and Behavioral Medicine, Roanoke, Virginia.
| |
Collapse
|
4
|
Flexibility and rigidity in hunting behaviour in rodents: is there room for cognition? Anim Cogn 2022; 25:731-743. [PMID: 34993671 DOI: 10.1007/s10071-021-01588-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023]
Abstract
Predatory hunting is a complex species-typical behaviour involving different skills, some of which may include learning. This research aims to distinguish between rigid and flexible parts in live-insect hunting behaviour in nine herbivorous and granivorous rodent species, and to find out whether there is room for cognition in this activity. In laboratory experiments, all species studied manifest skilful attacks towards insects in a manner that is typical for specialised predators chasing a fleeing prey. Voles demonstrate a "core" and somewhat primitive scheme of a hunting pattern: approaching a potential victim, biting it, and then seizing and handling. Hamsters display the tendency to start their attacks by actions with paws, but they can achieve success only using teeth as well. Gerbils can successfully use both paws and teeth to start the attack, which brings their hunting behaviour closer to that of specialised rodent predators. We revealed variability in the display of hunting in different species, methods of seizing the prey, and the number of attempts to attack an insect before catching it. We found specific flexible fragments within the "bite-grasp-handle" bouts that can be precursors for adaptive phenotypic variations and include some cognitive attributes. We hypothesise that the divergence and specialisation of predatory behaviour in rodents can be based on the natural fragmentation of the original hunting patterns, that is, on the loss or recombination of particular behavioural elements. We consider a possible link between the fragmentation of hunting behaviour and social learning in different classes of animals and conjecture an intriguing correlation between predatory activity, cognitive skills and personal traits in rodents.
Collapse
|
5
|
Dorfman A, Weiss O, Hagbi Z, Levi A, Eilam D. Social spatial cognition. Neurosci Biobehav Rev 2020; 121:277-290. [PMID: 33373664 DOI: 10.1016/j.neubiorev.2020.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Social spatial cognition refers to the interaction between self, place, and partners, with emphasis on the impact of the social environment on spatial behavior and on how individual spatial representations converge to form collective spatial behavior - i.e., common places and routes. Recent studies suggest that in addition to their mental representation (cognitive map) of the physical environment, humans and other animals also have a social cognitive map. We suggest that while social spatial cognition relies on knowledge of both the physical and the social environments, it is the latter hat predominates. This dominance is illustrated here in the modulation of spatial behavior according to dynamic social interactions, ranging from group formation to an attenuation of drug-induced stereotypy through the mere presence of a normal subject. Consequently we suggest that the numerous studies on the biobehavioral controlling mechanisms of spatial behavior (i.e. - the hippocampal formation, animal models for mental disorders) should also consider the social environment rather than solely focusing on the spatial behavior of lone animals.
Collapse
Affiliation(s)
- Alex Dorfman
- School of Zoology, George S. Wise Faculty of Life-Sciences, Tel-Aviv University, Ramat-Aviv, 6997801, Israel
| | - Omri Weiss
- School of Zoology, George S. Wise Faculty of Life-Sciences, Tel-Aviv University, Ramat-Aviv, 6997801, Israel
| | - Zohar Hagbi
- School of Zoology, George S. Wise Faculty of Life-Sciences, Tel-Aviv University, Ramat-Aviv, 6997801, Israel
| | - Anat Levi
- School of Zoology, George S. Wise Faculty of Life-Sciences, Tel-Aviv University, Ramat-Aviv, 6997801, Israel
| | - David Eilam
- School of Zoology, George S. Wise Faculty of Life-Sciences, Tel-Aviv University, Ramat-Aviv, 6997801, Israel.
| |
Collapse
|
6
|
Social spatial cognition: social distance dynamics as an identifier of social interactions. Anim Cogn 2020; 24:407-418. [PMID: 33048261 DOI: 10.1007/s10071-020-01441-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
We suggest that socio-spatial behavior, which is an interaction between social and spatial cognition, can be viewed as a set of excursions that originate and end in close proximity to another individual(s). We present an extension of earlier studies that perceived spatial behavior in individual animals as a series of excursions originating from a particular location. We measured here the momentary distance between two individuals (social distance) to differentiate among eight possible types of social excursion originating in a state of proximity between excursion-participants. The defined excursion types are based on whether or not the excursion initiator also concludes the excursion, whether or not the excursion starts and ends at the same location, and the dynamics of the distance between excursion participants. We validated this approach to socio-spatial behavior as a set of excursions using it to analyze the behavior of the two sexes in rodents, of normal vs. stereotyped rats, as well as of different rodent species. Each of these groups displays a prevalent excursion type that reflects a distinct social dynamics. Our approach offers a useful and comprehensive tool for studying socio-spatial cognition, and can also be applied to distinguish among different social situations in rodents and other animals.
Collapse
|
7
|
Boonman A, Zadicario P, Mazon Y, Rabi C, Eilam D. The sounds of silence: Barn owl noise in landing and taking off. Behav Processes 2018; 157:484-488. [DOI: 10.1016/j.beproc.2018.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 11/27/2022]
|