1
|
Avanzi Q, Lisart L, Detrain C. Social organization of necrophoresis: insights into disease risk management in ant societies. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240764. [PMID: 39665101 PMCID: PMC11632371 DOI: 10.1098/rsos.240764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 12/13/2024]
Abstract
Insect societies, which are at a high risk of disease outbreaks, have evolved sanitary strategies that contribute to their social immunity. Here, we investigated in the red ant Myrmica rubra, how the discarding of nestmate cadavers is socially organized depending on the associated pathogenicity. We examined whether necrophoresis is carried out by a specific functional group of workers or by any nestmates that may become short-term specialists. By observing the behavioural profiles of tagged individuals, we assigned half of the colony members to functional groups (foragers, intermittent-foragers, domestics, nurses and inactives). Following the introduction of uninfected or sporulating corpses into the nest, intermittent-foragers were the functional group most involved in necrophoresis, as they touched, moved and discarded more cadavers. Interestingly, sporulating corpses induced a more generalized response in workers from all functional groups, thereby accelerating their rejection from the nest. The individuals contacting corpses were also prophylactically engaged in more grooming behaviour, suggesting the existence of hygienist workers within ant colonies. These findings raise questions about a trade-off existing between concentrating health risks on a few workers who are highly specialized in necrophoresis and exposing a larger population of nestmates who cooperate to speed up nest sanitization.
Collapse
Affiliation(s)
- Quentin Avanzi
- Unit of Social Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Léon Lisart
- Unit of Social Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Claire Detrain
- Unit of Social Ecology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Tiritelli R, Giannetti D, Schifani E, Grasso DA, Cilia G. Neighbors sharing pathogens: the intricate relationship between Apis mellifera and ants (Hymenoptera: Formicidae) nesting in hives. INSECT SCIENCE 2024. [PMID: 39126179 DOI: 10.1111/1744-7917.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Ants are ubiquitous and eusocial insects that exhibit frequent physical contact among colony members, thereby increasing their susceptibility to diseases. Some species are often found in beehives and in their surroundings, where they exploit the food resources of honey bees. This intricate relationship may facilitate the interspecific transmission of honey bee pathogens to ants, although ants themselves may contribute to spillback phenomena. The objective of this study was to assess the presence and abundance of honey bee pathogens in ants sampled from Italian apiaries. A total of 37 colonies within 24 apiaries across 7 regions were monitored. In total, 6 pathogens were detected in adult ants and 3 in the brood. In particular, the study revealed a high prevalence of honey bee pathogens in ants, with DWV, BQCV, and CBPV being the most commonly encountered. The brood also tested positive for the same viruses. Notably, all analyzed viruses were found to be replicative in both adult ants and ant broods. Furthermore, co-infections were prevalent, suggesting complex pathogen interactions within ant populations. Statistical analysis indicated significant differences in pathogen prevalence and abundance among ant species and sample types. The findings highlight active infection in both the ants and the brood, suggesting a potential role of ants as reservoir hosts and vectors of honey bee pathogens emphasizing the need for further research to understand the implications of interspecific pathogen transmission on ant and bee health.
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Bologna, Italy
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniele Giannetti
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Schifani
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Donato A Grasso
- Department of Chemistry, Life Sciences & Environmental Sustainability, University of Parma, Parma, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Bologna, Italy
| |
Collapse
|
3
|
Pereira H, Willeput R, Detrain C. A fungus infected environment does not alter the behaviour of foraging ants. Sci Rep 2021; 11:23573. [PMID: 34876627 PMCID: PMC8651729 DOI: 10.1038/s41598-021-02817-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Eusocial insects are exposed to a wide range of pathogens while foraging outside their nest. We know that opportunistic scavenging ants are able to assess the sanitary state of food and to discriminate a prey which died from infection by the entomopathogenic fungus Metarhizium brunneum. Here, we investigate whether a contamination of the environment can also influence the behaviour of foragers, both at the individual and collective level. In a Y-maze, Myrmica rubra ants had the choice to forage on two prey patches, one of which containing sporulating items. Unexpectedly, the nearby presence of sporulating bodies did not deter foragers nor prevent them from retrieving palatable prey. Ant colonies exploited both prey patches equally, without further mortality resulting from foraging on the contaminated area. Thus, a contamination of the environment did not prompt an active avoidance by foragers of which the activity depended primarily on the food characteristics. Generalist entomopathogenic fungi such as M. brunneum in the area around the nest appear more to be of a nuisance to ant foragers than a major selective force driving them to adopt avoidance strategies. We discuss the cost-benefit balance derived from the fine-tuning of strategies of pathogen avoidance in ants.
Collapse
Affiliation(s)
- Hugo Pereira
- Unit of Social Ecology, Université Libre de Bruxelles, CP 231, 50 avenue F. Roosevelt, 1050, Brussels, Belgium.
| | - Romain Willeput
- grid.4989.c0000 0001 2348 0746Unit of Social Ecology, Université Libre de Bruxelles, CP 231, 50 avenue F. Roosevelt, 1050 Brussels, Belgium
| | - Claire Detrain
- Unit of Social Ecology, Université Libre de Bruxelles, CP 231, 50 avenue F. Roosevelt, 1050, Brussels, Belgium.
| |
Collapse
|
4
|
Pusceddu M, Cini A, Alberti S, Salaris E, Theodorou P, Floris I, Satta A. Honey bees increase social distancing when facing the ectoparasite Varroa destructor. SCIENCE ADVANCES 2021; 7:eabj1398. [PMID: 34714677 PMCID: PMC8555907 DOI: 10.1126/sciadv.abj1398] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Social distancing in response to infectious diseases is a strategy exhibited by human and nonhuman animals to counteract the spread of pathogens and/or parasites. Honey bee (Apis mellifera) colonies are ideal models to study this behavior because of the compartmentalized structure of these societies, evolved under exposure to parasite pressure and the need to ensure efficient functioning. Here, by using a combination of spatial and behavioral approaches, we investigated whether the presence of the ectoparasite mite Varroa destructor induces changes in the social organization of A. mellifera colonies that could reduce the spread of the parasite. Our results demonstrated that honey bees react to the intrusion of V. destructor by modifying space use and social interactions to increase the social distancing between young (nurses) and old (foragers) cohorts of bees. These findings strongly suggest a behavioral strategy not previously reported in honey bees to limit the intracolony parasite transmission.
Collapse
Affiliation(s)
- Michelina Pusceddu
- Department of Agricultural Sciences, University of Sassari, viale Italia 39A, 07100 Sassari, Italy
- Corresponding author. (M.P.); (A.S.)
| | - Alessandro Cini
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Simona Alberti
- Department of Life Sciences and Systems Biology, University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
| | - Emanuele Salaris
- Department of Agricultural Sciences, University of Sassari, viale Italia 39A, 07100 Sassari, Italy
| | - Panagiotis Theodorou
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Ignazio Floris
- Department of Agricultural Sciences, University of Sassari, viale Italia 39A, 07100 Sassari, Italy
| | - Alberto Satta
- Department of Agricultural Sciences, University of Sassari, viale Italia 39A, 07100 Sassari, Italy
- Corresponding author. (M.P.); (A.S.)
| |
Collapse
|
5
|
Dionisi M, Ozier-Lafontaine H, Laplace D. Control of Amazonian Leaf-Cutting Ants (Hymenoptera: Formicidae): A Multi-criteria Analysis. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:493-504. [PMID: 33547794 DOI: 10.1093/jee/toaa331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Leaf-cutting ants (Hymenoptera: Formicidae) are one of the main pests found in the Americas and they cause global economic losses worth several billions of dollars. While pesticides have been the most widely used control method, new management alternatives in a context of agroecological transition are now being considered. This study focuses on the leaf-cutting ants species found in the pan-Amazon region. As part of efforts to improve management of these pests, this multi-criteria analysis of control strategies covers a total of 691 experiments collected from 153 studies, and the control were evaluated as a function of their management efficacy, environmental and human health impacts, and their ease of application. Chemical control methods were effective but posed a danger to human health and the environment, whereas mechanical methods and integrated management were more sustainable but not always very effective. Some of the biocontrol methods were evaluated as effective and safe for the environment and human health, including the use of entomopathogenic fungi Beauveria bassiana (Bals.-Criv) Vuill. (Hypocreales: Cordycipitaceae) and Metarhizium anisopliae (Metschn.) Sorokïn (Hypocreales: Clavicipitaceae) in the form of bait or sprayed in the nest, or the application of plant mulch in the nest using Tithonia diversifolia (Hemsley) A. Gray (Asterales: Asteraceae) or Canavalia ensiformis L. DC. (Fabales: Fabaceae). Because of variations in the efficacy data between laboratory and field tests, we are in favor of evaluating these control methods during field studies with different leaf-cutting ant species and under different environmental conditions. These methods should adopt experimental arrangements that are appropriate for local socioeconomic conditions adapted for farmers.
Collapse
Affiliation(s)
- Mathilde Dionisi
- INRAE, UR1321, ASTRO Agrosystèmes Tropicaux, Petit-Bourg, Guadeloupe, France
| | - Harry Ozier-Lafontaine
- INRAE, UR1321, ASTRO Agrosystèmes Tropicaux, Petit-Bourg, Guadeloupe, France
- DEAAF de Guyane, Service Salim, Unité OQA, Cayenne, Guyane, France
| | - Damien Laplace
- DEAAF de Guyane, Service Salim, Unité OQA, Cayenne, Guyane, France
| |
Collapse
|
6
|
Novgorodova T. Preventing Transmission of Lethal Disease: Removal Behaviour of Lasius fuliginosus (Hymenoptera: Formicidae) Towards Fungus Contaminated Aphids. INSECTS 2021; 12:insects12020099. [PMID: 33498832 PMCID: PMC7911655 DOI: 10.3390/insects12020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
The ability of ants to detect and remove conidia-contaminated aphids, aimed at limiting contacts with potentially dangerous entities, is an effective antifungal mechanism to prevent the spread of infection among both their nestmates and aphids, their main suppliers of carbohydrates. However, the spread and the scale of this quarantining behaviour among ants are still scarcely studied. Among seven ant species studied, active usage of quarantining behaviour was found only in Formica ants. The behaviour of Lasius fuliginosus (Latreille) aphid milkers towards Chaitophorus populeti (Panzer) aphids covered with conidia of Beauveria bassiana (Balsamo-Crivelli) Vuillemin was studied in the field. Most aggressive milkers quickly detected and removed conidia-contaminated aphids from the plant, carrying them down and placing them some distance away from the experimental aspen trees. In general, active usage of quarantining behaviour towards conidia-contaminated aphids was found to be not limited to the genus Formica, but typical of L. fuliginosus as well. The response of milkers of L. fuliginosus and Formica s. str. ants to living aphids covered with conidia is quite similar. Removal of most fungus-contaminated aphids from the plant enables these ants to reduce the risk of infection transmission among both their nestmates and aphids.
Collapse
Affiliation(s)
- Tatiana Novgorodova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Frunze str. 11, Novosibirsk 630091, Russia
| |
Collapse
|
7
|
|
8
|
Pull CD, McMahon DP. Superorganism Immunity: A Major Transition in Immune System Evolution. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
9
|
Home economics in an oak gall: behavioural and chemical immune strategies against a fungal pathogen in Temnothorax ant nests. Naturwissenschaften 2019; 106:61. [PMID: 31768639 DOI: 10.1007/s00114-019-1659-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
Nest architecture is a fundamental character shaping immune strategies of social insects. The arboreal ant Temnothorax unifasciatus nests in cavities such as oak galls where the entire colony lives in a unique small chamber. In these conditions, physiological and behavioural strategies likely prevail over compartmentalisation and are presumably tuned with colony size. We designed two experiments to study chemical and behavioural immune strategies against the entomopathogenic fungus Metarhizium anisopliae in colonies of different sizes. First, we compared spore germination and length of germinal tubes inside artificial nests, designed to impede the contact between the ants and the fungus, in colonies of different size. In the absence of direct contact, Temnothorax unifasciatus colonies inhibit fungal growth inside their nests, presumably through volatile compounds. The analysis revealed a positive correlation between fungistatic activity and colony size, indicating that workers of smaller colonies do not invest a higher per capita effort in producing such substances compared to larger colonies. Second, we performed a removal experiment of contaminated and non-contaminated items introduced inside the nests of colonies of different size. Small colonies challenged with contaminated fibres showed an increased removal of all the items (both contaminated and non-contaminated) compared to small colonies challenged with non-contaminated fibres only. Conversely, larger colonies moved items regardless of the presence of the spores inside the nest. Colony size qualitatively affected removal of waste items showing a pathogen elicited reaction in small colonies to optimise the reduced workforce, while the removal behaviour in larger colonies revealed to be expressed constitutively.
Collapse
|
10
|
Sun Q, Haynes KF, Zhou X. Managing the risks and rewards of death in eusocial insects. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170258. [PMID: 30012744 PMCID: PMC6053982 DOI: 10.1098/rstb.2017.0258] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2018] [Indexed: 12/22/2022] Open
Abstract
Eusocial insects frequently face death of colony members as a consequence of living in large groups where the success of the colony is not dependent on the fate of the individual. Whereas death of conspecifics commonly triggers aversion in many group-living species due to risk of pathogens, eusocial insects perform cooperative corpse management. The causes and social context of the death, as well as feeding and nesting ecology of the species, influence the way that corpses are treated. The corpse itself releases cues that dictate the colony's response. As a result, social insects exhibit behavioural responses that promote disease resistance, colony defence and nutrient recycling. Corpse management represents a unique adaption that enhances colony success, and is another factor that has enabled eusocial insects to be so successful. In this review, we summarize the causes of death, the sensory detection of death and corpse management strategies of social insects. In addition, we provide insights into the evolution of behavioural response to the dead and the ecological relevance of corpse management.This article is part of the theme issue 'Evolutionary thanatology: impacts of the dead on the living in humans and other animals'.
Collapse
Affiliation(s)
- Qian Sun
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Centre North, Lexington, KY 40546, USA
| | - Kenneth F Haynes
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Centre North, Lexington, KY 40546, USA
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Centre North, Lexington, KY 40546, USA
| |
Collapse
|
11
|
Leclerc JB, Pinto Silva J, Detrain C. Impact of soil contamination on the growth and shape of ant nests. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180267. [PMID: 30109082 PMCID: PMC6083733 DOI: 10.1098/rsos.180267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
As entomopathogens are detrimental to the development or even survival of insect societies, ant colonies should avoid digging into a substrate that is contaminated by fungal spores. Here, we test the hypotheses that Myrmica rubra ant workers (i) detect and avoid fungus-infected substrates and (ii) excavate nest patterns that minimize their exposure to entomopathogenic spores. Small groups of M. rubra workers were allowed to dig their nest in a two-dimensional sand plate of which one half of the substrate contained fungal spores of Metarhizium brunneum, while the other half was spore-free. We found that the overall digging dynamics of M. rubra nests was not altered by the presence of fungus spores. By contrast, the shape of the excavated areas markedly differed: control nests showed rather isotropic patterns, whereas nests that were partially dug into a fungus-contaminated substrate markedly deviated from a circular shape. This demonstrates that the sanitary risks associated with a digging substrate are key factors in nest morphogenesis. We also found that M. rubra colonies were able to discriminate between the two substrates (fungus-infected or not). Furthermore, some colonies unexpectedly showed a high consistency in excavating mainly the infected substrate. This seemingly suboptimal preference for a contaminated soil suggests that non-lethal doses of fungal spores could help ant colonies to trigger 'immune priming'. The presence of fungi may also indicate favourable ecological conditions, such as humid and humus-rich soil, that ants use as a cue for selecting suitable nesting sites.
Collapse
|