1
|
Hasenjager MJ, Fefferman NH. Social ageing and higher-order interactions: social selectiveness can enhance older individuals' capacity to transmit knowledge. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220461. [PMID: 39463239 PMCID: PMC11513644 DOI: 10.1098/rstb.2022.0461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/18/2024] [Accepted: 03/18/2024] [Indexed: 10/29/2024] Open
Abstract
In long-lived organisms, experience can accumulate with age, such that older individuals may act as repositories of ecological and social knowledge. Such knowledge is often beneficial and can spread via social transmission, leading to the expectation that ageing individuals will remain socially well-integrated. However, social ageing involves multiple processes that modulate the relationship between age and social connectivity in complex ways. We developed a generative model to explore how social ageing may drive changes in social network position and shape older individuals' capacity to transmit knowledge to others. We further employ novel hypernetwork analyses that capture higher-order interactions (i.e. involving ≥ 3 participants) to reveal potential relationships between age and sociality that conventional dyadic networks may overlook. We find that older individuals in our simulations effectively facilitate transmission across a range of scenarios, especially when transmission resembles a complex contagion or when social selectivity (i.e. prioritization of key relationships) rapidly emerges with age. These patterns result from the formation of tight-knit sets of older associates that co-occur in multiple groups, thereby reinforcing one another's capacity to transmit knowledge. Our findings suggest key avenues for future empirical work and illustrate the use of hypernetworks in advancing the study of social behaviour.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Matthew J. Hasenjager
- Intelligence Community Postdoctoral Research Fellowship Program, University of Tennessee, Knoxville, TN, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA
| | - Nina H. Fefferman
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
2
|
Pandey A, Wojan C, Feuka A, Craft ME, Manlove K, Pepin KM. The influence of social and spatial processes on the epidemiology of environmentally transmitted pathogens in wildlife: implications for management. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220532. [PMID: 39230447 PMCID: PMC11449208 DOI: 10.1098/rstb.2022.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 09/05/2024] Open
Abstract
Social and spatial structures of host populations play important roles in pathogen transmission. For environmentally transmitted pathogens, the host space use interacts with both the host social structure and the pathogen's environmental persistence (which determines the time-lag across which two hosts can transmit). Together, these factors shape the epidemiological dynamics of environmentally transmitted pathogens. While the importance of both social and spatial structures and environmental pathogen persistence has long been recognized in epidemiology, they are often considered separately. A better understanding of how these factors interact to determine disease dynamics is required for developing robust surveillance and management strategies. Here, we use a simple agent-based model where we vary host mobility (spatial), host gregariousness (social) and pathogen decay (environmental persistence), each from low to high levels to uncover how they affect epidemiological dynamics. By comparing epidemic peak, time to epidemic peak and final epidemic size, we show that longer infectious periods, higher group mobility, larger group size and longer pathogen persistence lead to larger, faster growing outbreaks, and explore how these processes interact to determine epidemiological outcomes such as the epidemic peak and the final epidemic size. We identify general principles that can be used for planning surveillance and control for wildlife host-pathogen systems with environmental transmission across a range of spatial behaviour, social structure and pathogen decay rates. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Aakash Pandey
- Department of Fisheries and Wildlife, Michigan State University , East Lansing, MI 48824, USA
| | - Chris Wojan
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul , MN 55108, USA
| | - Abigail Feuka
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| | - Meggan E Craft
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul , MN 55108, USA
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill , Logan, UT 84322, USA
| | - Kim M Pepin
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| |
Collapse
|
3
|
Romano V, Puga-Gonzalez I, MacIntosh AJJ, Sueur C. The role of social attraction and social avoidance in shaping modular networks. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231619. [PMID: 38420628 PMCID: PMC10898973 DOI: 10.1098/rsos.231619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
How interactions between individuals contribute to the emergence of complex societies is a major question in behavioural ecology. Nonetheless, little remains known about the type of immediate social structure (i.e. social network) that emerges from relationships that maximize beneficial interactions (e.g. social attraction towards informed individuals) and minimize costly relationships (e.g. social avoidance of infected group mates). We developed an agent-based model where individuals vary in the degree to which individuals signal benefits versus costs to others and, on this basis, choose with whom to interact depending on simple rules of social attraction (e.g. access to the highest benefits) and social avoidance (e.g. avoiding the highest costs). Our main findings demonstrate that the accumulation of individual decisions to avoid interactions with highly costly individuals, but that are to some extent homogeneously beneficial, leads to more modular networks. On the contrary, individuals favouring interactions with highly beneficial individuals, but that are to some extent homogeneously costly, lead to less modular networks. Interestingly, statistical models also indicate that when individuals have multiple potentially beneficial partners to interact with, and no interaction cost exists, this also leads to more modular networks. Yet, the degree of modularity is contingent upon the variability in benefit levels held by individuals. We discuss the emergence of modularity in the systems and their consequences for understanding social trade-offs.
Collapse
Affiliation(s)
- Valéria Romano
- IMBE, Aix Marseille Univ., Avignon Univ., CNRS, IRD, Marseille, France
| | - Ivan Puga-Gonzalez
- Center for Modelling Social Systems (CMSS) at NORCE, Kristiansand, Norway
| | | | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Albery GF, Bansal S, Silk MJ. Comparative approaches in social network ecology. Ecol Lett 2024; 27:e14345. [PMID: 38069575 DOI: 10.1111/ele.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 01/31/2024]
Abstract
Social systems vary enormously across the animal kingdom, with important implications for ecological and evolutionary processes such as infectious disease dynamics, anti-predator defence, and the evolution of cooperation. Comparing social network structures between species offers a promising route to help disentangle the ecological and evolutionary processes that shape this diversity. Comparative analyses of networks like these are challenging and have been used relatively little in ecology, but are becoming increasingly feasible as the number of empirical datasets expands. Here, we provide an overview of multispecies comparative social network studies in ecology and evolution. We identify a range of advancements that these studies have made and key challenges that they face, and we use these to guide methodological and empirical suggestions for future research. Overall, we hope to motivate wider publication and analysis of open social network datasets in animal ecology.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Matthew J Silk
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Young MJ, Silk MJ, Pritchard AJ, Fefferman NH. The interplay of social constraints and individual variation in risk tolerance in the emergence of superspreaders. J R Soc Interface 2023; 20:20230077. [PMID: 37528679 PMCID: PMC10394411 DOI: 10.1098/rsif.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
Individual host behaviours can drastically impact the spread of infection through a population. Differences in the value individuals place on both socializing with others and avoiding infection have been shown to yield emergent homophily in social networks and thereby shape epidemic outcomes. We build on this understanding to explore how individuals who do not conform to their social surroundings contribute to the propagation of infection during outbreaks. We show how non-conforming individuals, even if they do not directly expose a disproportionate number of other individuals themselves, can become functional superspreaders through an emergent social structure that positions them as the functional links by which infection jumps between otherwise separate communities. Our results can help estimate the potential success of real-world interventions that may be compromised by a small number of non-conformists if their impact is not anticipated, and plan for how best to mitigate their effects on intervention success.
Collapse
Affiliation(s)
- Matthew J. Young
- Department of Mathematics, The University of Tennessee Knoxville, Knoxville 37996-4519 TN, USA
| | - Matthew J. Silk
- Department of NIMBioS, The University of Tennessee Knoxville, Knoxville 37996-4519 TN, USA
| | - Alexander J. Pritchard
- Department of NIMBioS, The University of Tennessee Knoxville, Knoxville 37996-4519 TN, USA
| | | |
Collapse
|
6
|
Beck KB, Sheldon BC, Firth JA. Social learning mechanisms shape transmission pathways through replicate local social networks of wild birds. eLife 2023; 12:85703. [PMID: 37128701 PMCID: PMC10154030 DOI: 10.7554/elife.85703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
The emergence and spread of novel behaviours via social learning can lead to rapid population-level changes whereby the social connections between individuals shape information flow. However, behaviours can spread via different mechanisms and little is known about how information flow depends on the underlying learning rule individuals employ. Here, comparing four different learning mechanisms, we simulated behavioural spread on replicate empirical social networks of wild great tits and explored the relationship between individual sociality and the order of behavioural acquisition. Our results reveal that, for learning rules dependent on the sum and strength of social connections to informed individuals, social connectivity was related to the order of acquisition, with individuals with increased social connectivity and reduced social clustering adopting new behaviours faster. However, when behavioural adoption depends on the ratio of an individuals' social connections to informed versus uninformed individuals, social connectivity was not related to the order of acquisition. Finally, we show how specific learning mechanisms may limit behavioural spread within networks. These findings have important implications for understanding whether and how behaviours are likely to spread across social systems, the relationship between individuals' sociality and behavioural acquisition, and therefore for the costs and benefits of sociality.
Collapse
Affiliation(s)
- Kristina B Beck
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Ben C Sheldon
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Josh A Firth
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Experimental manipulation of food distribution alters social networks and information transmission across environments in a food-caching bird. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
8
|
Rosengaus R, Traniello J, Bakker T. Sociality and disease: behavioral perspectives in ecological and evolutionary immunology. Behav Ecol Sociobiol 2022; 76:98. [PMID: 35821673 PMCID: PMC9263030 DOI: 10.1007/s00265-022-03203-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rebeca Rosengaus
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA 02115-5000 USA
| | - James Traniello
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215 USA
| | - Theo Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
9
|
Wiernasz DC, Cole BJ. The ontogeny of selection on genetic diversity in harvester ants. Proc Biol Sci 2022; 289:20220496. [PMID: 35673867 PMCID: PMC9174731 DOI: 10.1098/rspb.2022.0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Selection may favour traits throughout an individual's lifetime or at a particular life stage. In many species of social insects, established colonies that are more genetically diverse outperform less diverse colonies with respect to a variety of traits that contribute to fitness, but whether selection favours high diversity in small colonies is unknown. We tested the hypothesis that selection favours genetically diverse colonies during the juvenile period using a multi-year field experiment with the harvester ant, Pogonomyrmex occidentalis. We used controlled matings to generate colonies that varied in genetic diversity and transplanted them into the field. We monitored their survival for seven (the 2015 cohort, n = 149) and six (the 2016 cohort, n = 157) years. Genetically more diverse colonies had greater survival, resulting in significant viability selection. However, in both cohorts survival was not influenced by genetic diversity until colonies were three years old. We suggest that changes in their internal organization enabled colonies to use the benefits of multiple genotypes, and discuss possible mechanisms that can generate this pattern.
Collapse
Affiliation(s)
- Diane C. Wiernasz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Blaine J. Cole
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| |
Collapse
|
10
|
Lutermann H. Socializing in an Infectious World: The Role of Parasites in Social Evolution of a Unique Rodent Family. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmission of parasites between hosts is facilitated by close contact of hosts. Consequently, parasites have been proposed as an important constraint to the evolution of sociality accounting for its rarity. Despite the presumed costs associated with parasitism, the majority of species of African mole-rats (Family: Bathyergidae) are social. In fact, only the extremes of sociality (i.e., solitary and singular breeding) are represented in this subterranean rodent family. But how did bathyergids overcome the costs of parasitism? Parasite burden is a function of the exposure and susceptibility of a host to parasites. In this review I explore how living in sealed burrow systems and the group defenses that can be employed by closely related group members can effectively reduce the exposure and susceptibility of social bathyergids to parasites. Evidence suggests that this can be achieved largely by investment in relatively cheap and flexible behavioral rather than physiological defense mechanisms. This also shifts the selection pressure for parasites on successful transmission between group members rather than transmission between groups. In turn, this constrains the evolution of virulence and favors socially transmitted parasites (e.g., mites and lice) further reducing the costs of parasitism for social Bathyergidae. I conclude by highlighting directions for future research to evaluate the mechanisms proposed and to consider parasites as facilitators of social evolution not only in this rodent family but also other singular breeders.
Collapse
|
11
|
Young MJ, Silk MJ, Pritchard AJ, Fefferman NH. Diversity in valuing social contact and risk tolerance leading to the emergence of homophily in populations facing infectious threats. Phys Rev E 2022; 105:044315. [PMID: 35590588 DOI: 10.1103/physreve.105.044315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
How self-organization leads to the emergence of structure in social populations remains a fascinating and open question in the study of complex systems. One frequently observed structure that emerges again and again across systems is that of self-similar community, i.e., homophily. We use a game theoretic perspective to explore a case in which individuals choose affiliation partnerships based on only two factors: the value they place on having social contacts, and their risk tolerance for exposure to threat derived from social contact (e.g., infectious disease, threatening ideas, etc.). We show how diversity along just these two influences is sufficient to cause the emergence of self-organizing homophily in the population. We further consider a case in which extrinsic social factors influence the desire to maintain particular social ties, and show the robustness of emergent homophilic patterns to these additional influences. These results demonstrate how observable population-level homophily may arise out of individual behaviors that balance the value of social contacts against the potential risks associated with those contacts. We present and discuss these results in the context of outbreaks of infectious disease in human populations. Complementing the standard narrative about how social division alters epidemiological risk, we here show how epidemiological risk may deepen social divisions in human populations.
Collapse
Affiliation(s)
- Matthew J Young
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996, USA and Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Matthew J Silk
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996, USA and Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Alex J Pritchard
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996, USA and Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Nina H Fefferman
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996, USA and Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|