1
|
Pelc Z, Skórzewska M, Kurylcio A, Olko P, Dryka J, Machowiec P, Maksymowicz M, Rawicz-Pruszyński K, Polkowski W. Current Challenges in Breast Implantation. Medicina (B Aires) 2021; 57:medicina57111214. [PMID: 34833432 PMCID: PMC8625629 DOI: 10.3390/medicina57111214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/16/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022] Open
Abstract
Breast implantation (BI) is the most common plastic surgery worldwide performed among women. Generally, BI is performed both in aesthetic and oncoplastic procedures. Recently, the prevalence of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) or breast implant illness (BII) has aroused concerns. As a result, several countries, like Australia, Korea or the United Kingdom, introduced national registries dedicated to the safety and quality of BI surgeries. This narrative review aimed to focus on the clinical challenges, management and the current state of knowledge of BI. Both short and long-term outcomes of BI are determined by various alternatives and differences, which surgeons must consider during the planning and performing breast augmentation along with further complications or risk of reoperation. Proper preoperative decisions and aspects of surgical technique emerged to be equally important. The number of performed breast reconstructions is increasing, providing the finest aesthetic results and improving patient’s quality of life. Choice of prosthesis varies according to individual preferences and anatomical variables. A newly diagnosed cases of BIA-ALCL with lacking data on prevention, diagnosis, and treatment are placing it as a compelling medical challenge. Similarly, BII remains one of the most controversial subjects in reconstructive breast surgery due to unspecified diagnostic procedures, and recommendations.
Collapse
|
2
|
Cornejo-Bravo JM, Palomino K, Palomino-Vizcaino G, Pérez-Landeros OM, Curiel-Alvarez M, Valdez-Salas B, Bucio E, Magaña H. Poly( N-vinylcaprolactam) and Salicylic Acid Polymeric Prodrug Grafted onto Medical Silicone to Obtain a Novel Thermo- and pH-Responsive Drug Delivery System for Potential Medical Devices. MATERIALS 2021; 14:ma14051065. [PMID: 33668741 PMCID: PMC7956192 DOI: 10.3390/ma14051065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022]
Abstract
New medical devices with anti-inflammatory properties are critical to prevent inflammatory processes and infections in medical/surgical procedures. In this work, we present a novel functionalization of silicone for medical use with a polymeric prodrug and a thermosensitive polymer, by graft polymerization (gamma rays), for the localized release of salicylic acid, an analgesic, and anti-inflammatory drug. Silicone rubber (SR) films were functionalized in two stages using graft polymerization from ionizing radiation (60Co). The first stage was grafting poly(N-vinylcaprolactam) (PNVCL), a thermo-sensitive polymer, onto SR to obtain SR-g-PNVCL. In the second stage, poly(2-methacryloyloxy-benzoic acid) (P2MBA), a polymeric prodrug, was grafted to obtain (SR-g-PNVCL)-g-P2MBA. The degree of functionalization depended on the concentrations of monomers and the irradiation dose. The films were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy/energy-dispersive X-ray spectrometry (SEM–EDX), thermogravimetric analysis (TGA), and contact angle. An upper critical solution temperature (UCST) of the films was demonstrated by the swelling degree as a temperature function. (SR-g-PNVCL)-g-P2MBA films demonstrated hydrolysis-mediated drug release from the polymeric prodrug, pH, and temperature sensitivity. GC–MS confirmed the presence of the drug (salicylic acid), after polymer hydrolysis. The concentration of the drug in the release media was quantified by HPLC. Cytocompatibility and thermo-/pH sensitivity of functionalized medical silicone were demonstrated in cancer and non-cancer cells.
Collapse
Affiliation(s)
- José M. Cornejo-Bravo
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (J.M.C.-B.); (K.P.)
| | - Kenia Palomino
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (J.M.C.-B.); (K.P.)
| | - Giovanni Palomino-Vizcaino
- Faculty of Health Sciences, Autonomous University of Baja California, University Boulevard No. 1000, Tijuana 22260, Mexico;
| | - Oscar M. Pérez-Landeros
- Institute of Engineering, Autonomous University of Baja California, Benito Juárez Boulevard, Mexicali 21280, Mexico; (O.M.P.-L.); (M.C.-A.); (B.V.-S.)
| | - Mario Curiel-Alvarez
- Institute of Engineering, Autonomous University of Baja California, Benito Juárez Boulevard, Mexicali 21280, Mexico; (O.M.P.-L.); (M.C.-A.); (B.V.-S.)
| | - Benjamín Valdez-Salas
- Institute of Engineering, Autonomous University of Baja California, Benito Juárez Boulevard, Mexicali 21280, Mexico; (O.M.P.-L.); (M.C.-A.); (B.V.-S.)
| | - Emilio Bucio
- Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Science, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Héctor Magaña
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (J.M.C.-B.); (K.P.)
- Correspondence:
| |
Collapse
|