1
|
Twohig PA, Butt MU, Gardner TB, Chahal P, Sandhu DS. Racial and Gender Disparities Among Obese Patients With Pancreatic Cancer: A Trend Analysis in the United States. J Clin Gastroenterol 2023; 57:410-416. [PMID: 35324480 DOI: 10.1097/mcg.0000000000001688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/04/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is the third leading cause of cancer death. Obesity can increase the risk of PC by up to 50%. Studies have shown racial and gender disparities in PC, however, there is a paucity of such information in obese PC patients. AIM The aim of this study was to: (1) evaluate the incidence and prevalence of obesity among PC patients in the United States over the last 15 years, and (2) determine if variation exists in the demographic of obese PC patients over the last 15 years. It is hoped that this information could be used to assist in primary prevention and early detection of PC. METHODS A population-based retrospective analysis in IBM Explorys, a pooled, national, deidentified database of 63 million patients from 300 hospitals in the United States. Patient populations were identified using SNOMED and ICD codes. Cochrane-Armitage testing was performed to analyze trends in obesity among PC. Subgroup analysis for gender, age, race, and mortality rate were assessed. RESULTS The percentage of obese patients with PC increased over the 15-year period (2.5% to 8.5%, P <0.0001). Rates of obesity among PC patients increased among females ( P =0.0004), individuals under age 65 years ( P =0.0002), and all races, but especially for African Americans ( P =0.0007) and those in minority groups. CONCLUSION Awareness of disparities in PC and applying targeted care to those at increased risk are essential to improve future outcomes, including increased health care access and recruitment in research studies for minority groups.
Collapse
Affiliation(s)
- Patrick A Twohig
- Department of Gastroenterology & Hepatology, University of Nebraska Medical Center, Omaha, NE
- Departments of Internal Medicine
| | - Muhammad U Butt
- Department of Cardiac Electrophysiology, New York University Langone Hospital, New York, NY
| | - Timothy B Gardner
- Department of Gastroenterology & Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Prabhleen Chahal
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Dalbir S Sandhu
- Gastroenterology & Hepatology, MetroHealth Medical Center, Case Western Reserve University
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
2
|
Ampofo E, Nalbach L, Menger MD, Laschke MW. Regulatory Mechanisms of Somatostatin Expression. Int J Mol Sci 2020; 21:ijms21114170. [PMID: 32545257 PMCID: PMC7312888 DOI: 10.3390/ijms21114170] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Somatostatin is a peptide hormone, which most commonly is produced by endocrine cells and the central nervous system. In mammals, somatostatin originates from pre-prosomatostatin and is processed to a shorter form, i.e., somatostatin-14, and a longer form, i.e., somatostatin-28. The two peptides repress growth hormone secretion and are involved in the regulation of glucagon and insulin synthesis in the pancreas. In recent years, the processing and secretion of somatostatin have been studied intensively. However, little attention has been paid to the regulatory mechanisms that control its expression. This review provides an up-to-date overview of these mechanisms. In particular, it focuses on the role of enhancers and silencers within the promoter region as well as on the binding of modulatory transcription factors to these elements. Moreover, it addresses extracellular factors, which trigger key signaling pathways, leading to an enhanced somatostatin expression in health and disease.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Correspondence: ; Tel.: +49-6841-162-6561; Fax: +49-6841-162-6553
| | | | | | | |
Collapse
|
3
|
Abstract
Purpose: Pancreatic cancer remains a major health concern; in the next 2 years, it will become the second leading cause of cancer deaths in the United States. Health disparities in the treatment of pancreatic cancer exist across many disciplines, including race and ethnicity, socioeconomic status (SES), and insurance. This narrative review discusses what is known about these disparities, with the goal of highlighting targets for equity promoting interventions. Methods: We performed a narrative review of health disparities in pancreatic cancer spanning greater than ten areas, including epidemiology, treatment, and outcome, using the PubMed NIH database from 2000 to 2019 in the Unites States. Results: African Americans (AAs) tend to present at diagnosis with later stage disease. AAs and Hispanics have lower rates of surgical resection, are more likely to be treated at low volume hospitals, and often experience higher rates of morbidity and mortality compared to white patients, although control for confounders is often limited. Insurance and SES also factor into the delivery of treatment for pancreatic cancer. Conclusion: Disparities by race and SES exist in the diagnosis and treatment of pancreatic cancer that are largely driven by race and SES. Improved understanding of underlying causes could inform interventions.
Collapse
Affiliation(s)
- Marcus Noel
- Department of Medicine Hematology and Oncology Division, University of Rochester Medical Center, Wilmot Cancer Institute, Rochester, New York
| | - Kevin Fiscella
- Department of Medicine Hematology and Oncology Division, University of Rochester Medical Center, Wilmot Cancer Institute, Rochester, New York
| |
Collapse
|
4
|
Closing the Disparity in Pancreatic Cancer Outcomes: A Closer Look at Nonmodifiable Factors and Their Potential Use in Treatment. Pancreas 2019; 48:242-249. [PMID: 30629027 DOI: 10.1097/mpa.0000000000001238] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES African Americans (AAs) have disproportionately higher incidence and lower survival rates from pancreatic cancer compared with whites. Historically, this disparity has been attributed to modifiable risk factors. Recent studies suggest that nonmodifiable aspects may also play an important role. We review these new contributions as potential targets for closing the disparity. METHODS A PubMed search was conducted to review studies of nonmodifiable elements contributing to pancreatic cancer disparities in AAs. RESULTS Several nonmodifiable risks are associated with the racial disparity in pancreatic cancer. SSTR5 P335L, Kaiso, and KDM4/JMJD2A demonstrate differential racial expression, increasing their potential as therapeutic targets. Many social determinants of health and their associations with diabetes, obesity, and the microbiome are partially modifiable risk factors that significantly contribute to outcomes in minorities. Barriers to progress include the low minority inclusion in research studies. CONCLUSIONS Genomics, epigenetics, the microbiome, and social determinants of health are components that contribute to the pancreatic cancer disparity in AAs. These factors can be researched, targeted, and modified to improve mortality rates. Closing the disparity in pancreatic cancer will require an integrated approach of personalized medicine, increased minority recruitment to studies, and advanced health care/education access.
Collapse
|
5
|
Zhou G, Sinnett-Smith J, Liu SH, Yu J, Wu J, Sanchez R, Pandol SJ, Abrol R, Nemunaitis J, Rozengurt E, Brunicardi FC. Down-regulation of pancreatic and duodenal homeobox-1 by somatostatin receptor subtype 5: a novel mechanism for inhibition of cellular proliferation and insulin secretion by somatostatin. Front Physiol 2014; 5:226. [PMID: 25009500 PMCID: PMC4069483 DOI: 10.3389/fphys.2014.00226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/31/2014] [Indexed: 01/29/2023] Open
Abstract
Somatostatin (SST) is a regulatory peptide and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells. SST’s actions are mediated by a family of seven transmembrane domain G protein-coupled receptors that comprise five distinct subtypes (SSTR1-5). SSTR5 is one of the major SSTRs in the islets of Langerhans. Homeodomain-containing transcription factor pancreatic and duodenal homeobox-1 (PDX-1) is essential for pancreatic development, β cell differentiation, maintenance of normal β cell functions in adults and tumorigenesis. Recent studies show that SSTR5 acts as a negative regulator for PDX-1 expression and that SSTR5 mediates somatostatin’s inhibitory effect on cell proliferation and insulin expression/excretion through down-regulating PDX-1 expression. SSTR5 exerts its inhibitory effect on PDX-1 expression at both the transcriptional level by down-regulating PDX-1 mRNA and the post-translational level by enhancing PDX-1 ubiquitination. Identification of PDX-1 as a transcriptional target for SSTR5 may help in guiding the choice of therapeutic cancer treatments.
Collapse
Affiliation(s)
- Guisheng Zhou
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Jim Sinnett-Smith
- CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Shi-He Liu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Juehua Yu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - James Wu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Robbi Sanchez
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Stephen J Pandol
- CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; Department of Medicine at Cedars Sinai Medical Center Los Angeles, CA, USA ; Veterans Affairs Los Angeles, CA, USA
| | - Ravinder Abrol
- Materials and Process Simulation Center, California Institute of Technology Pasadena, CA, USA
| | - John Nemunaitis
- Gradalis, Inc., Dallas, TX, USA ; Mary Crowley Cancer Research Centers Dallas, TX, USA
| | - Enrique Rozengurt
- CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - F Charles Brunicardi
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| |
Collapse
|
6
|
Zhou G, Liu SH, Shahi KM, Wang H, Duan X, Lin X, Feng XH, Li M, Fisher WE, Demayo FJ, Dawson D, Brunicardi FC. Negative regulation of pancreatic and duodenal homeobox-1 by somatostatin receptor subtype 5. Mol Endocrinol 2012; 26:1225-34. [PMID: 22669743 DOI: 10.1210/me.2012-1095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Somatostatin receptor subtype 5 (SSTR5) mediates the inhibitory effect of somatostatin and its analogs on insulin expression/secretion and islet cell proliferation. We provide biochemical and genetic evidence that SSTR5 exerted its physiological actions via down-regulating pancreatic and duodenal homeobox-1 (PDX-1), a β-cell-specific homeodomain-containing transcription factor. Cotransfection of SSTR5 with PDX-1 resulted in dose-dependent inhibition of PDX-1 expression in human embryonic kidney 293 cells. SSTR5 agonist RPL-1980 inhibited PDX-1 expression and abolished glucagon-like peptide 1-stimulated PDX-1 expression in mouse insulinoma β-TC-6 cells. SSTR5 knockdown by short hairpin RNA led to increased PDX-1 expression that was accompanied by enhanced insulin secretion stimulated by high glucose in β-TC6 cells and alternated expressions of cell cycle proteins that favor cell proliferation in mouse insulinoma MIN6 cells. Quantitative RT-PCR analysis showed that cotransfected SSTR5 inhibited PDX-1 mRNA expression, whereas knockdown of SSTR5 increased PDX-1 mRNA expression. In addition, we found that cotransfected wild-type SSTR5 increased PDX-1 ubiquitination in human embryonic kidney 293 cells, whereas SSTR5 P335L, a hypofunctional single nucleotide polymorphism of SSTR5, inhibited PDX-1 ubiquitination. SSTR5 knockout resulted in increased expression of PDX-1, insulin, and proliferating cell nuclear antigen in the islets of sstr(-/-) mice. Immunohistochemistry analysis showed that SSTR5 P335L was associated with elevated expression of PDX-1 in human pancreatic neuroendocrine tumor. Taken together, our studies demonstrated that SSTR5 is a negative regulator for PDX-1 expression and that SSTR5 may mediate the inhibitory effects of somatostatin and its analogs on insulin expression/secretion and cell proliferation via down-regulating PDX-1 at both transcriptional and posttranslational levels.
Collapse
Affiliation(s)
- Guisheng Zhou
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Albini A, Indraccolo S, Noonan DM, Pfeffer U. Functional genomics of endothelial cells treated with anti-angiogenic or angiopreventive drugs. Clin Exp Metastasis 2010; 27:419-39. [PMID: 20383568 DOI: 10.1007/s10585-010-9312-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/16/2010] [Indexed: 01/28/2023]
Abstract
Angiogenesis is a highly regulated physiological process that has been studied in considerable detail given its importance in several chronic pathologies. Many endogenous factors and hormones intervene in the regulation of angiogensis and classical as well as targeted drugs have been developed for its control. Angiogenesis inhibition has come off the bench and entered into clinical application for cancer therapy, particularly for metastatic disease. While the clinical benefit is currently in terms of months, preclinical data suggest that novel drugs and drug combinations could lead to substantial improvement. The many targets of endogenous angiogenesis inhibitors reflect the complexity of the process; in contrast, current clinical therapies mainly target the vascular endothelial growth factor system. Cancer chemopreventive compounds can retard tumor insurgence and delay or prevent metastasis and many of these molecules hinder angiogenesis, a mechanism that we termed angioprevention. Angiopreventive drugs appear to prevalently act through the inhibition of the pro-inflammatory and anti-apoptotic player NFkappaB, thus contrasting inflammation dependent angiogenesis. Relatively little is known concerning the effects of these angiogenesis inhibitors on gene expression of endothelial cells, the main target of many of these molecules. Here we provide an exhaustive list of anti-angiogenic molecules, and summarize their effects, where known, on the transcriptome and functional genomics of endothelial cells. The regulation of specific genes can be crucial to preventive or therapeutic intervention. Further, novel targets might help to circumvent resistance to anti-angiogenic therapy. The studies we review are relevant not only to cancer but also to other chronic degenerative diseases involving endothelial cells, such as cardiovascular disorders, diabetes, rheumatoid arthritis and retinopaties, as well as vessel aging.
Collapse
Affiliation(s)
- Adriana Albini
- MultiMedica Castellanza (VA) and Oncology Research, IRCCS MultiMedica, 20138 Milan, Italy.
| | | | | | | |
Collapse
|
8
|
Van Op den Bosch J, Adriaensen D, Van Nassauw L, Timmermans JP. The role(s) of somatostatin, structurally related peptides and somatostatin receptors in the gastrointestinal tract: a review. ACTA ACUST UNITED AC 2009; 156:1-8. [PMID: 19362110 DOI: 10.1016/j.regpep.2009.04.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/05/2009] [Indexed: 12/19/2022]
Abstract
Extensive functional and morphological research has demonstrated the pivotal role of somatostatin (SOM) in the regulation of a wide variety of gastrointestinal activities. In addition to its profound inhibitory effects on gastrointestinal motility and exocrine and endocrine secretion processes along the entire gastrointestinal tract, SOM modulates several organ-specific activities. In contrast to these well-known SOM-dependent effects, knowledge on the SOM receptors (SSTR) involved in these effects is much less conclusive. Experimental data on the identities of the SSTRs, although species- and tissue-dependent, point towards the involvement of multiple receptor subtypes in the vast majority of gastrointestinal SOM-mediated effects. Recent evidence demonstrating the role of SOM in intestinal pathologies has extended the interest of gastrointestinal research in this peptide even further. More specifically, SOM is supposed to suppress intestinal inflammatory responses by interfering with the extensive bidirectional communication between mucosal mast cells and neurons. This way, SOM not only acts as a powerful inhibitor of the inflammatory cascade at the site of inflammation, but exerts a profound antinociceptive effect through the modulation of extrinsic afferent nerve fibres. The combination of these physiological and pathological activities opens up new opportunities to explore the potential of stable SOM analogues in the treatment of GI inflammatory pathologies.
Collapse
Affiliation(s)
- Joeri Van Op den Bosch
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|