1
|
Liu S, Jin P. Advances and Challenges in 3D Bioprinted Cancer Models: Opportunities for Personalized Medicine and Tissue Engineering. Polymers (Basel) 2025; 17:948. [PMID: 40219336 PMCID: PMC11991528 DOI: 10.3390/polym17070948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Cancer is the second leading cause of death worldwide, after cardiovascular disease, claiming not only a staggering number of lives but also causing considerable health and economic devastation, particularly in less-developed countries. Therapeutic interventions are impeded by differences in patient-to-patient responses to anti-cancer drugs. A personalized medicine approach is crucial for treating specific patient groups and includes using molecular and genetic screens to find appropriate stratifications of patients who will respond (and those who will not) to treatment regimens. However, information on which risk stratification method can be used to hone in on cancer types and patients who will be likely responders to a specific anti-cancer agent remains elusive for most cancers. Novel developments in 3D bioprinting technology have been widely applied to recreate relevant bioengineered tumor organotypic structures capable of mimicking the human tissue and microenvironment or adequate drug responses in high-throughput screening settings. Parts are autogenously printed in the form of 3D bioengineered tissues using a computer-aided design concept where multiple layers include different cell types and compatible biomaterials to build specific configurations. Patient-derived cancer and stromal cells, together with genetic material, extracellular matrix proteins, and growth factors, are used to create bioprinted cancer models that provide a possible platform for the screening of new personalized therapies in advance. Both natural and synthetic biopolymers have been used to encourage the growth of cells and biological materials in personalized tumor models/implants. These models may facilitate physiologically relevant cell-cell and cell-matrix interactions with 3D heterogeneity resembling real tumors.
Collapse
Affiliation(s)
- Sai Liu
- Health Science Center, Yangtze University, Jingzhou 434023, China;
| | | |
Collapse
|
2
|
Sanchez AU, Dos Anjos GQ, de Oliveira DGC, Lima JDA, de Lira MS, Costa Júnior MA, de Almeida MBV, Heilmann RM, Rolim Filho EL. Impact of 3D-Printed Anatomical Models on Doctor-Patient Communication in Orthopedic Consultations: A Randomized Clinical Trial. Cureus 2024; 16:e70822. [PMID: 39493008 PMCID: PMC11531919 DOI: 10.7759/cureus.70822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Effective communication between doctors and patients is essential for treatment adherence and better clinical outcomes. Although 3D printing has advanced in medicine, its impact on doctor-patient communication still requires further investigation. This randomized clinical trial evaluated the effectiveness of 3D anatomical models as a tool to facilitate communication in orthopedic consultations. This randomized clinical trial was conducted between May 2024 and September 2024, with 46 patients randomized into two groups: 21 patients received medical explanations with the aid of 3D models, and 25 without. Patients' knowledge was assessed before and after the consultation, and the quality of communication was measured using the Communication Assessment Tool (CAT). In the group using 3D models, 76.19% of patients reported improved knowledge of their conditions, while in the group without models, the increase was 52.00%. Additionally, 14 out of 15 CAT parameters showed statistically significant differences between the groups, with p-values ranging from 0.001 to 0.021. The use of 3D models significantly improved patients' understanding and facilitated communication with doctors, proving to be an effective tool for explaining complex medical conditions.
Collapse
Affiliation(s)
| | - Guilherme Q Dos Anjos
- Department of Orthopedics and Traumatology, Clinics Hospital of Federal University of Pernambuco, Recife, BRA
| | - Diego Gabriel C de Oliveira
- Department of Orthopedics and Traumatology, Clinics Hospital of Federal University of Pernambuco, Recife, BRA
| | | | - Marina S de Lira
- Department of Orthopedics and Traumatology, Clinics Hospital of Federal University of Pernambuco, Recife, BRA
| | - Mário A Costa Júnior
- Department of Orthopedics and Traumatology, Clinics Hospital of Federal University of Pernambuco, Recife, BRA
| | | | | | | |
Collapse
|
3
|
Yandong H, Shiqi Z, Lanting J, Wenxin H, Leyao C, Hejing H. Establishment and preliminary application of personalized three-dimensional reconstruction of thyroid gland with automatic detection of thyroid nodules based on ultrasound videos. J Appl Clin Med Phys 2024; 25:e14332. [PMID: 38528686 PMCID: PMC11163481 DOI: 10.1002/acm2.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
PURPOSE A well display of the spatial location of thyroid nodules in the thyroid is important for surgical path planning and surgeon-patient communication. The aim of this study was to establish a three-dimensional (3D) reconstruction method of the thyroid gland, thyroid nodule, and carotid artery with automatic detection based on two-dimensional (2D) ultrasound videos, and to evaluate its clinical value. METHODS Ultrasound videos, including the thyroid gland with nodule, isthmus of thyroid gland, and ipsilateral carotid artery, were recorded. BC-UNet, MTN-Net, and RDPA-U-Net network models were innovatively employed for segmentation of the thyroid glands, the thyroid nodules, and the carotid artery respectively. Marching Cubes algorithm was used for reconstruction, while Laplacian smoothing algorithm was employed to smooth the 3D model surface. Using this model, 20 patients and 15 surgeons completed surveys on the effectiveness of this model for the pre-surgery demonstration of nodule location as well as surgeon-patient communication. RESULTS The thyroid gland with nodule, isthmus of gland, and carotid artery were reconstructed and displayed. With the 3D model, the understanding of the spatial location of thyroid nodules improved in all three surgeon groups, eliminating the influence of professional levels. In the patient survey, the patients' understanding of the thyroid nodule location and procedure for surgery were significantly improved. In addition, with the 3D model, the time for doctors to explain to patients was significantly reduced (16.75 vs. 8.85 min, p = 0.001). CONCLUSION To our knowledge, this is the first report of constructing a 3D thyroid model using a deep learning technique for personalized thyroid segmentation based on 2D ultrasound videos. The preliminary clinical application showed that it was conducive to the comprehension of the location of thyroid nodules for surgeons and patients, with significant improvement on the efficiency of surgeon-patient communication.
Collapse
Affiliation(s)
- Huang Yandong
- Department of UltrasoundSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Zhang Shiqi
- Department of UltrasoundSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Jia Lanting
- Department of UltrasoundSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Hu Wenxin
- School of Data Science and EngineeringEast China Normal UniversityShanghaiChina
| | - Chen Leyao
- School of Data Science and EngineeringEast China Normal UniversityShanghaiChina
| | - Huang Hejing
- Department of UltrasoundSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
4
|
Song C, Min JH, Jeong WK, Kim SH, Heo JS, Han IW, Shin SH, Yoon SJ, Choi SY, Moon S. Use of individualized 3D-printed models of pancreatic cancer to improve surgeons' anatomic understanding and surgical planning. Eur Radiol 2023; 33:7646-7655. [PMID: 37231071 DOI: 10.1007/s00330-023-09756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Three-dimensional (3D) printing has been increasingly used to create accurate patient-specific 3D-printed models from medical imaging data. We aimed to evaluate the utility of 3D-printed models in the localization and understanding of pancreatic cancer for surgeons before pancreatic surgery. METHODS Between March and September 2021, we prospectively enrolled 10 patients with suspected pancreatic cancer who were scheduled for surgery. We created an individualized 3D-printed model from preoperative CT images. Six surgeons (three staff and three residents) evaluated the CT images before and after the presentation of the 3D-printed model using a 7-item questionnaire (understanding of anatomy and pancreatic cancer [Q1-4], preoperative planning [Q5], and education for trainees or patients [Q6-7]) on a 5-point scale. Survey scores on Q1-5 before and after the presentation of the 3D-printed model were compared. Q6-7 assessed the 3D-printed model's effects on education compared to CT. Subgroup analysis was performed between staff and residents. RESULTS After the 3D-printed model presentation, survey scores improved in all five questions (before 3.90 vs. after 4.56, p < 0.001), with a mean improvement of 0.57‒0.93. Staff and resident scores improved after a 3D-printed model presentation (p < 0.05), except for Q4 in the resident group. The mean difference was higher among the staff than among the residents (staff: 0.50‒0.97 vs. residents: 0.27‒0.90). The scores of the 3D-printed model for education were high (trainees: 4.47 vs. patients: 4.60) compared to CT. CONCLUSION The 3D-printed model of pancreatic cancer improved surgeons' understanding of individual patients' pancreatic cancer and surgical planning. CLINICAL RELEVANCE STATEMENT The 3D-printed model of pancreatic cancer can be created using a preoperative CT image, which not only assists surgeons in surgical planning but also serves as a valuable educational resource for patients and students. KEY POINTS • A personalized 3D-printed pancreatic cancer model provides more intuitive information than CT, allowing surgeons to better visualize the tumor's location and relationship to neighboring organs. • In particular, the survey score was higher among staff who performed the surgery than among residents. • Individual patient pancreatic cancer models have the potential to be used for personalized patient education as well as resident education.
Collapse
Affiliation(s)
- Chorog Song
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ji Hye Min
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Woo Kyoung Jeong
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Seong Hyun Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jin Seok Heo
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Woong Han
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Hyun Shin
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - So Jeong Yoon
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seo-Youn Choi
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | | |
Collapse
|
5
|
Ock J, Hong D, Moon S, Park YS, Seo DW, Yoon JH, Kim SH, Kim N. An interactive and realistic phantom for cricothyroidotomy simulation of a patient with obesity through a reusable design using 3D-printing and Arduino. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 233:107478. [PMID: 36965301 DOI: 10.1016/j.cmpb.2023.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Proper airway management during emergencies can prevent serious complications. However, cricothyroidotomy is challenging in patients with obesity. Since this technique is not performed frequently but at a critical time, the opportunity for trainees is rare. Simulators for these procedures are also lacking. Therefore, we proposed a realistic and interactive cricothyroidotomy simulator. METHODS All anatomical structures were modeled based on computed tomography images of a patient with obesity. To mimic the feeling of incision during cricothyroidotomy, the incision site was modeled to distinguish between the skin and fat. To reinforce the educational purpose, capacitive touch sensors were attached to the artery, vein, and thyroid to generate audio feedback. The tensile strength of the silicone-cast skin was measured to verify the similarity of the mechanical properties between humans and our model. The fabrication and assembly accuracies of the phantom between the Standard Tessellation Language and the fabricated model were evaluated. Audio feedback through sensing the anatomy parts and utilization was evaluated. RESULTS The body, skull, clavicle, artery, vein, and thyroid were fabricated using fused deposition modeling (FDM) with polylactic acid. A skin mold was fabricated using FDM with thermoplastic polyurethane. A fat mold was fabricated using stereolithography apparatus (SLA) with a clear resin. The airway and tongue were fabricated using SLA with an elastic resin. The tensile strength of the skin using silicone with and without polyester mesh was 2.63 ± 0.68 and 2.46 ± 0.21 MPa. The measurement errors for fabricating and assembling parts of the phantom between the STL and the fabricated models were -0.08 ± 0.19 mm and 0.13 ± 0.64 mm. The measurement errors internal anatomy embodied surfaces in fat part were 0.41 ± 0.89 mm. Audio feedback was generated 100% in all the areas tested. The realism, understanding of clinical skills, and intention to retrain were 7.1, 8.8, and 8.3 average points. CONCLUSIONS Our simulator can provide a realistic simulation experience for trainees through a realistic feeling of incision and audio feedback, which can be used for actual clinical education.
Collapse
Affiliation(s)
- Junhyeok Ock
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul 05505, Republic of Korea
| | - Dayeong Hong
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul 05505, Republic of Korea
| | - Sojin Moon
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul 05505, Republic of Korea
| | - Yong-Seok Park
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, 88 Olympic-Ro 43-Gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Dong-Woo Seo
- Department of Emergency Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Joo Heung Yoon
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sung-Hoon Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, 88 Olympic-Ro 43-Gil, Songpa-gu, Seoul 05505, Republic of Korea.
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul 05505, Republic of Korea; Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Jacob J, Stunden C, Zakani S. Exploring the value of three-dimensional printing and virtualization in paediatric healthcare: A multi-case quality improvement study. Digit Health 2023; 9:20552076231159988. [PMID: 36865771 PMCID: PMC9972041 DOI: 10.1177/20552076231159988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background Three-dimensional printing is being utilized in clinical medicine to support activities including surgical planning, education, and medical device fabrication. To better understand the impacts of this technology, a survey was implemented with radiologists, specialist physicians, and surgeons at a tertiary care hospital in Canada, examining multidimensional value and considerations for uptake. Objectives To examine how three-dimensional printing can be integrated into the paediatric context and highlight areas of impact and value to the healthcare system using Kirkpatrick's Model. Secondarily, to explore the perspective of clinicians utilizing three-dimensional models and how they make decisions about whether or not to use the technology in patient care. Methods A post-case survey. Descriptive statistics are provided for Likert-style questions, and a thematic analysis was conducted to identify common patterns in open-ended responses. Results In total, 37 respondents were surveyed across 19 clinical cases, providing their perspectives on model reaction, learning, behaviour, and results. We found surgeons and specialists to consider the models more beneficial than radiologists. Results further showed that the models were more helpful when used to assess the likelihood of success or failure of clinical management strategies, and for intraoperative orientation. We demonstrate that three-dimensional printed models could improve perioperative metrics, including a reduction in operating room time, but with a reciprocal effect on pre-procedural planning time. Clinicians who shared the models with patients and families thought it increased understanding of the disease and surgical procedure, and had no effect on their consultation time. Conclusions Three-dimensional printing and virtualization were used in preoperative planning and for communication among the clinical care team, trainees, patients, and families. Three-dimensional models provide multidimensional value to clinical teams, patients, and the health system. Further investigation is warranted to assess value in other clinical areas, across disciplines, and from a health economics and outcomes perspective.
Collapse
Affiliation(s)
- John Jacob
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
- Bayes Business School, City, University of London, London, UK
| | - Chelsea Stunden
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| | - Sima Zakani
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
7
|
Tejo-Otero A, Valls-Esteve A, Fenollosa-Artés F, Siles-Hinojosa A, Nafria B, Ayats M, Buj-Corral I, Otero MC, Rubio-Palau J, Munuera J, Krauel L. Patient comprehension of oncologic surgical procedures using 3D printed surgical planning prototypes. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Three-Dimensional (3D) Printing in Cancer Therapy and Diagnostics: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15060678. [PMID: 35745597 PMCID: PMC9229198 DOI: 10.3390/ph15060678] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Three-dimensional (3D) printing is a technique where the products are printed layer-by-layer via a series of cross-sectional slices with the exact deposition of different cell types and biomaterials based on computer-aided design software. Three-dimensional printing can be divided into several approaches, such as extrusion-based printing, laser-induced forward transfer-based printing systems, and so on. Bio-ink is a crucial tool necessary for the fabrication of the 3D construct of living tissue in order to mimic the native tissue/cells using 3D printing technology. The formation of 3D software helps in the development of novel drug delivery systems with drug screening potential, as well as 3D constructs of tumor models. Additionally, several complex structures of inner tissues like stroma and channels of different sizes are printed through 3D printing techniques. Three-dimensional printing technology could also be used to develop therapy training simulators for educational purposes so that learners can practice complex surgical procedures. The fabrication of implantable medical devices using 3D printing technology with less risk of infections is receiving increased attention recently. A Cancer-on-a-chip is a microfluidic device that recreates tumor physiology and allows for a continuous supply of nutrients or therapeutic compounds. In this review, based on the recent literature, we have discussed various printing methods for 3D printing and types of bio-inks, and provided information on how 3D printing plays a crucial role in cancer management.
Collapse
|
9
|
Hong D, Moon S, Cho Y, Oh IY, Chun EJ, Kim N. Rehearsal simulation to determine the size of device for left atrial appendage occlusion using patient-specific 3D-printed phantoms. Sci Rep 2022; 12:7746. [PMID: 35546178 PMCID: PMC9095622 DOI: 10.1038/s41598-022-11967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
Left atrial appendage (LAA) occlusion (LAAO) is used to close the finger-like extension from the left atrium with occlusion devices to block the source of thrombosis. However, selection of the devices size is not easy due to various anatomical changes. The purpose of this study is patient-specific, computed tomography angiography (CTA)-based, three-dimensionally (3D) printed LAAO phantoms were applied pre-procedure to determine the size. Ten patients were enrolled prospectively in March 2019 and December 2020. The cardiac structure appearing in CTA was first segmented, and the left atrium and related structures in the LAAO procedure were modeled. The phantoms were fabricated using two methods of fused deposition modeling (FDM) and stereolithography (SLA) 3D printers with thermoplastic polyurethane (TPU) and flexible resin materials and evaluated by comparing their physical and material properties. The 3D-printed phantoms were directly used to confirm the shape of LAA, and to predict the device size for LAAO. In summary, the shore A hardness of TPU of FDM was about 80-85 shore A, and that of flexible resin of SLA was about 50-70 shore A. The measurement error between the STL model and 3D printing phantoms were 0.45 ± 0.37 mm (Bland-Altman, limits of agreement from - 1.8 to 1.6 mm). At the rehearsal, the estimations of device sizes were the exact same with those in the actual procedures of all 10 patients. In conclusion, simulation with a 3D-printed left atrium phantom could be used to predict the LAAO insertion device size accurately before the procedure.
Collapse
Affiliation(s)
- Dayeong Hong
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sojin Moon
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Youngjin Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University, Bundang Hospital 82, Gumi-ro 173beon-gil, Bundang-gu, Gyeonggi-do, Seongnam-si, 13620, South Korea
| | - Il-Young Oh
- Division of Cardiology, Department of Internal Medicine, Seoul National University, Bundang Hospital 82, Gumi-ro 173beon-gil, Bundang-gu, Gyeonggi-do, Seongnam-si, 13620, South Korea.
| | - Eun Ju Chun
- Department of Radiology, Seoul National University Bundang Hospital 82, Gumi-ro 173beon-gil, Bundang-gu, Gyeonggi-do, Seongnam-si, 13620, South Korea.
| | - Namkug Kim
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
- Department of Radiology and Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap2-dong, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
10
|
Al-Badri N, Touzet-Roumazeille S, Nuytten A, Ferri J, Charkaluk ML, Nicot R. Three-dimensional printing models improves long-term retention in medical education of pathoanatomy: A randomized controlled study. Clin Anat 2022; 35:609-615. [PMID: 35388922 DOI: 10.1002/ca.23878] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Craniosynostosis is a rare and complex pathology, and visuospatial skills are necessary for a good understanding of the condition. While the use of three-dimensional (3D) models has improved the understanding of complex craniofacial anatomy, no study has evaluated the impact of this teaching support on long-term retention. MATERIALS AND METHODS Our randomized controlled trial was designed to compare the long-term retention of information with 3D-printed models of four types of craniosynostosis versus classic 3D reconstructions displayed in two-dimensional (2D) among undergraduate students. All students benefited from the same standardized course followed by the manipulation of the learning tool associated with the group for 15 minutes. Long-term retention was assessed by the capability to properly recognize different types of craniosynostosis 3 weeks after the course. RESULTS Eighty-five students were enrolled. Previous educational achievements and baseline visuospatial skills were similar between the groups. The bivariate analysis showed the mean score in the 3D and 2D groups were 11.32 (2.89) and 8.08 (2.81), respectively (p < 0.0001). CONCLUSIONS 3D-printed models of structures with spatial complexity such as various craniosynostosis patterns improve significantly medical students' long-term retention, indicating their educational efficacy.
Collapse
Affiliation(s)
- Nour Al-Badri
- Univ. Lille, Department of Oral and Maxillofacial Surgery, CHU Lille, France
| | | | - Alexandra Nuytten
- Univ. Lille, CHU Lille, Department of Neonatology, Jeanne de Flandre Hospital, EA 2694 - Santé publique : épidémiologie et qualité des soins, Unité de Biostatistiques, Lille, France
| | - Joël Ferri
- Univ. Lille, INSERM, CHU Lille, Department of Oral and Maxillofacial Surgery, U1008, Controlled Drug Delivery Systems and Biomaterials, France
| | - Marie-Laure Charkaluk
- Université Catholique de Lille, Lille, France.,Service de néonatologie, Hôpital Saint Vincent de Paul, GHICL, Lille, France.,University of Paris, Epidemiology and Statistics Research Center/CRESS, INSERM, INRA, Paris, France
| | - Romain Nicot
- Univ. Lille, INSERM, CHU Lille, Department of Oral and Maxillofacial Surgery, U1008, Controlled Drug Delivery Systems and Biomaterials, France
| |
Collapse
|
11
|
Kim T, Yang DH, Kim JB, Kim N. Development of an automatic modeling method for patient-specific aortic graft reconstruction guide in thoracoabdominal aortic repair. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106647. [PMID: 35093647 DOI: 10.1016/j.cmpb.2022.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Because repairing visceral and segmental arteries in open surgical repair for thoracoabdominal aortic aneurysms is essential, two types of patient-specific graft reconstruction guides for reconstruction in the operating room have been developed that are applied clinically. However, designing the patient-specific guides is a time-consuming, laborious task. The aim of this study was to develop an automatic modeling method and to evaluate its accuracy. METHODS In 10 patients with thoracoabdominal aortic aneurysms, computer-aided designing was performed with conventional and automatic modeling methods for aortic reconstruction guides as follows: 1) a visualizing guide that presented the accurate shape of the aortic graft, visualizing the main aortic body and major blood vessels; and 2) a marking guide wherein the vessels in the visualizing guide were replaced by the protruding marking regions detectable by tactile sense. The script-based automatic guide modeling program was developed using an application programming interface presented in the 3-matic software with Python. For accuracy, the absolute mean differences of both modeling methods were assessed using Hausdorff distance. The modeling between conventional and automatic modeling methods was compared and evaluated using the Wilcoxon signed-rank test. RESULTS The absolute mean difference between the conventional and automatic modeling methods were 6.05 ± 4.86 µm for the visualizing guide and 5.51 ± 4.85 µm for the marking guide. For the visualizing guide, the modeling time of the automatic modeling method was reduced by approximately more than thirtyfold than the conventional modeling method (p<0.001). The marking guide was reduced about fortyfold (p<0.001). CONCLUSIONS Compared to the conventional method, the automatic modeling method was demonstrated to reduce the modeling time with reasonable accuracy, which could lead to a more efficient modeling and clinical application.
Collapse
Affiliation(s)
- Taehun Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Yang
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Joon Bum Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Traynor G, Shearn AIU, Milano EG, Ordonez MV, Velasco Forte MN, Caputo M, Schievano S, Mustard H, Wray J, Biglino G. The use of 3D-printed models in patient communication: a scoping review. JOURNAL OF 3D PRINTING IN MEDICINE 2022; 6:13-23. [PMID: 35211330 PMCID: PMC8852361 DOI: 10.2217/3dp-2021-0021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
3D models have been used as an asset in many clinical applications and a variety of disciplines, and yet the available literature studying the use of 3D models in communication is limited. This scoping review has been conducted to draw conclusions on the current evidence and learn from previous studies, using this knowledge to inform future work. Our search strategy revealed 269 papers, 19 of which were selected for final inclusion and analysis. When assessing the use of 3D models in doctor-patient communication, there is a need for larger studies and studies including a long-term follow up. Furthermore, there are forms of communication that are yet to be researched and provide a niche that may be beneficial to explore.
Collapse
Affiliation(s)
- Gemma Traynor
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
| | - Andrew IU Shearn
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
| | - Elena G Milano
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, UK
| | | | | | - Massimo Caputo
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
- University Hospitals Bristol & Weston, NHS Foundation Trust, Bristol, BS1 3NU, UK
| | - Silvia Schievano
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, UK
- Institute of Cardiovascular Science, University College London, London, WC1E 6DD, UK
| | - Hannah Mustard
- University Hospitals Bristol & Weston, NHS Foundation Trust, Bristol, BS1 3NU, UK
| | - Jo Wray
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, UK
| | - Giovanni Biglino
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
- National Heart & Lung Institute, Imperial College London, London, SW3 6LY, UK
| |
Collapse
|
13
|
Roeth AA, Garretson I, Beltz M, Herbold T, Schulze-Hagen M, Quaisser S, Georgens A, Reith D, Slabu I, Klink CD, Neumann UP, Linke BS. 3D-Printed Replica and Porcine Explants for Pre-Clinical Optimization of Endoscopic Tumor Treatment by Magnetic Targeting. Cancers (Basel) 2021; 13:cancers13215496. [PMID: 34771659 PMCID: PMC8583102 DOI: 10.3390/cancers13215496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Animal models are often needed in cancer research but some research questions may be answered with other models, e.g., 3D replicas of patient-specific data, as these mirror the anatomy in more detail. We, therefore, developed a simple eight-step process to fabricate a 3D replica from computer tomography (CT) data using solely open access software and described the method in detail. For evaluation, we performed experiments regarding endoscopic tumor treatment with magnetic nanoparticles by magnetic hyperthermia and local drug release. For this, the magnetic nanoparticles need to be accumulated at the tumor site via a magnetic field trap. Using the developed eight-step process, we printed a replica of a locally advanced pancreatic cancer and used it to find the best position for the magnetic field trap. In addition, we described a method to hold these magnetic field traps stably in place. The results are highly important for the development of endoscopic tumor treatment with magnetic nanoparticles as the handling and the stable positioning of the magnetic field trap at the stomach wall in close proximity to the pancreatic tumor could be defined and practiced. Finally, the detailed description of the workflow and use of open access software allows for a wide range of possible uses. Abstract Background: Animal models have limitations in cancer research, especially regarding anatomy-specific questions. An example is the exact endoscopic placement of magnetic field traps for the targeting of therapeutic nanoparticles. Three-dimensional-printed human replicas may be used to overcome these pitfalls. Methods: We developed a transparent method to fabricate a patient-specific replica, allowing for a broad scope of application. As an example, we then additively manufactured the relevant organs of a patient with locally advanced pancreatic ductal adenocarcinoma. We performed experimental design investigations for a magnetic field trap and explored the best fixation methods on an explanted porcine stomach wall. Results: We describe in detail the eight-step development of a 3D replica from CT data. To guide further users in their decisions, a morphologic box was created. Endoscopies were performed on the replica and the resulting magnetic field was investigated. The best fixation method to hold the magnetic field traps stably in place was the fixation of loops at the stomach wall with endoscopic single-use clips. Conclusions: Using only open access software, the developed method may be used for a variety of cancer-related research questions. A detailed description of the workflow allows one to produce a 3D replica for research or training purposes at low costs.
Collapse
Affiliation(s)
- Anjali A. Roeth
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, 52074Aachen, Germany; (T.H.); (C.D.K.); (U.P.N.)
- Department of Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Correspondence: ; Tel.: +49-241-80-89501
| | - Ian Garretson
- Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA; (I.G.); (M.B.); (S.Q.); (A.G.); (B.S.L.)
| | - Maja Beltz
- Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA; (I.G.); (M.B.); (S.Q.); (A.G.); (B.S.L.)
- Department of Electrical and Mechanical Engineering, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany;
| | - Till Herbold
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, 52074Aachen, Germany; (T.H.); (C.D.K.); (U.P.N.)
| | - Maximilian Schulze-Hagen
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Sebastian Quaisser
- Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA; (I.G.); (M.B.); (S.Q.); (A.G.); (B.S.L.)
- Department of Electrical and Mechanical Engineering, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany;
| | - Alex Georgens
- Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA; (I.G.); (M.B.); (S.Q.); (A.G.); (B.S.L.)
| | - Dirk Reith
- Department of Electrical and Mechanical Engineering, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany;
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz-Institute Aachen, RWTH Aachen University, 52062 Aachen, Germany;
| | - Christian D. Klink
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, 52074Aachen, Germany; (T.H.); (C.D.K.); (U.P.N.)
| | - Ulf P. Neumann
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, 52074Aachen, Germany; (T.H.); (C.D.K.); (U.P.N.)
- Department of Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Barbara S. Linke
- Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA; (I.G.); (M.B.); (S.Q.); (A.G.); (B.S.L.)
| |
Collapse
|
14
|
Utilizing patient-specific 3D printed guides for graft reconstruction in thoracoabdominal aortic repair. Sci Rep 2021; 11:18027. [PMID: 34504257 PMCID: PMC8429675 DOI: 10.1038/s41598-021-97541-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
In thoracoabdominal aortic aneurysm repair, repairing the visceral and segmental arteries is challenging. Although there is a pre-hand-sewn and multi-branched graft based on the conventional image-based technique, it has shortcomings in precisely positioning and directing the visceral and segmental arteries. Here, we introduce two new reconstruction techniques using patient-specific 3D-printed graft reconstruction guides: (1) model-based technique that presents the projected aortic graft, visualizing the main aortic body and its major branches and (2) guide-based technique in which the branching vessels in the visualization model are replaced by marking points identifiable by tactile sense. We demonstrate the effectiveness by evaluating conventional and new techniques based on accuracy, marking time requirement, reproducibility, and results of survey to surgeons on the perceived efficiency and efficacy. The graft reconstruction guides cover the segmentation, design, fabrication, post-processing, and clinical application of open surgical repair of thoracoabdominal aneurysm, and proved to be efficient for accurately reconstructing customized grafts.
Collapse
|
15
|
Seok J, Yoon S, Ryu CH, Kim SK, Ryu J, Jung YS. A Personalized 3D-Printed Model for Obtaining Informed Consent Process for Thyroid Surgery: A Randomized Clinical Study Using a Deep Learning Approach with Mesh-Type 3D Modeling. J Pers Med 2021; 11:jpm11060574. [PMID: 34207419 PMCID: PMC8234549 DOI: 10.3390/jpm11060574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate the usefulness of a personalized 3D-printed thyroid model that characterizes a patient's individual thyroid lesion. The randomized controlled prospective clinical trial (KCT0005069) was designed. Fifty-three of these patients undergoing thyroid surgery were randomly assigned to two groups: with or without a 3D-printed model of their thyroid lesion when obtaining informed consent. We used a U-Net-based deep learning architecture and a mesh-type 3D modeling technique to fabricate the personalized 3D model. The mean 3D printing time was 258.9 min, and the mean price for production was USD 4.23 for each patient. The size, location, and anatomical relationship of the tumor and thyroid gland could be effectively presented using the mesh-type 3D modeling technique. The group provided with personalized 3D-printed models showed significant improvement in all four categories (general knowledge, benefits and risks of surgery, and satisfaction; all p < 0.05). All patients received a personalized 3D model after surgery and found it helpful to understand the disease, operation, and possible complications and their overall satisfaction (all p < 0.05). In conclusion, the personalized 3D-printed thyroid model may be an effective tool for improving a patient's understanding and satisfaction during the informed consent process.
Collapse
Affiliation(s)
- Jungirl Seok
- National Cancer Center, Department of Otorhinolaryngology-Head and Neck Surgery, Goyang-si 10408, Korea; (J.S.); (C.H.R.)
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Sungmin Yoon
- National Cancer Center, Division of Convergence Technology, Goyang-si 10408, Korea;
| | - Chang Hwan Ryu
- National Cancer Center, Department of Otorhinolaryngology-Head and Neck Surgery, Goyang-si 10408, Korea; (J.S.); (C.H.R.)
| | - Seok-ki Kim
- National Cancer Center, Department of Nuclear Medicine, Goyang-si 10408, Korea;
| | - Junsun Ryu
- National Cancer Center, Department of Otorhinolaryngology-Head and Neck Surgery, Goyang-si 10408, Korea; (J.S.); (C.H.R.)
- Correspondence: (J.R.); (Y.-S.J.); Tel.: +82-31-920-1684 (J.R.); +82-31-920-1685 (Y.-S.J.)
| | - Yuh-Seog Jung
- National Cancer Center, Department of Otorhinolaryngology-Head and Neck Surgery, Goyang-si 10408, Korea; (J.S.); (C.H.R.)
- Correspondence: (J.R.); (Y.-S.J.); Tel.: +82-31-920-1684 (J.R.); +82-31-920-1685 (Y.-S.J.)
| |
Collapse
|
16
|
Evaluation of skin cancer resection guide using hyper-realistic in-vitro phantom fabricated by 3D printing. Sci Rep 2021; 11:8935. [PMID: 33903639 PMCID: PMC8076220 DOI: 10.1038/s41598-021-88287-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
Skin cancer usually occurs in the facial area relatively exposed to sunlight. Medical imaging can confirm the invasiveness and metastasis of skin cancer, which is used to establish a surgical plan. However, there is no method of directly marking this information on the patient's skin in the operating room. We evaluated a skin cancer resection guide that marks resection areas including safety margins on the patient's skin based on medical images and in-vitro phantom fabricated via 3D printing. The in-vitro phantom, which includes the skull, skin, and five different cancer locations was designed and fabricated based on a CT image of a patient. Skin cancer resection guides were designed using a CT image of an in-vitro phantom, with a safety margin, and four injection points at each cancer. The guide was used to insert 16 cc intravenous catheters into each cancer of the phantom, which was rescanned by CT. The catheter insertion point and angle were evaluated. The accuracy of the insertion points was 2.09 ± 1.06 mm and cosine similarities was 0.980 ± 0.020. In conclusion, skin cancer resection guides were fabricated to mark surgical plans on the patient's skin in the operating room. They demonstrated reasonable accuracies in actual clinical settings.
Collapse
|