1
|
Yang SH, Ju XJ, Deng CF, Cai QW, Tian XY, Xie R, Wang W, Liu Z, Pan DW, Chu LY. In Vitro Study on Effects of Physico-Chemo-Mechanical Properties of Embolic Microspheres on Embolization Performances. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shi-Hao Yang
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chuan-Fu Deng
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Quan-Wei Cai
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Yu Tian
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui Xie
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
2
|
Stechele M, Wittgenstein H, Stolzenburg N, Schnorr J, Neumann J, Schmidt C, Günther RW, Streitparth F. Novel MR-Visible, Biodegradable Microspheres for Transcatheter Arterial Embolization: Experimental Study in a Rabbit Renal Model. Cardiovasc Intervent Radiol 2020; 43:1515-1527. [PMID: 32514611 DOI: 10.1007/s00270-020-02534-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess feasibility, embolization success, biodegradability, reperfusion, biocompatibility and in vivo visibility of novel temporary microspheres (MS) for transcatheter arterial embolization. MATERIAL AND METHODS In 9 New Zealand white rabbits unilateral superselective embolization of the lower kidney pole was performed with biodegradable MS made of polydioxanone (PDO) (size range 90-300 and 200-500 µm) impregnated with super-paramagnetic iron oxide (SPIO). Magnetic resonance imaging (MRI) was performed post-interventionally to assess in vivo visibility. Embolization success was assessed on digital subtraction angiography, MRI and gross pathology. One animal was killed immediately after embolization to assess original particle appearance. 8 animals were randomly assigned to different observation periods (1, 4, 8, 12 and 16 weeks), after which control angiography and MRI were obtained to determine recanalization. Histopathological analysis was performed to determine biodegradability and biocompatibility by using dedicated quantitative assessment analysis. RESULTS Ease of injection was moderate. Embolization was technically successful in 7 of 8 animals, one rabbit received non-selective embolization of the whole kidney and abdominal off-target embolization. Arterial occlusion was achieved in all kidneys, infarct areas in macro- and microscopic analysis confirmed embolization success. Control angiograms showed evidence of partial reperfusion. The microspheres showed extensive degradation over the course of time along with increasing inflammatory response and giant cell formation. SPIO-loaded MS were visible on MRI at all time points. CONCLUSIONS SPIO-impregnated biodegradable PDO-MS achieved effective embolization with in vivo visibility on MRI and increasing biodegradation over time while demonstrating good biocompatibility, i.e., a physiologically immune response without transformation into chronic inflammation. Further studies are needed to provide clinical applicability.
Collapse
Affiliation(s)
- Matthias Stechele
- Department of Radiology, University Hospital, Ludwig Maximilians University, Marchioninistraße 15, 81377, Munich, Germany
| | - Helena Wittgenstein
- Evidensia Veterinary Clinic for Small Animals GmbH, Kabels Stieg 41, 22850, Norderstedt, Germany
| | - Nicola Stolzenburg
- Department of Radiology, Charité School of Medicine and University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité School of Medicine and University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jens Neumann
- University Hospital, Institute of Pathology, Ludwig Maximilians University, Marchioninistraße 15, 81377, Munich, Germany
| | | | - Rolf W Günther
- Department of Radiology, Charité School of Medicine and University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Florian Streitparth
- Department of Radiology, University Hospital, Ludwig Maximilians University, Marchioninistraße 15, 81377, Munich, Germany.
| |
Collapse
|
3
|
Pan F, Schneider D, Ryschich E, Qian B, Vollherbst DF, Möhlenbruch MA, Jugold M, Eichwald V, Stenzel P, Pereira PL, Richter GM, Kauczor HU, Sommer CM, Do TD. In Vitro Characterization of a Novel Type of Radiopaque Doxorubicin-Loaded Microsphere. Cardiovasc Intervent Radiol 2020; 43:636-647. [PMID: 31965224 DOI: 10.1007/s00270-020-02407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/05/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE To evaluate and compare the material characteristics of a novel type of radiopaque doxorubicin-loaded microsphere (V-100) with radiopaque and non-radiopaque doxorubicin-loaded microspheres. MATERIALS AND METHODS The prototype V-100 featuring inherent radiopacity and three available commercial controls (DC-Bead-LUMI™-70-150, Embozene-Tandem™-100 and DC-Bead™-M1) were analyzed before and after doxorubicin loading (37.5 mg doxorubicin/1 ml microspheres) in suspension with aqua and/or aqua/iodixanol-320. Study goals included inherent radiopacity [e.g., using conventional computed tomography (CT)], doxorubicin loading efficacy, morphology using light and fluorescence microscopy, size distribution using laser diffraction/light scattering, time-in-suspension, rheological properties using rheometer analysis, and microsphere stability observed over a period of 5 days after doxorubicin loading. RESULTS V-100 showed good inherent radiopacity without adverse imaging artifacts. Under conventional CT, the quantitative radiopacity was as follows: 480.4 ± 2.9HU for V-100, 2432.7 ± 3.2HU for DC-Bead-LUMI™-70-150, 118.1 ± 3.0HU for Embozene-Tandem™-100, and 19.8 ± 1.5HU for DC-Bead™-M1. All of the types of microspheres showed a similar loading efficiency (> 98%) after 24 h; however, there were slower doxorubicin loading velocities for the radiopaque microspheres. The doxorubicin-loaded V-100 and Embozene-Tandem™-100 showed typical narrow-sized distributions. In aqua/iodixanol-320 suspension, doxorubicin-loaded V-100 showed the best suspension features and ideal deformability and elasticity characteristics. Similar to other microspheres, doxorubicin-loaded V-100 was very stable and storable for at least 5 days. CONCLUSION V-100 is a promising novel type of radiopaque doxorubicin-loaded microsphere. Compared with the controls, V-100 shows good inherent radiopacity without adverse imaging artifacts and with comparable doxorubicin loading efficacy. Further advantages of V-100 include narrow-sized distribution and excellent suspension, rheology, and stability features.
Collapse
Affiliation(s)
- Feng Pan
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel Schneider
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany
| | - Eduard Ryschich
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Baifeng Qian
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominik F Vollherbst
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Möhlenbruch
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Manfred Jugold
- Core Facility Small Animal Imaging, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Viktoria Eichwald
- Core Facility Small Animal Imaging, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Philipp Stenzel
- Institute of Pathology, Mainz University Hospital, Mainz, Germany
| | - Philippe L Pereira
- Clinic for Radiology, Minimally-Invasive Therapies and Nuclearmedicine, SLK-Kliniken GmbH, Heilbronn, Germany
| | - Götz M Richter
- Clinic of Diagnostic and Interventional Radiology, Klinikum Stuttgart, Kriegsbergstrasse 60, 70174, Stuttgart, Germany
| | - Hans U Kauczor
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany
| | - Christof M Sommer
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany. .,Clinic of Diagnostic and Interventional Radiology, Klinikum Stuttgart, Kriegsbergstrasse 60, 70174, Stuttgart, Germany.
| | - Thuy D Do
- Clinic of Diagnostic and Interventional Radiology, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany
| |
Collapse
|