1
|
Saggiante L, Biondetti P, Lanza C, Carriero S, Ascenti V, Piacentino F, Shehab A, Ierardi AM, Venturini M, Carrafiello G. Computed-Tomography-Guided Lung Biopsy: A Practice-Oriented Document on Techniques and Principles and a Review of the Literature. Diagnostics (Basel) 2024; 14:1089. [PMID: 38893616 PMCID: PMC11171640 DOI: 10.3390/diagnostics14111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Computed tomography (CT)-guided lung biopsy is one of the oldest and most widely known minimally invasive percutaneous procedures. Despite being conceptually simple, this procedure needs to be performed rapidly and can be subject to meaningful complications that need to be managed properly. Therefore, knowledge of principles and techniques is required by every general or interventional radiologist who performs the procedure. This review aims to contain all the information that the operator needs to know before performing the procedure. The paper starts with the description of indications, devices, and types of percutaneous CT-guided lung biopsies, along with their reported results in the literature. Then, pre-procedural evaluation and the practical aspects to be considered during procedure (i.e., patient positioning and breathing) are discussed. The subsequent section is dedicated to complications, with their incidence, risk factors, and the evidence-based measures necessary to both prevent or manage them; special attention is given to pneumothorax and hemorrhage. After conventional CT, this review describes other available CT modalities, including CT fluoroscopy and cone-beam CT. At the end, more advanced techniques, which are already used in clinical practice, like fusion imaging, are included.
Collapse
Affiliation(s)
- Lorenzo Saggiante
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (L.S.); (C.L.); (S.C.)
| | - Pierpaolo Biondetti
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda–Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122 Milan, Italy; (P.B.); (A.M.I.); (G.C.)
| | - Carolina Lanza
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (L.S.); (C.L.); (S.C.)
| | - Serena Carriero
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (L.S.); (C.L.); (S.C.)
| | - Velio Ascenti
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (L.S.); (C.L.); (S.C.)
| | - Filippo Piacentino
- Department of Diagnostic and Interventional Radiology, Circolo Hospital and Macchi Foundation, Insubria University, 21100 Varese, Italy; (F.P.); (M.V.)
| | - Anas Shehab
- Interventional Radiology Fellowship, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Anna Maria Ierardi
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda–Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122 Milan, Italy; (P.B.); (A.M.I.); (G.C.)
| | - Massimo Venturini
- Department of Diagnostic and Interventional Radiology, Circolo Hospital and Macchi Foundation, Insubria University, 21100 Varese, Italy; (F.P.); (M.V.)
| | - Gianpaolo Carrafiello
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda–Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122 Milan, Italy; (P.B.); (A.M.I.); (G.C.)
- School of Radiology, Università Degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| |
Collapse
|
2
|
Tipaldi MA, Ronconi E, Ubaldi N, Bozzi F, Siciliano F, Zolovkins A, Orgera G, Krokidis M, Quarta Colosso G, Rossi M. Histology profiling of lung tumors: tru-cut versus full-core system for CT-guided biopsies. LA RADIOLOGIA MEDICA 2024; 129:566-574. [PMID: 38512617 PMCID: PMC11021310 DOI: 10.1007/s11547-024-01772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE We aimed to compare the diagnostic yield and procedure-related complications of two different types of systems for percutaneous CT-guided lung biopsy. MATERIAL AND METHODS All patients with a lung lesion who underwent a CT-guided lung biopsy at our institution, between January 2019 and 2021, were retrospectively analyzed. The inclusion criteria were: (a) Procedures performed using either a fully automated tru-cut or a semi-automated full-core biopsy needle, (b) CT images demonstrating the position of the needles within the lesion, (c) histopathological result of the biopsy and (d) clinical follow-up for at least 12 months and\or surgical histopathological results. A total of 400 biopsy fulfilling the inclusion criteria were selected and enrolled in the study. RESULTS Overall technical success was 100% and diagnostic accuracy was 84%. Tru-cut needles showed a significantly higher diagnostic accuracy when compared to full-core needles (91% vs. 77%, p = 0.0004) and a lower rate of pneumothorax (31% vs. 41%, p = 0.047). Due to the statistically significant different of nodules size between the two groups, we reiterated the statistical analysis splitting our population around the 20 mm cut-off for nodule size. We still observed a significant difference in diagnostic accuracy between tru-cut and full-core needles favoring the former for both smaller and larger lesions (81% vs. 71%, p = 0.025; and 92% vs. 81%; p = 0.01, respectively). CONCLUSION Our results demonstrated that the use of automated tru-cut needles is associated with higher histopathological diagnostic accuracy compared to semi-automated full-core needles for CTLB.
Collapse
Affiliation(s)
- Marcello Andrea Tipaldi
- Department of Surgical and Medical Sciences and Translational Medicine, "Sapienza" - University of Rome, Rome, Italy.
- Department of Interventional Radiology, Sant'Andrea University Hospital La Sapienza, Rome, Italy.
| | - Edoardo Ronconi
- Department of Interventional Radiology, Sant'Andrea University Hospital La Sapienza, Rome, Italy
| | - Nicolò Ubaldi
- Department of Surgical and Medical Sciences and Translational Medicine, "Sapienza" - University of Rome, Rome, Italy
- Department of Interventional Radiology, Sant'Andrea University Hospital La Sapienza, Rome, Italy
| | - Fernando Bozzi
- Department of Surgical and Medical Sciences and Translational Medicine, "Sapienza" - University of Rome, Rome, Italy
- Department of Interventional Radiology, Sant'Andrea University Hospital La Sapienza, Rome, Italy
| | - Francesco Siciliano
- Department of Surgical and Medical Sciences and Translational Medicine, "Sapienza" - University of Rome, Rome, Italy
- Department of Interventional Radiology, Sant'Andrea University Hospital La Sapienza, Rome, Italy
| | - Aleksejs Zolovkins
- Department of Interventional Radiology, Sant'Andrea University Hospital La Sapienza, Rome, Italy
| | - Gianluigi Orgera
- Department of Interventional Radiology, Sant'Andrea University Hospital La Sapienza, Rome, Italy
| | - Miltiadis Krokidis
- School of Medicine, National and Kapodistrian University of Athens Areteion Hospital 76, Vas. Sophias Ave, 11528, Athens, Greece
| | - Giulio Quarta Colosso
- Department of Surgical and Medical Sciences and Translational Medicine, "Sapienza" - University of Rome, Rome, Italy
- Department of Interventional Radiology, Sant'Andrea University Hospital La Sapienza, Rome, Italy
| | - Michele Rossi
- Department of Surgical and Medical Sciences and Translational Medicine, "Sapienza" - University of Rome, Rome, Italy
- Department of Interventional Radiology, Sant'Andrea University Hospital La Sapienza, Rome, Italy
| |
Collapse
|
3
|
Liu W, Ji B, Bai L, Gao S. PET/CT-aided biopsy of lung lesions enhances diagnostic efficacy, especially for lesions >3cm. Front Oncol 2024; 14:1296553. [PMID: 38357204 PMCID: PMC10865498 DOI: 10.3389/fonc.2024.1296553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Objectives The purpose of this study was to compare the diagnostic efficacy of PET/CT-aided CT-guided and routine CT-guided transthoracic needle biopsy for lung lesions. Methods A total of 458 patients with suspicious lung lesions were referred for CT-guided biopsy, with 227 patients assigned to the PET/CT group and 231 patients assigned to the CT group. The clinical characteristics and diagnostic yield were compared between the two groups. Furthermore, conducting subgroup analysis to evaluate the differences of diagnostic success or failure between the two groups. Results The sensitivity and diagnostic accuracy rate differed significantly (P = 0.035, P = 0.048). In the PET/CT group, the values were 95.7% and 96.3%, respectively, while in the CT group, they were 90.1% and 91.9%. When considering non-diagnostic cases, the overall diagnostic success rate increased markedly in PET/CT group (93.0% vs. 83.1%, P = 0.001). In our subgroup analysis, the PET/CT group demonstrated superiority in detecting lesions larger than 3 cm (OR, 4.81; 95CI%, 2.03 - 11.36), while showing a moderate effect in lesions smaller than 3 cm (OR, 1.09; 95CI%, 0.42 - 2.81). Significant effect modification was observed in large lesions in the PET/CT group (P for interaction = 0.023). Conclusions 18F-FDG-PET/CT enhances the diagnostic efficacy of CT-guided transthoracic needle biopsy for lung lesions, and the incremental value can be modified by lesion size, particularly when the diameter is larger than 3 cm.
Collapse
Affiliation(s)
| | | | - Lin Bai
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Piacentino F, Fontana F, Zorzetto G, Saccomanno A, Casagrande S, Franzi F, Imperatori A, Lanza C, Carriero S, Coppola A, Ierardi AM, Carrafiello G, Venturini M. Could Maximum SUV be Used as Imaging Guidance in Large Lung Lesions Biopsies? Double Sampling Under PET-CT/XperGuide Fusion Imaging in Inhomogeneous Lung Uptaking Lesions to Show That it can Make a Difference. Technol Cancer Res Treat 2023; 22:15330338221144508. [PMID: 37116886 PMCID: PMC10155026 DOI: 10.1177/15330338221144508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Introduction: The purpose of this study is to evaluate the diagnostic value of positron emission computed tomography-cone beam computed tomography (PET/CT-CBCT) fusion guided percutaneous biopsy, targeted to the maximum standardized uptake value (SUVmax) and minimum standardized uptake value (SUVmin) of large lung lesions. Materials and Methods: Inside a larger cohort of PET/CT-CBCT guided percutaneous lung biopsies, 10 patients with large pulmonary lesions (diameter > 30 mm) were selected retrospectively. These patients have been subjected to double biopsy sampling respectively in the SUVmax area and in the SUVmin area of the lesion. Technical success has been calculated. For each sample, the percentage of neoplastic, inflammatory, and fibrotic cells was reported. Furthermore, the possibility of performing immunohistochemical or molecular biology investigations to specifically define the biomolecular tumor profile was analyzed. Results: Nine lesions were found to be malignant, one benign (inflammation). Technical success was 100% (10/10) in the SUVmax samples and 70% (7/10) in the SUVmin samples (P-value: .21). In the first group, higher percentages of neoplastic cells were found at pathologic evaluation, while in the second group areas of inflammation and fibrosis were more represented. The biomolecular profile was obtained in 100% of cases (9/9) of the first group, while in the second group only in 33.3% of cases (2/6), with a statistically significant difference between the 2 groups (P-value: .011). Conclusion: A correlation between the standardized uptake value value and the technical success of the biopsy sample has been identified. PET/CT-CBCT guidance allows to target the biopsy in the areas of the tumor which are richer in neoplastic cells, thus obtaining more useful information for the planning of patient-tailored cancer treatments.
Collapse
Affiliation(s)
- Filippo Piacentino
- Department of Diagnostic and Interventional Radiology, Circolo Hospital and Macchi Foundation, Insubria University, Varese, Italy
| | - Federico Fontana
- Department of Diagnostic and Interventional Radiology, Circolo Hospital and Macchi Foundation, Insubria University, Varese, Italy
| | - Giada Zorzetto
- Postgraduate School of Radiodiagnostics, Insubria University, Varese, Italy
| | - Angiola Saccomanno
- Postgraduate School of Radiodiagnostics, Insubria University, Varese, Italy
| | - Sabrina Casagrande
- Nuclear Medicine Unit, Circolo Hospital and Macchi Foundation, Varese, Italy
| | - Francesca Franzi
- Division of Pathological Anatomy, Circolo Hospital and Macchi Foundation, Insubria University, Varese, Italy
| | - Andrea Imperatori
- Division of Thoracic Surgery, Circolo Hospital and Macchi Foundation, Insubria University, Varese, Italy
| | - Carolina Lanza
- Postgraduate School of Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Serena Carriero
- Postgraduate School of Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Andrea Coppola
- Department of Diagnostic and Interventional Radiology, Circolo Hospital and Macchi Foundation, Insubria University, Varese, Italy
| | - Anna Maria Ierardi
- Interventional Radiology Unit, Department of Radiology, Foundation IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianpaolo Carrafiello
- Interventional Radiology Unit, Department of Radiology, Foundation IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Venturini
- Department of Diagnostic and Interventional Radiology, Circolo Hospital and Macchi Foundation, Insubria University, Varese, Italy
| |
Collapse
|
5
|
Lanza C, Carriero S, Buijs EFM, Mortellaro S, Pizzi C, Sciacqua LV, Biondetti P, Angileri SA, Ianniello AA, Ierardi AM, Carrafiello G. Robotics in Interventional Radiology: Review of Current and Future Applications. Technol Cancer Res Treat 2023; 22:15330338231152084. [PMID: 37113061 PMCID: PMC10150437 DOI: 10.1177/15330338231152084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
This review is a brief overview of the current status and the potential role of robotics in interventional radiology. Literature published in the last decades, with an emphasis on the last 5 years, was reviewed and the technical developments in robotics and navigational systems using CT-, MR- and US-image guidance were analyzed. Potential benefits and disadvantages of their current and future use were evaluated. The role of fusion imaging modalities and artificial intelligence was analyzed in both percutaneous and endovascular procedures. A few hundred articles describing results of single or several systems were included in our analysis.
Collapse
Affiliation(s)
- Carolina Lanza
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Serena Carriero
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | | | - Sveva Mortellaro
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Caterina Pizzi
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | | | - Pierpaolo Biondetti
- Foundation IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | | | | | | | - Gianpaolo Carrafiello
- Foundation IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Curti M, Fontana F, Piacentino F, Ossola C, Coppola A, Carcano G, Venturini M. Dual-layer spectral CT fusion imaging for lung biopsies: more accurate targets, diagnostic samplings, and biomarker information? Eur Radiol Exp 2022; 6:34. [PMID: 35965267 PMCID: PMC9376184 DOI: 10.1186/s41747-022-00290-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
The increasingly widespread use of computed tomography (CT) has increased the number of detected lung lesions, which are then subjected to needle biopsy to obtain histopathological diagnosis. Obtaining high-quality biopsy specimens is fundamental for diagnosis and biomolecular characterisation that guide therapy decision-making. In order to obtain samples with high diagnostic potential, fusion imaging techniques, such as fusion between positron emission tomography and CT, have been introduced to target the biopsy where there more viable neoplastic cells can be sampled. Nowadays, dual-layer spectral CT represents a novel technology enabling an increased tissue characterisation. In particular, Z-effective images, i.e., colour-coded images based on the effective atomic number of tissue components, provide a higher level of discrimination than usual imaged based on x-ray attenuation in Hounsfield units and offer the potential of a better tissue characterisation. Our hypothesis is based on the future use of data provided by spectral CT, in particular by Z-effective images, as a guide for appropriate biopsy sampling for histopathological and biomolecular characterisation in the era of patient tailored-therapy.
Collapse
|
7
|
Lin Y, Xu Y, Lin J, Fu L, Sun H, Huang Z, Ooi BY, Xie S. Improving CT-guided transthoracic biopsy diagnostic yield of lung masses using intraprocedural CT and prior PET/CT fusion imaging. BMC Pulm Med 2022; 22:311. [PMID: 35964027 PMCID: PMC9375328 DOI: 10.1186/s12890-022-02108-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Objective The purpose of this study was to evaluate the usefulness of intraprocedural CT and prior PET/CT fusion imaging in improving the diagnostic yield of CT-guided transthoracic core-needle biopsy (CNB) in lung masses. Methods In total, 145 subjects with lung masses suspicious for malignancy underwent image-guided transthoracic CNB. According to imaging modality the subjects were divided into two groups. PET/CT images obtained no more than 14 days before the biopsy were integrated with intraprocedural CT images. The integrated or fused images were then used to plan the puncture sites. The clinical characteristics, diagnostic yield of CNB, diagnostic accuracy rate, procedure-related complications and procedure duration were recorded and compared between the two groups. Final clinical diagnosis was determined by surgical pathology or at least 6-months follow-up. The diagnostic accuracy of CNB was obtained by comparing with final clinical diagnosis. Results 145 subjects underwent CNB with adequate samples, including 76 in fusion imaging group and 69 in routine group. The overall diagnostic yield and diagnostic accuracy rate were 80.3% (53/66), 82.9% (63/76) for fusion imaging group, 70.7% (41/58), 75.4% (52/69) for routine group, respectively. In addition, the diagnostic yield for malignancy in fusion imaging group (98.1%, 52/53) was higher than that in routine group (81.3%, 39/48). No serious procedure-related complications occurred in both two groups. Conclusion CNB with prior PET/CT fusion imaging is particularly helpful in improving diagnostic yield and accurate rate of biopsy in lung masses, especially in heterogeneous ones, thus providing greater potential benefit for patients.
Collapse
Affiliation(s)
- Yue Lin
- Department of Radiology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Yanyan Xu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Jie Lin
- Department of Pathology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Hongliang Sun
- Department of Radiology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China.
| | - Zhenguo Huang
- Department of Radiology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Bee Yen Ooi
- Department of Radiology, Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Perai, 13700, Penang, Malaysia
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
8
|
Abstract
Image registration is an important research topic in medical image-guided therapy, which is dedicated to registering the high-dose imaging sequences with low-dose/faster means. Registering computer tomography (CT) scanning sequences with cone beam computer tomography (CBCT) scanning sequences is a typical application and has been widely used in CBCT-guided radiotherapy. The main problem is the difference in image clarity of these two image sequences. To solve this problem, for the single projection image sequence matching tasks encountered in medical practice, a novel local quality based curved section encoding strategy is proposed in this paper, which is called the high-quality curved section (HQCS). As an optimized cross-section regularly encoded along the sequence of image, this curved section could be used in order to solve the matching problem. Referencing the independent ground truth provided by medical image physicians, with an experiment combined with the four most widely used indicators used on image registration, matching performance of HQCS on CT/CBCT datasets was tested with varying clarity. Experimental results show that the proposed HQCS can register the CT/CBCT effectively and outperforms the commonly used methods. Specifically, the proposed HQCS has low time complexity and higher scalability, which indicates that the application enhanced the task of diagnosis.
Collapse
|
9
|
Gurgitano M, Angileri SA, Rodà GM, Liguori A, Pandolfi M, Ierardi AM, Wood BJ, Carrafiello G. Interventional Radiology ex-machina: impact of Artificial Intelligence on practice. LA RADIOLOGIA MEDICA 2021; 126:998-1006. [PMID: 33861421 PMCID: PMC8050998 DOI: 10.1007/s11547-021-01351-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Artificial intelligence (AI) is a branch of Informatics that uses algorithms to tirelessly process data, understand its meaning and provide the desired outcome, continuously redefining its logic. AI was mainly introduced via artificial neural networks, developed in the early 1950s, and with its evolution into "computational learning models." Machine Learning analyzes and extracts features in larger data after exposure to examples; Deep Learning uses neural networks in order to extract meaningful patterns from imaging data, even deciphering that which would otherwise be beyond human perception. Thus, AI has the potential to revolutionize the healthcare systems and clinical practice of doctors all over the world. This is especially true for radiologists, who are integral to diagnostic medicine, helping to customize treatments and triage resources with maximum effectiveness. Related in spirit to Artificial intelligence are Augmented Reality, mixed reality, or Virtual Reality, which are able to enhance accuracy of minimally invasive treatments in image guided therapies by Interventional Radiologists. The potential applications of AI in IR go beyond computer vision and diagnosis, to include screening and modeling of patient selection, predictive tools for treatment planning and navigation, and training tools. Although no new technology is widely embraced, AI may provide opportunities to enhance radiology service and improve patient care, if studied, validated, and applied appropriately.
Collapse
Affiliation(s)
- Martina Gurgitano
- Operative Unit of Radiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, via Francesco Sforza 35, 20122, Milan, Italia.
| | - Salvatore Alessio Angileri
- Operative Unit of Radiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, via Francesco Sforza 35, 20122, Milan, Italia
| | - Giovanni Maria Rodà
- Postgraduation School in Radiodiagnostics, Università Degli Studi di Milano, via Festa del Perdono, 20122, Milan, Italy
| | - Alessandro Liguori
- Operative Unit of Radiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, via Francesco Sforza 35, 20122, Milan, Italia
| | - Marco Pandolfi
- Operative Unit of Radiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, via Francesco Sforza 35, 20122, Milan, Italia
| | - Anna Maria Ierardi
- Operative Unit of Radiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, via Francesco Sforza 35, 20122, Milan, Italia
| | - Bradford J Wood
- Center for Interventional Oncology, National Institutes of Health Clinical Center and National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 1C-341, MSC 1182, Bethesda, MD, 20892, USA
| | - Gianpaolo Carrafiello
- Operative Unit of Radiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, via Francesco Sforza 35, 20122, Milan, Italia
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Boekestijn I, Azargoshasb S, Schilling C, Navab N, Rietbergen D, van Oosterom MN. PET- and SPECT-based navigation strategies to advance procedural accuracy in interventional radiology and image-guided surgery. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2021; 65:244-260. [PMID: 34105338 DOI: 10.23736/s1824-4785.21.03361-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Nuclear medicine has a crucial role in interventional strategies where a combination between the increasing use of targeted radiotracers and intraprocedural detection modalities enable novel, but often complex, targeted procedures in both the fields of interventional radiology and surgery. 3D navigation approaches could assist the interventional radiologist or surgeon in such complex procedures. EVIDENCE ACQUISITION This review aimed to provide a comprehensive overview of the current application of computer-assisted navigation strategies based on nuclear imaging to assist in interventional radiology and image-guided surgery. This work starts with a brief overview of the typical navigation workflow from a technical perspective, which is followed by the different clinical applications organized based on their anatomical organ of interest. EVIDENCE SYNTHESIS Although many studies have proven the feasibility of PET- and SPECT-based navigation strategies for various clinical applications in both interventional radiology and surgery, the strategies are spread widely in both navigation workflows and clinical indications, evaluated in small patient groups. Hence, no golden standard has yet been established. CONCLUSIONS Despite that the clinical outcome is yet to be determined in large patient cohorts, navigation seems to be a promising technology to translate nuclear medicine findings, provided by PET- and SPECT-based molecular imaging, to the intervention and operating room. Interventional Nuclear Medicine (iNM) has an exciting future to come using both PET- and SPECT-based navigation.
Collapse
Affiliation(s)
- Imke Boekestijn
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, the Netherlands.,Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Samaneh Azargoshasb
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Clare Schilling
- Head and Neck Academic Center, Department of Head and Neck Surgery, University College London Hospital, London, UK
| | - Nassir Navab
- Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany.,Computer Aided Medical Procedures, Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Daphne Rietbergen
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, the Netherlands.,Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands - .,Department of Urology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Role of Fusion Imaging in Image-Guided Thermal Ablations. Diagnostics (Basel) 2021; 11:diagnostics11030549. [PMID: 33808572 PMCID: PMC8003372 DOI: 10.3390/diagnostics11030549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022] Open
Abstract
Thermal ablation (TA) procedures are effective treatments for several kinds of cancers. In the recent years, several medical imaging advancements have improved the use of image-guided TA. Imaging technique plays a pivotal role in improving the ablation success, maximizing pre-procedure planning efficacy, intraprocedural targeting, post-procedure monitoring and assessing the achieved result. Fusion imaging (FI) techniques allow for information integration of different imaging modalities, improving all the ablation procedure steps. FI concedes exploitation of all imaging modalities’ strengths concurrently, eliminating or minimizing every single modality’s weaknesses. Our work aims to give an overview of FI, explain and analyze FI technical aspects and its clinical applications in ablation therapy and interventional oncology.
Collapse
|