1
|
Xu G, Zhang K, Cai D, Yang B, Zhao T, Xue J, Li T, Gao B. Application of Computational Fluid Dynamic Simulation of Parent Blood Flow in the Embolization of Unruptured A1 Aneurysms. World Neurosurg 2025; 193:696-705. [PMID: 39455005 DOI: 10.1016/j.wneu.2024.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVE To investigate the effect of microcatheter shaping based on the parent artery mainstream line of blood flow simulated using the computational fluid dynamics (CFD) technique on embolization of unruptured aneurysms on the posterior wall of the anterior cerebral artery (ACA) A1 segment. METHODS Patients with unruptured cerebral aneurysms on the posterior wall of the ACA A1 segment were retrospectively enrolled and treated with endovascular embolization after microcatheter shaping. The clinical, embolization, and follow-up data were analyzed. RESULTS Eight patients were enrolled and treated with endovascular embolization. 8 microcatheters were steam-shaped in vitro and were all successfully navigated to the right location in the in vitro experiment. During the embolization procedure, 7 microcatheters were successfully navigated to the right location for embolization. In the remaining 1 patient who had tortuous cerebral arteries, reshaping of the microcatheter based on the parent artery mainstream of blood flow made successful navigation of the microcatheter to the right place. Complete occlusion was obtained in 7 (87.5%) aneurysms and residual aneurysm neck in the remaining 1 (12.5%). At angiographic follow-up in 6 (75%) patients, the Raymond grade was I in 5 (83.3%) and II in the rest 1 (16.7%). CONCLUSIONS Use of computational fluid dynamics simulation of parent artery blood flow for microcatheter shaping in the embolization of unruptured aneurysms on the posterior wall of the ACA A1 segment is safe and effective in navigating the microcatheter to the right location for embolization, resulting in good stability and support for the embolization.
Collapse
Affiliation(s)
- Gangqin Xu
- Division of Interventional Therapy Center, Cerebrovascular Disease Hospital, Henan Provincial People's Hospital, Cerebrovascular Division of Interventional Therapy Center, Zhengzhou University People's Hospital, Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China
| | - Kun Zhang
- Division of Interventional Therapy Center, Cerebrovascular Disease Hospital, Henan Provincial People's Hospital, Cerebrovascular Division of Interventional Therapy Center, Zhengzhou University People's Hospital, Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China
| | - Dongyang Cai
- Division of Interventional Therapy Center, Cerebrovascular Disease Hospital, Henan Provincial People's Hospital, Cerebrovascular Division of Interventional Therapy Center, Zhengzhou University People's Hospital, Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China
| | - Bowen Yang
- Division of Interventional Therapy Center, Cerebrovascular Disease Hospital, Henan Provincial People's Hospital, Cerebrovascular Division of Interventional Therapy Center, Zhengzhou University People's Hospital, Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China
| | - Tongyuan Zhao
- Division of Interventional Therapy Center, Cerebrovascular Disease Hospital, Henan Provincial People's Hospital, Cerebrovascular Division of Interventional Therapy Center, Zhengzhou University People's Hospital, Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China
| | - Jiangyu Xue
- Division of Interventional Therapy Center, Cerebrovascular Disease Hospital, Henan Provincial People's Hospital, Cerebrovascular Division of Interventional Therapy Center, Zhengzhou University People's Hospital, Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China.
| | - Tianxiao Li
- Division of Interventional Therapy Center, Cerebrovascular Disease Hospital, Henan Provincial People's Hospital, Cerebrovascular Division of Interventional Therapy Center, Zhengzhou University People's Hospital, Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China
| | - Bulang Gao
- Division of Interventional Therapy Center, Cerebrovascular Disease Hospital, Henan Provincial People's Hospital, Cerebrovascular Division of Interventional Therapy Center, Zhengzhou University People's Hospital, Henan Provincial Neurointerventional Engineering Research Center, Zhengzhou, China
| |
Collapse
|
2
|
Wei H, Wang G, Tian Q, Liu C, Han W, Wang J, He P, Li M. Low shear stress induces macrophage infiltration and aggravates aneurysm wall inflammation via CCL7/CCR1/TAK1/ NF-κB axis. Cell Signal 2024; 117:111122. [PMID: 38417634 DOI: 10.1016/j.cellsig.2024.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND This study aimed to elucidate the mechanism by which wall shear stress (WSS) influences vascular walls, accounting for the susceptibility of intracranial aneurysms (IAs) to rupture. METHOD We collected blood samples from the sacs of 24 ruptured and 28 unruptured IAs and analyzed the expression of chemokine CCL7 using enzyme-linked immunosorbent assay (ELISA). Univariate and multivariate logistic regression analyses were employed to assess clinical data, aneurysm morphology, and hemodynamics in both groups. Pearson correlation analysis investigated the relationship between CCL7 expression in aneurysm sac blood and WSS. Additionally, we established a bionic cell parallel plate co-culture shear stress model and a mouse low shear stress (LSS) model. The model was modulated using CCL7 recombinant protein, CCR1 inhibitor, and TAK1 inhibitor. We further evaluated CCL7 expression in endothelial cells and the levels of TAK1, NF-κB, IL-1β, and TNF-α in macrophages. Subsequently, the intergroup differences in expression were calculated. RESULTS CCL7 expression was significantly higher in the ruptured group compared to the unruptured group. Hemodynamic analysis indicated that WSS was an independent predictor of the risk of aneurysm rupture. A negative linear correlation was observed between CCL7 expression and WSS. Upon addition of CCL7 recombinant protein, upregulation of CCR1 expression and increased levels of p-TAK1 and p-p65 were observed. Treatment with CCR1 and TAK1 inhibitors reduced inflammatory cytokine expression in macrophages under LSS conditions. Overexpression of TAK1 significantly alleviated the inhibitory effects of CCR1 inhibitors on p-p65 and inflammatory cytokines. CONCLUSION LSS prompts endothelial cells to secrete CCL7, which, upon binding to the macrophage surface receptor CCR1, stimulates the release of macrophage inflammatory factors via the TAK1/NF-κB signaling pathway. This process exacerbates aneurysm wall inflammation and increases the risk of aneurysm rupture.
Collapse
Affiliation(s)
- Heng Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
3
|
Martin T, El Hage G, Chaalala C, Peeters JB, Bojanowski MW. Hemodynamic factors of spontaneous vertebral artery dissecting aneurysms assessed with numerical and deep learning algorithms: Role of blood pressure and asymmetry. Neurochirurgie 2024; 70:101519. [PMID: 38280371 DOI: 10.1016/j.neuchi.2023.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND AND OBJECTIVES The pathophysiology of spontaneous vertebral artery dissecting aneurysms (SVADA) is poorly understood. Our goal is to investigate the hemodynamic factors contributing to their formation using computational fluid dynamics (CFD) and deep learning algorithms. METHODS We have developed software that can use patient imagery as input to recreate the vertebrobasilar arterial system, both with and without SVADA, which we used in a series of three patients. To obtain the kinematic blood flow data before and after the aneurysm forms, we utilized numerical methods to solve the complex Navier-Stokes partial differential equations. This was accomplished through the application of a finite volume solver (OpenFoam/Helyx OS). Additionally, we trained a neural ordinary differential equation (NODE) to learn and replicate the dynamical streamlines obtained from the computational fluid dynamics (CFD) simulations. RESULTS In all three cases, we observed that the equilibrium of blood pressure distributions across the VAs, at a specific vertical level, accurately predicted the future SVADA location. In the two cases where there was a dominant VA, the dissection occurred on the dominant artery where blood pressure was lower compared to the contralateral side. The SVADA sac was characterized by reduced wall shear stress (WSS) and decreased velocity magnitude related to increased turbulence. The presence of a high WSS gradient at the boundary of the SVADA may explain its extension. Streamlines generated by CFD were learned with a neural ordinary differential equation (NODE) capable of capturing the system's dynamics to output meaningful predictions of the flow vector field upon aneurysm formation. CONCLUSION In our series, asymmetry in the vertebrobasilar blood pressure distributions at and proximal to the site of the future SVADA accurately predicted its location in all patients. Deep learning algorithms can be trained to model blood flow patterns within biological systems, offering an alternative to the computationally intensive CFD. This technology has the potential to find practical applications in clinical settings.
Collapse
Affiliation(s)
- Tristan Martin
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Center 1000, rue St-Denis Montréal, QC H2X 0C, Canada
| | - Gilles El Hage
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Center 1000, rue St-Denis Montréal, QC H2X 0C, Canada
| | - Chiraz Chaalala
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Center 1000, rue St-Denis Montréal, QC H2X 0C, Canada
| | - Jean-Baptiste Peeters
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Center 1000, rue St-Denis Montréal, QC H2X 0C, Canada
| | - Michel W Bojanowski
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Center 1000, rue St-Denis Montréal, QC H2X 0C, Canada.
| |
Collapse
|
4
|
Malone AJ, Cournane S, Naydenova I, Meaney JF, Fagan AJ, Browne JE. Development and Evaluation of a Multifrequency Ultrafast Doppler Spectral Analysis (MFUDSA) Algorithm for Wall Shear Stress Measurement: A Simulation and In Vitro Study. Diagnostics (Basel) 2023; 13:diagnostics13111872. [PMID: 37296724 DOI: 10.3390/diagnostics13111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Cardiovascular pathology is the leading cause of death and disability in the Western world, and current diagnostic testing usually evaluates the anatomy of the vessel to determine if the vessel contains blockages and plaques. However, there is a growing school of thought that other measures, such as wall shear stress, provide more useful information for earlier diagnosis and prediction of atherosclerotic related disease compared to pulsed-wave Doppler ultrasound, magnetic resonance angiography, or computed tomography angiography. A novel algorithm for quantifying wall shear stress (WSS) in atherosclerotic plaque using diagnostic ultrasound imaging, called Multifrequency ultrafast Doppler spectral analysis (MFUDSA), is presented. The development of this algorithm is presented, in addition to its optimisation using simulation studies and in-vitro experiments with flow phantoms approximating the early stages of cardiovascular disease. The presented algorithm is compared with commonly used WSS assessment methods, such as standard PW Doppler, Ultrafast Doppler, and Parabolic Doppler, as well as plane-wave Doppler. Compared to an equivalent processing architecture with one-dimensional Fourier analysis, the MFUDSA algorithm provided an increase in signal-to-noise ratio (SNR) by a factor of 4-8 and an increase in velocity resolution by a factor of 1.10-1.35. The results indicated that MFUDSA outperformed the others, with significant differences detected between the typical WSS values of moderate disease progression (p = 0.003) and severe disease progression (p = 0.001). The algorithm demonstrated an improved performance for the assessment of WSS and has potential to provide an earlier diagnosis of cardiovascular disease than current techniques allow.
Collapse
Affiliation(s)
- Andrew J Malone
- School of Physics, Clinical and Optometric Sciences, IEO Centre, Faculty of Science and Health, Technological University Dublin, D07 H6K8 Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Seán Cournane
- Medical Physics and Clinical Engineering Department, St Vincent's Hospital, D04 T6F4 Dublin, Ireland
| | - Izabela Naydenova
- School of Physics, Clinical and Optometric Sciences, IEO Centre, Faculty of Science and Health, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - James F Meaney
- National Centre for Advanced Medical Imaging (CAMI), St James Hospital and with the School of Medicine, Trinity College Dublin, D08 NHY1 Dublin, Ireland
| | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jacinta E Browne
- School of Physics, Clinical and Optometric Sciences, IEO Centre, Faculty of Science and Health, Technological University Dublin, D07 H6K8 Dublin, Ireland
- Department of Radiology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|