1
|
Sahinis C, Amiridis IG, Varvariotis N, Lykidis A, Kannas TM, Negro F, Enoka RM. Foot-dominance does not influence force variability during ankle dorsiflexion and foot adduction. J Sports Sci 2024:1-11. [PMID: 39023311 DOI: 10.1080/02640414.2024.2379699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
The aim of our study was to compare the force steadiness and the discharge characteristics of motor units in the tibialis anterior (TA) during ankle dorsiflexion and foot adduction produced by submaximal isometric contractions with the dominant and non-dominant foot. Fifteen young men performed maximal and submaximal contractions at five target forces with both legs, and motor unit activity in TA was recorded using high-density electromyography. Maximal force and the fluctuations in force during submaximal contractions were similar between the two legs (p > 0.05). Motor unit activity was characterized by measures of mean discharge rate (MDR), coefficient of variation for interspike interval (CoV for ISI), and standard deviation of the filtered cumulative spike train (SD of fCST). There were no statistically significant differences in motor unit activity between legs during ankle dorsiflexion. In contrast, the MDR and the CoV for ISI but not the SD of fCST, were greater for the non-dominant foot compared with the dominant foot during foot adduction. Nonetheless, these differences in motor unit activity were not sufficient to influence the force fluctuations during the submaximal contractions. These results indicate that control of the force produced by TA during the two actions was not influenced by limb dominance.
Collapse
Affiliation(s)
- Chrysostomos Sahinis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis G Amiridis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Varvariotis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasios Lykidis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros M Kannas
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
2
|
Amiridis IG, Kannas T, Sahinis C, Negro F, Trypidakis G, Kellis E, Enoka RM. More Variability in Tibialis Anterior Function during the Adduction of the Foot than Dorsiflexion of the Ankle. Med Sci Sports Exerc 2024; 56:851-859. [PMID: 38190382 DOI: 10.1249/mss.0000000000003377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
INTRODUCTION The aim of the study was to compare maximal force, force steadiness, and the discharge characteristics of motor units in the tibialis anterior (TA) muscle during submaximal isometric contractions for ankle dorsiflexion and adduction of the foot. METHODS Nineteen active young adults performed maximal and submaximal isometric dorsiflexion and adduction contractions at five target forces (5%, 10%, 20%, 40%, and 60% maximal voluntary contraction [MVC]). The activity of motor units in TA was recorded by high-density EMG. RESULTS The maximal force was similar between dorsiflexion and adduction, despite EMG amplitude for TA being greater ( P < 0.05) during dorsiflexion than adduction. Τhe coefficient of variation (CV) for force (force steadiness) during dorsiflexion was always less ( P < 0.05) than during adduction, except of 5% MVC force. No differences were observed for mean discharge rate; however, the regression between the changes in discharge rate relative to the change of force was significant for dorsiflexion ( R2 = 0.25, P < 0.05) but not for adduction. Discharge variability, however, was usually less during dorsiflexion. The CV for interspike interval was less ( P < 0.05) at 10%, 20%, and 40% MVC but greater at 60% MVC during dorsiflexion than adduction. Similarly, the SD values of the filtered cumulative spike train of the motor units in TA were less ( P < 0.05) at 5%, 10%, 20%, and 40% MVC during dorsiflexion than adduction. CONCLUSIONS Although the mean discharge rate of motor units in TA was similar during foot adduction and ankle dorsiflexion, discharge variability was less during dorsiflexion resulting in less accurate performance of the steady adduction contractions. The neural drive to bifunctional muscles differs during their accessory function, which must be considered for training and rehabilitation interventions.
Collapse
Affiliation(s)
- Ioannis G Amiridis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, GREECE
| | - Theodoros Kannas
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, GREECE
| | - Chrysostomos Sahinis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, GREECE
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, ITALY
| | - Georgios Trypidakis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, GREECE
| | - Eleftherios Kellis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, GREECE
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO
| |
Collapse
|
3
|
Kurtys K, Podgórski M, Gonera B, Vazquez T, Olewnik Ł. An assessment of the variation of the intramuscular innervation of the gracilis muscle, with the aim of determining its neuromuscular compartments. J Anat 2023; 242:354-361. [PMID: 36308488 PMCID: PMC9919504 DOI: 10.1111/joa.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/01/2022] Open
Abstract
Some muscles present neuromuscular compartments, one of which is the gracilis muscle. The aim of the present study is to determine the number of compartments present within the gracilis muscle based on its intramuscular innervation patterns; such knowledge could be of value in free functional muscle transfer. The study comprised 72 gracilis muscles (38 women, 34 men), fixed in 10% formalin solution. The muscles were removed and then stained using Sihler's method. When sufficient transparency was achieved, some measurements were made. Three different types of intramuscular innervation were distinguished. Type I (70.8%) was featured by at least one direct proximal nerve branch. Type II (23.6%) presented at least one indirect proximal nerve branch. Type III (5.6%) did not possess any proximal nerve branch. The median of descended nerve branches was five. Considerable anatomical variation is possible within the intramuscular innervation of the gracilis muscle. The muscle presents neuromuscular compartments, but the exact number depends on the type of its intramuscular innervation and the number of the main descendent nerve branches. All three types seem to be appropriate for free functional muscle transfer. Our findings may be of great value for surgeons carrying out complex reconstructions with the use of the gracilis muscle.
Collapse
Affiliation(s)
- Konrad Kurtys
- Department of Anatomical Dissection and DonationMedical University of LodzLodzPoland
| | - Michał Podgórski
- Department of Diagnostic Imaging and Interventional Radiology, Veteran's Memorial HospitalMedical University of LodzLodzPoland
| | - Bartosz Gonera
- Department of Anatomical Dissection and DonationMedical University of LodzLodzPoland
| | - Teresa Vazquez
- Department of Anatomy and Embryology, School of MedicineComplutense University of MadridMadridSpain
| | - Łukasz Olewnik
- Department of Anatomical Dissection and DonationMedical University of LodzLodzPoland
| |
Collapse
|
4
|
De-Arriba-Agre JI, García-Mulas C, Grigelmo-Hernández S, Jiménez-Rejano JJ, Fernández-Carnero S, Naranjo-Cinto F, Pecos-Martín D, Nunez-Nagy S. Dry Needling of the Popliteus Muscle Validation by Ultrasound Imaging: A Cross-Sectional Observational Study. J Clin Med 2022; 11:6409. [PMID: 36362636 PMCID: PMC9658522 DOI: 10.3390/jcm11216409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 09/17/2023] Open
Abstract
Dry needling is a widely used technique for the treatment of painful syndromes in the musculature, however, its usefulness is of greater relevance in deep structures, such as the popliteus muscle, as it is more difficult to access. This muscle is heavily involved in knee pathology, being a source of pain and functional impairment, especially secondary to underlying pathologies. The method selected for the observation and study of the soft tissues, by means of imaging tests that do not use ionising radiation, is ultrasound. A cross-sectional observational study is proposed. It will be carried out in a healthy population, during the years 2021 and 2022, observing, by ultrasound, the results of the popliteal puncture technique, recorded by Mayoral del Moral et al. A popliteus muscle needle reach of 92% was achieved with this technique, in 48 of 50 patients. The results of the present cross-sectional observational study in living subjects, support that the popliteal puncture, described by Mayoral et al. is a reliable and safe approach, when performed with a 0.30 × 50 mm needle, and no adverse reactions or punctures of the vascular-nerve structures have been reported during the interventions.
Collapse
Affiliation(s)
- José-Ignacio De-Arriba-Agre
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de 6 Investigación en Fisioterapia y Dolor, 28801 Alcalá de Alcalá, Spain
| | - Carmen García-Mulas
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de 6 Investigación en Fisioterapia y Dolor, 28801 Alcalá de Alcalá, Spain
| | - Sara Grigelmo-Hernández
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de 6 Investigación en Fisioterapia y Dolor, 28801 Alcalá de Alcalá, Spain
| | | | - Samuel Fernández-Carnero
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de 6 Investigación en Fisioterapia y Dolor, 28801 Alcalá de Alcalá, Spain
| | - Fermin Naranjo-Cinto
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de 6 Investigación en Fisioterapia y Dolor, 28801 Alcalá de Alcalá, Spain
| | - Daniel Pecos-Martín
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de 6 Investigación en Fisioterapia y Dolor, 28801 Alcalá de Alcalá, Spain
| | - Susana Nunez-Nagy
- Universidad de Alcalá, Facultad de Enfermería y Fisioterapia, Departamento de Fisioterapia, Grupo de 6 Investigación en Fisioterapia y Dolor, 28801 Alcalá de Alcalá, Spain
| |
Collapse
|
5
|
Carbonaro M, Seynnes O, Maffiuletti NA, Busso C, Minetto MA, Botter A. Architectural Changes in Superficial and Deep Compartments of the Tibialis Anterior During Electrical Stimulation Over Different Sites. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2557-2565. [PMID: 32986557 DOI: 10.1109/tnsre.2020.3027037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electrical stimulation is widely used in rehabilitation to prevent muscle weakness and to assist the functional recovery of neural deficits. Its application is however limited by the rapid development of muscle fatigue due to the non-physiological motor unit (MU) recruitment. This issue can be mitigated by interleaving muscle belly (mStim) and nerve stimulation (nStim) to distribute the temporal recruitment among different MU groups. To be effective, this approach requires the two stimulation modalities to activate minimally-overlapped groups of MUs. In this manuscript, we investigated spatial differences between mStim and nStim MU recruitment through the study of architectural changes of superficial and deep compartments of tibialis anterior (TA). We used ultrasound imaging to measure variations in muscle thickness, pennation angle, and fiber length during mStim, nStim, and voluntary (Vol) contractions at 15% and 25% of the maximal force. For both contraction levels, architectural changes induced by nStim in the deep and superficial compartments were similar to those observed during Vol. Instead, during mStim superficial fascicles underwent a greater change compared to those observed during nStim and Vol, both in absolute magnitude and in their relative differences between compartments. These observations suggest that nStim results in a distributed MU recruitment over the entire muscle volume, similarly to Vol, whereas mStim preferentially activates the superficial muscle layer. The diversity between spatial recruitment of nStim and mStim suggests the involvement of different MU populations, which justifies strategies based on interleaved nerve/muscle stimulation to reduce muscle fatigue during electrically-induced contractions of TA.
Collapse
|
6
|
Olewnik Ł, Karauda P, Gonera B, Kurtys K, Haładaj R, Tubbs RS, Paulsen F, Ramón Sanudo J, Polguj M. Intramuscular innervation of plantaris muscle evaluated using a modified Sihler's staining protocol - Proposal for a new classification. Ann Anat 2020; 230:151504. [PMID: 32173561 DOI: 10.1016/j.aanat.2020.151504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE The plantaris muscle is a morphologically variable structure with regard to both its origin and insertion, and the course of the tendon. We here determined the pattern of branching and distribution of intramuscular nerves of the plantaris muscle to determine its usability for autologous transplantation. No information exists on the innervation of the plantaris muscle using Sihler's staining technique, and hence its intramuscular nerves. The main purpose of the work is to determine the pattern of branching and distribution of the intramuscular nerves of the plantaris muscle. Is the plantaris muscle a good transplant candidate? MATERIALS AND METHODS Eighty lower limbs from cadavers (40 left, 40 right, 40 male, 40 female, age range 41-94 years) were fixed in 10% formalin solution and examined macroscopically as well as morphometrically with regard to the innervation pattern of the respective plantaris muscle. Afterwards Sihler's staining was used in all 80 plantaris muscles to identify the exact distribution of the muscular branch originating from the main nerve trunk in the muscle belly. RESULTS Two patterns of branching and nerve distribution could be intensified in the plantaris muscle: Type I, with a single pattern entire up to the muscle and then divided into superior and inferior intramuscular branches.; type II with a double innervation pattern (superior and inferior). The superior and inferior pattern were not connected to each other. CONCLUSION The plantaris muscle reveals variability with two different innervation patterns. Type II is ideally suited for autologous transplantation. New classifications of innervation are desirable for individual muscles rather than a generalized approach.
Collapse
Affiliation(s)
- Ł Olewnik
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Poland.
| | - P Karauda
- Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Lodz, Poland
| | - B Gonera
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Poland
| | - K Kurtys
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Poland
| | - R Haładaj
- Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Lodz, Poland
| | - R Shane Tubbs
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA; Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, USA; Department of Anatomical Sciences, St. George's University, Grenada
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany; Sechenov University, Department of Topographic Anatomy and Operative Surgery, Moscow, Russia
| | - J Ramón Sanudo
- Department of Human Anatomy and Embryology, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - M Polguj
- Department of Normal and Clinical Anatomy, Chair of Anatomy and Histology, Medical University of Lodz, Poland
| |
Collapse
|
7
|
Li Y, Xu J, Zhu J, Yu T, Zhu D. Three-dimensional visualization of intramuscular innervation in intact adult skeletal muscle by a modified iDISCO method. NEUROPHOTONICS 2020; 7:015003. [PMID: 32016132 PMCID: PMC6977403 DOI: 10.1117/1.nph.7.1.015003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Three-dimensional visualization of the innervation in skeletal muscles is helpful for understanding the morphological structure and function. iDISCO, a whole-mount immunolabeling and clearing technique, provides a valuable tool for volume imaging of intramuscular nerve fibers but suffers from the nonspecific staining caused by the anti-mouse secondary antibody when using the murine primary antibody. We developed a modified iDISCO method by introducing pretreatment of ScaleCUBIC-1 reagent, termed m-iDISCO. The m-iDISCO method could eliminate the nonspecific staining and achieve uniform and complete labeling of nerve fibers in various muscles with mouse anti-neurofilament primary antibody. Combining the m-iDISCO method with light-sheet microscopy enabled us to visualize the innervation of adult mouse tibialis anterior and trace the nerve fibers from extramuscular branches to intramuscular terminal branches. This method represents an effective alternative for studying the innervation of intact skeletal muscles in health and disease.
Collapse
Affiliation(s)
- Yusha Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Jianyi Xu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| |
Collapse
|
8
|
Enoka RM, Amiridis IG, Duchateau J. Electrical Stimulation of Muscle: Electrophysiology and Rehabilitation. Physiology (Bethesda) 2020; 35:40-56. [DOI: 10.1152/physiol.00015.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The generation of action potentials in intramuscular motor and sensory axons in response to an imposed external current source can evoke muscle contractions and elicit widespread responses throughout the nervous system that impact sensorimotor function. The benefits experienced by individuals exposed to several weeks of treatment with electrical stimulation of muscle suggest that the underlying adaptations involve several physiological systems, but little is known about the specific changes elicited by such interventions.
Collapse
Affiliation(s)
- Roger M. Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Colorado
| | - Ioannis G. Amiridis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jacques Duchateau
- Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
9
|
Mani D, Feeney DF, Enoka RM. The modulation of force steadiness by electrical nerve stimulation applied to the wrist extensors differs for young and older adults. Eur J Appl Physiol 2018; 119:301-310. [DOI: 10.1007/s00421-018-4025-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
|
10
|
Buckmire AJ, Arakeri TJ, Reinhard JP, Fuglevand AJ. Mitigation of excessive fatigue associated with functional electrical stimulation. J Neural Eng 2018; 15:066004. [PMID: 30168443 DOI: 10.1088/1741-2552/aade1c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Restoration of motor function in paralyzed limbs using functional electrical stimulation (FES) is undermined by rapid fatigue associated with artificial stimulation. Typically, single electrodes are used to activate muscles with FES. However, due to the highly distributed branching of muscle nerves, a single electrode may not be able to activate the entire array of motor axons supplying a muscle. Therefore, stimulating muscle with multiple electrodes might enable access to a larger volume of muscle and thereby reduce fatigue. APPROACH Accordingly, we compared the endurance times that ankle dorsiflexion could be sustained at 20% maximum voluntary force using feedback controlled stimulation (25 Hz) of human tibialis anterior (TA) using one or four percutaneous intramuscular electrodes. In addition, we measured endurance times in response to direct stimulation of the nerve supplying TA and during voluntary contraction. In all sessions involving electrical stimulation, an anesthetic nerve block proximal to the site of stimulation was used to isolate the effects of stimulation and alleviate discomfort. MAIN RESULTS Endurance time associated with stimuli delivered by a single intramuscular electrode (84 ± 19 s) was significantly smaller than that elicited by four intramuscular electrodes (232 ± 123 s). Moreover, endurance time in response to nerve stimulation (787 ± 201 s) was not significantly different that that produced during voluntary contraction (896 ± 272 s). SIGNIFICANCE Therefore, excessive fatigue associated with FES is probably due to the inability of conventional FES systems to enlist the full complement of motor axons innervating muscle and can be mitigated using multiple electrodes or nerve-based electrodes.
Collapse
Affiliation(s)
- Alie J Buckmire
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States of America. Graduate Program in Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States of America
| | | | | | | |
Collapse
|
11
|
Rodriguez-Falces J, Place N. Determinants, analysis and interpretation of the muscle compound action potential (M wave) in humans: implications for the study of muscle fatigue. Eur J Appl Physiol 2017; 118:501-521. [DOI: 10.1007/s00421-017-3788-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
|
12
|
Bannerman P, Burns T, Xu J, Miers L, Pleasure D. Mice Hemizygous for a Pathogenic Mitofusin-2 Allele Exhibit Hind Limb/Foot Gait Deficits and Phenotypic Perturbations in Nerve and Muscle. PLoS One 2016; 11:e0167573. [PMID: 27907123 PMCID: PMC5132404 DOI: 10.1371/journal.pone.0167573] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022] Open
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A), the most common axonal form of hereditary sensory motor neuropathy, is caused by mutations of mitofusin-2 (MFN2). Mitofusin-2 is a GTPase required for fusion of mitochondrial outer membranes, repair of damaged mitochondria, efficient mitochondrial energetics, regulation of mitochondrial-endoplasmic reticulum calcium coupling and axonal transport of mitochondria. We knocked T105M MFN2 preceded by a loxP-flanked STOP sequence into the mouse Rosa26 locus to permit cell type-specific expression of this pathogenic allele. Crossing these mice with nestin-Cre transgenic mice elicited T105M MFN2 expression in neuroectoderm, and resulted in diminished numbers of mitochondria in peripheral nerve axons, an alteration in skeletal muscle fiber type distribution, and a gait abnormality.
Collapse
Affiliation(s)
- Peter Bannerman
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, California, United States of America
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Travis Burns
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| | - Jie Xu
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| | - Laird Miers
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, California, United States of America
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| |
Collapse
|